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Biowheel: interactive visualization and exploration of biomedical data
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Abstract

We introduce Biowheel (https://biowheel.dibsvis.com/), a web-based award-
winning data visualization tool, for exploring high-dimensional and heterogeneous
biomedical data. Through interactive sorting and filtering of data, Biowheel enables
researchers to quickly detect data outliers, evaluate data consistency, and discover
mixed trends. Its interactive data presentation, visually-engaging design, and
friendly user interface opens the door to easier, faster and better high-dimensional
data interpretation for biomedical professionals with and without programming
training.

How to effectively visualize and explore high-dimensional data remains an active
field of research in biomedicine. Recent years have witnessed a fast expansion of
measuring dimensions (e.g.,, number of genes, samples, time points) brought by
advances in high-throughput omics and sensor technologies'-3. Meanwhile, the
degree of heterogeneity observed in biomedical data of the same type is rapidly
increasing, thanks to improved resolution in measurements?, the awareness of
tumor heterogeneity>, and a growing interest in personalized medicine®. This
unprecedented scale, diversity, and heterogeneity of biomedical data calls for
developments of unconventional visualization methods and novel software tools to
drive data interpretation’. To that end, the HPN-DREAM breast cancer network
inference crowd-sourced data challenge® in 2013 dedicated a sub-challenge to
crowd-source visualization strategies for high-dimensional molecular time-course
data sets in breast cancer.

Here, we present Biowheel, a data visualization tool created from the winning
design of the HPN-DREAM visualization sub-challenge. The idea of Biowheel was
inspired in part by the aesthetics of circos® the utility of heatmaps!?, and the
powerful interactivity of web-based visualization frameworks!!. Circular heatmaps,
enabling end-to-end comparison, serve as the core design in Biowheel to visualize
both numeric and categorical data. Differentiating its design from other
applications, Biowheel is fully interactive and drives data interpretation through
interactive display, filtering and sorting of the raw data. In addition, Biowheel frees
biomedical researchers from programming, and speeds up the scientific discovery
process with its easy-to-learn graphical user interface.

An example of visualizing high-dimensional molecular time-course data with
Biowheel is shown in Figure 1A, using the main experimental breast cancer
proteomics data set from the HPN-DREAM challenge. The original data set contains
reverse phase protein array (RPPA) expression measurements of 45 phospho-
proteins treated with 4 types of inhibitor and 8 types of stimulus at 7 post-stimulus


https://doi.org/10.1101/099739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/099739; this version posted January 11, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

time points in 4 cell lines. In this example, the time-course protein expression with
2 stimuli (EGF and FGF1) and 2 inhibitors (GSK690693 and PD173074) in the BT20
cell line is shown, where the time course starts from the innermost ring and projects
outwards, and the proteins are represented as spokes. The specific types of inhibitor
and stimulus being used in the experiment are denoted in the two outermost rings.
A step-by-step guide of how to build this visualization in Biowheel is available in
Supplementary Video 1.

Though initially proposed for visualizing time-course expression data, Biowheel can
easily visualize any tabular data, independent of the data source and context. Each
column from the tabular data will be visualized as a ring, and users are able to
choose whether to represent it as a continuous variable, a categorical variable, or
both. In the previous example of visualizing the HPN-DREAM challenge data (Figure
1A), expression levels at each time point are selected as a continuous variable,
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Figure 1. Assorted visualization of the HPN-DREAM challenge data in Biowheel: (A) time-
course protein abundance under the inhibition of GSK690693 or PD173074 and the
stimulation of EGF or FGF1 is shown, in which proteins are sorted by their expression
levels at 0 min. (B) Three filtered subsets of (A) are generated by de-selecting samples
inhibited by GSK690693 (left), by GSK690693 and FGF1 (middle), and by FGF1 (right).
(C) Three coloring variations of (A) are created to demonstrate Biowheel’s aesthetic
versatility. (D) Three spoke orderings of (A) are shown, in which spokes are sorted by
expression at 4 hrs (left), by expression at 4 hrs and inhibitor (middle), and by
expression at 4 hrs, inhibitor and stimulus (right). Supplementary Video 2 introduces all
these features in a live demo.
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whereas experimental conditions are selected as categorical variables. Each row
from the input tabular data is visualized as a spoke in Biowheel, and spokes that
share the same characteristics can be excluded or included based on the user’s
preference. An example of spoke selection is demonstrated in Figure 1B, where
samples were excluded from the graph based on the inhibitor type, the stimulus
type, or both. In contrast to the data filtering that we typically see in programs like
Excel, Biowheel can filter data with multiple variables, and the selection is reflected
instantly in the visualization.

In the spirit of heatmaps!?, Biowheel presents data values in colors to empower
visual interpretation. Continuous variables are mapped to a spectrum of colors (e.g.
rainbow, heat, red-white-blue), and each level of categorical variables is represented
by a unique color. Colors in every graphical element can be readily modified with
clicks on the graph, thus achieving aesthetic versatility for the graph (Figure 1C).
Besides intuitive color mappings, the numerical or categorical value of each data
point can be simultaneously displayed on top of the graphical element to add more
depth to the graph. The data display is therefore also interactive, with values
popping up in a semi-transparent tooltip box when users mouse over the graph to
inspect data points of interests.

Beyond its aesthetic visualization capabilities, Biowheel can facilitate data vetting
and pattern discovery. The key feature enabling this is interactive sorting. Upon
clicking any ring’s name in the graph, Biowheel will automatically sort (or unsort)
all samples based on values of the corresponding variable and will reorder spokes
instantaneously. Figure 1D illustrates three varied representations of the same data
after sorting it by combinations of different variables. The sorting becomes nested
once there are two or more variables being selected, and the hierarchy of the nested
sorting is determined by the sequence of the selections.

The feature of nested sorting enables visual comparison between multiple data
sources. For example, Biowheel can be used to visualize and compare dynamic
responses of proteins in multiple experimental conditions. Using a subset of the
HPN-DREAM challenge data (inhibitor: GSK690693; stimulus: EGF, FGF1), Figure 2A
illustrates time-course protein expression data which is sorted by the stimulus type
and protein expression at 0 min. Since the initial expression is the same for each
protein across all stimulus conditions, the 45 proteins are arranged by the same
order within the two sub-wheels divided by the stimulus. In this arrangement, the
contrasting dynamic responses of proteins under EGF versus FGF1 stimulation
appear immediately: a substantial portion of proteins that were of low or medium
expression at 0 min were up-regulated when stimulated by EGF, but not when
stimulated by FGF1. In addition, we can see a couple of cases in which a highly-
expressed protein dropped its expression significantly after 60 minutes of FGF1
stimulation, which is not observed in the EGF stimulation experiments. These cases
can also be interpreted as data outliers, which Biowheel is fully equipped to detect.
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Figure 2. (A) Using the HPN-DREAM challenge data, the nested sorting of proteins by
their expression levels at 0 min within each stimulus type reveals contrasting protein
dynamics in response to different stimuli. (B) Using the AML challenge data, sorting of
patients based on the EGLN1 expression indicates a positive correlation between VHL
and EGLN1, and a partial negative correlation between EGLN1 and mTOR.

Interactive sorting can also provide insights of possible correlations between
variables, especially those that only manifest in a sub-population of samples. To
illustrate this utility, we applied Biowheel to visualizing data from the Acute Myeloid
Leukemia (AML) Outcome Prediction Challenge!3. This dataset consists of RPPA
measurements of 231 proteins in 191 patients diagnosed with AML. As an example,
Figure 2B shows the expression levels of EGLN1, VHL and mTOR from all patients, in
which patients are sorted by the expression levels of EGLN1. It is clear to see a
positive correlation in expression between EGLN1 and VHL across all samples in
general, the finding of which is consistent with our existing knowledge about the
roles of EGLN1 and VHL in the regulation of HIF1-al4. On the other hand, comparing
the expression level of mTOR against that of EGLN1, we are able to see some
negative correlation when the expression of EGLN1 is either low or high, but the
trend is not consistent across all expression levels. A correlation analysis between
EGLN1 and mTOR reveals a Pearson correlation coefficient of -0.310 (p-value =
1.3e-5) in all patients, -0.621 (p-value = 1.5e-4) in patients with an EGLN1
expression that is either above 1.0 or below -1.0, and -0.163 (p-value = 0.04) in
patients with an EGLN1 expression that is between -1.0 and 1.0. Though mTOR was
shown to regulate EGLN1 in previous experiments!®, genetic aberrations and
variations can complicate this relationship in AML!¢, as seen in this data. The
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association between EGLN1 and mTOR would be easily missed, if we directly
conduct a correlation analysis across all samples without first visualizing the data. It
is particularly important to look for mixed trends when analyzing cancer expression
data, where heterogeneity is prevalent in both an intra-17 and inter- tumor!8
manner.

Biowheel is a tool born from a community’s need to better visualize high-
dimensional cancer expression data, and it is a design that was favored by our
researcher peers in systems biology. As an effort to make powerful visualizations
accessible to every biomedical professional including those without prior
programming experience, we paid special attention to designing a user interface
that is easy to learn and intuitive to use. We believe that Biowheel can be applied
broadly to various research fields to improve and accelerate scientific discovery and
sharing.

METHODS

Software. Biowheel was built based on the data-driven documents JavaScript
library (d3.js)!1, and is hosted at Amazon Web Services. The interface of Biowheel
consists of three panels: an upper navigation bar for tasks at the system level (e.g.
collecting feedback, login and help), a left panel for graphing option selection, and a
main panel for visualization display. The accepted input file formats are csv and xIsx,
and the recommend maximum file size is 1MB. Biowheel automatically recognizes
numeric and non-numeric variables, thus missing data within continuous variables
should be represented as empty cells in order for the software to correctly
recognize. Once the files are uploaded, users will be prompted to select a sheet from
the file for visualization. The uploaded data can be previewed and edited at any
time. Selecting data for display consists of three components: selecting variables to
display as rings (default is none), selecting samples to display as spokes by data
filtering (default is selecting all samples), and selecting variables to display
interactively as texts through tooltips. To customize the visualization, Biowheel
offers options to modify colors, edit texts (e.g. displayed ring name), and position
graphs. The final visualization can be exported into any of the three formats: svg,
png and pdf.

Data. The HPN-DREAM challenge data was first reformatted in order to present
time points and experimental conditions as columns, and proteins as rows. The
reformatted data from the BT20 cell line is provided in Supplementary Dataset 1,
which includes a data subset that is sufficient to reproduce all the graphs presented
in this paper (1st sheet: simple) and the full data set (2nd sheet: full). The AML
Outcome Prediction Challenge data used in this study is available at
https://www.synapse.org/#!Synapse:syn2501858.
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