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ABSTRACT 
Many time-resolved single-molecule biophysics experiments seek to characterize the kinetics of biomolecular 
systems exhibiting dynamics that challenge the time resolution of the given technique. Here we present a 
general, computational approach to this problem that employs Bayesian inference to learn the underlying 
dynamics of such systems, even when these kinetics are much faster than the time resolution of the given 
technique. By accurately and precisely inferring rate constants, this Bayesian Inference for the Analysis of Sub-
temporal-resolution Data (BIASD) approach effectively enables the experimenter to super-resolve the poorly 
resolved, fast kinetics that are present in their data. 
 
INTRODUCTION 

Given their inherent ability to eliminate ensemble averaging, time-resolved single-molecule biophysical 
methods have revolutionized the study of biological mechanisms by enabling distributions of molecular 
properties to be observed, transiently sampled reaction intermediates to be characterized, and stochastic 
fluctuations from equilibrium to be investigated.1 Despite their impact, however, these methods continue to be 
significantly limited by the maximum time resolutions that can be achieved while still maintaining acceptable 
signal-to-noise ratios (SNR) and sufficient experimental throughput (i.e., observation of a statistically significant 
number of molecules given a feasible experimental effort).2 Some of the most widely used single-molecule 
approaches, for example, including wide-field fluorescence microscopy, force spectroscopy, and tethered 
particle motion techniques, are typically limited to time resolutions of milliseconds to hundreds of milliseconds 
per data point.3–6 Consequently, these single-molecule methods often fail to detect or properly characterize 
mechanistically critical biomolecular processes, such as early steps in ligand binding and/or dissociation, 
structural domain rearrangements, or local folding and unfolding events, that occur on the microsecond to 
millisecond timescale.7,8 Although the time resolution of some single-molecule methods can be improved so 
that they might be able to report on these processes, such as by performing single-molecule fluorescence 
microscopy experiments using a confocal, rather than a wide-field, fluorescence microscope, this often comes 
at the cost of a significant decrease in the SNR and/or a several orders of magnitude decrease in the 
experimental throughput, either of which can be as powerful a limitation as the lower time resolution.2 
 To push beyond the time-resolution limits of single-molecule methods without altering SNRs or 
experimental throughputs, we have developed a computational approach that can infer the rate constants 
governing transitions between multiple ligand-binding- or conformational states (hereafter referred to just as 
‘states’) of a single molecule from the analysis of any time-resolved, single-molecule experimental signal–even 
if those rates are substantially faster than the time resolution of the recorded experimental signal. Much like the 
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ability to infer the spatial position of a single-molecule in super-resolution imaging experiments, this approach, 
which we call Bayesian Inference for the Analysis of Sub-temporal resolution Dynamics (BIASD), allows for 
temporal super-resolution in single-molecule experiments. By using Bayesian inference, BIASD also employs a 
natural framework with which to describe the precision that the amount of data collected during the single-
molecule experiment will lend to the determination of the parameters governing the single-molecule dynamics.9 
 Here, we describe the Bayesian inference-based framework underlying BIASD. We then validate 
BIASD on computer-simulated data by accurately recovering the known rate constants governing transitions 
between states that were used to generate computer-simulated signal versus time trajectories (signal 
trajectories). Having validated BIASD, we next apply it to experimental data in order to infer the unknown rate 
constants governing transitions between states in experimentally recorded fluorescence resonance energy 
transfer efficiency (EFRET ) versus time trajectories (EFRET trajectories). Notably, the experimentally recorded 
EFRET trajectories that we have analyzed here had until now eluded analysis due to the presence of transitions 
that are much faster than the time resolution of the electron-multiplying charge-coupled device camera that 
was used to record them.10 Finally, we describe and apply a straightforward extension of the BIASD framework 
that can be used to infer rate constants and signal values on experimental systems consisting of static or 
interconverting sub-populations of molecular properties within an individual or ensemble of molecules. 
Remarkably, the results of our studies demonstrate that, even when the rates of transitions between states are 
orders of magnitude faster than the time resolution of the signal trajectories, BIASD permits accurate inference 
of the rates constants for transitions between these states. 
  
Bayesian Inference-based Framework Underlying BIASD 

In biomolecular systems, functional motions—such as those involved in ligand binding and dissociation 
processes, or large-scale conformational rearrangements—very often involve the simultaneous formation 
and/or disruption of numerous, non-covalent interactions. The relatively low probability of simultaneously 
forming and/or disrupting these numerous interactions can therefore result in large, entropically dominated, 
transition-state energy barriers for such functional motions.11,12 Consequently, individual biomolecules are 
generally expected to exhibit effectively discrete and instantaneous transitions between relatively long-lived 
states,8 an expectation that is consistent with the step-like transitions that are generally observed in time-
resolved single-molecule experiments.13 By definition, such time-resolved single-molecule techniques record 
the time evolution of an experimentally observable signal originating from an individual molecule (i.e., a signal 
trajectory) that, ideally, conveys information about the time evolution of the underlying state of that molecule. 
Correspondingly, the analysis of a single-molecule signal trajectory frequently involves thresholding the 
trajectory at particular signal values or modeling the trajectory (e.g., using a hidden Markov model (HMM)) 
such that each data point in the signal trajectory is assigned to a single, specific state of the molecule.14,15 As a 
result, these methods ‘idealize’ the original signal trajectory into a state versus time trajectory (state trajectory). 
From the idealized state trajectory, the distribution of dwell times spent in a particular state before undergoing a 
transition to another state can be used to determine the rate constants for the transitions between states, and 
the distribution of observed signal values originating from a particular state can be used to determine the signal 
value corresponding to that state.1,16 

An important consideration when idealizing signal trajectories is that whenever an individual molecule 
undergoes a transition from one state to another, the transition occurs stochastically during the time period, τ, 
over which the detector collects and integrates the signal to record a data point in the signal trajectory. Thus, 
the probability that a transition will coincide exactly with the beginning or end of the τ in which it takes place is 
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essentially zero. As a result, when a transition takes place, the signal value that is recorded during that τ does 
not solely represent either of the states involved in that transition. Instead, it represents the average of the 
signal values corresponding to the states that are sampled during τ, weighted by the time spent in each of 
those states. This time averaging makes it imprudent, if not incorrect, to idealize the signal value recorded 
during such a τ by assigning it to any one particular state, because the molecule will have occupied multiple 
states during that τ. Notably, when the rates of transitions between states become comparable to or greater 
than τ-1, there is a large probability that the τs of a signal trajectory will contain one or more transitions, and 
that, consequently, many of the signal values of the signal trajectory will exhibit this time averaging. Idealization 
of such signal trajectories, therefore, introduces significant errors into the resulting dwell-time- and signal-value 
distributions as well as into the rate constants for transitions between states and signal values corresponding 
to those states that are determined from these distributions.9 

In order to overcome the potential errors associated with determining rates of transitions and signal 
values from the analysis of idealized state trajectories, BIASD instead determines the rates of transitions and 
signal values by analyzing the fraction of time that a molecule spends in each state during the τ corresponding 
to each signal value in a signal trajectory. To illustrate this approach, we consider the case of an individual 
molecule that undergoes stochastic and uncorrelated (i.e., Markovian) and reversible transitions between two 
states, denoted 1 and 2, (i.e., 1 ⇄ 2, with forward and reverse rate constants of k1 and k2, respectively) that 
have unique signal values of ϵ1 and ϵ2. If the fraction of time that the molecule spends in state 1 during a 
particular τ is f, then, because of the two-state nature of the system, the fraction of time that the molecule 
spends in state 2 during that τ is 1-f. It is important to note that, although the molecule is at equilibrium 
between states 1 and 2, the value of f for any particular τ will not necessarily be the equilibrium value of f = 
(1+(k1/k2))-1, because τ might not be long enough for sufficient time averaging to occur (i.e., to invoke 
ergodicity). Instead, each τ will exhibit a different, time-averaged value of f. 
 The exact value of f for a particular τ will depend upon the molecule’s stochastic path through state-
space during τ. As such, a probabilistic description of f, which accounts for all possible paths through state-
space, is needed to calculate the likelihood of observing a particular value of f during a τ.17,18 In particular, for 
the reversible, two-state system considered here, such a description, which has roots in nuclear magnetic 
resonance chemical exchange experiments,19 and sojourn-time distributions,20 was first given by Dobrushin;21 
in its use here, this expression depends upon k1, k2, and τ, and is derived in the Supporting Information. 
Experimentally, if the exact values of f, ϵ1, and ϵ2 during each τ were known, one would be able to calculate the 
expected value of the corresponding time-averaged signal, µ, for each τ because it would be the linear 
combination µ = (ϵ1·f) + (ϵ2·(1-f)). Unfortunately, the analysis of time-resolved single-molecule experiments 
deals with the opposite problem—observing a signal, d, during each τ and trying to infer f, ϵ1, and ϵ2—with 
additional uncertainty that is due, in part, to noise in the measurement of d. 
 A conservative, yet generally applicable, approach to analyzing the value of d recorded during each τ is 
to treat it as a noisy measurement of µ. By assuming that detection noise (e.g., readout noise) dominates over 
other possible sources of noise (e.g., fluctuations in laser power), and that such detection noise is effectively 
uncorrelated, the observed values of d will have a probability that is distributed according to a normal (i.e., 
Gaussian) distribution with a mean, µ, and a standard deviation, σ, corresponding to the amount of noise in d. 
However, since µ depends upon f, which is not an experimental observable, we have no way of knowing the 
exact value of µ during a measurement, information that would ordinarily be required to calculate the probability 
of observing a particular value of d. To circumvent this experimental limitation, this dependence upon f can be 
removed by marginalizing f out of the expression for the normal probability distribution function for d that was 
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described above. This marginalized probability distribution of d then describes the likelihood of experimentally 
observing a particular value of d during a τ as a function of the rates of transitions between the states (k1 and 
k2), the signal values corresponding to those states (ϵ1 and ϵ2), and the amount of noise in d (σ), regardless of 
the exact value of f (Fig. 1A) (See the Supporting Information for a full derivation of the expression describing 
the marginalized probability distribution of d for a two-state system). 

With such an expression describing the marginalized probability distribution of d, we can then use 
Bayesian inference to estimate the model parameters governing the kinetics of the single-molecule system 
(i.e., k1, k2, ϵ1, ϵ2, and σ) from the series of the di that comprise each of the signal trajectories. Primarily due to 
recent developments in computational tractability, Bayesian inference has become a powerful method for the 
analysis of biophysical data, such as determining the phases of X-ray reflections in X-ray crystallographic 
studies,22 performing simultaneous phylogenetic analysis of nucleotide and protein datasets,23 elucidating the 
number of structural classes present in cryogenic electron microscopy images,24 and ascertaining the number 
of states and the rates of transitions between those states present in single-molecule signal trajectories.25,26 
For a practical introduction to Bayesian inference, see Refs. 27 and 28, and the Supporting Information. 
Unfortunately, performing Bayesian inference on a multi-parameter system, such as the one described here, 
results in a multi-dimensional, joint-probability distribution of the model parameters known as a posterior 
probability distribution, which is difficult to evaluate.27 In order to overcome this difficulty, we evaluate the 
posterior distribution of the model parameters by numerically sampling it using a Markov chain Monte Carlo 
(MCMC)28,29 method with affine-invariant ensemble sampling.30,31 Although alternative methods that 
approximate the posterior distribution of the model parameters, such as the Laplace approximation or 
variational inference, might be more computationally tractable, MCMC sampling is advantageous in that, unlike 
such approximation methods, it can provide an exact result that does not assume a particular structure of the 
posterior.28 Regardless of the choice of method, however, the most important aspect of the approach described 
here is that we can evaluate or estimate the posterior distribution of the model parameters from the series of di 
that comprise a single-molecule signal trajectory in a manner that completely accounts for the time resolution 
of the trajectory. 
 
RESULTS AND DISCUSSION 
Analysis of Computer-Simulated Single-Molecule Signal Trajectories Reporting on the Kinetics of a 
Ligand Binding and Dissociation Process 
 To validate BIASD, we simulated single-molecule signal trajectories that mimic the binding and 
dissociation of a ligand to its target biomolecule, a receptor, using the two-state, reversible kinetic scheme 
discussed in the previous section.32 In this example, ϵ1 and ϵ2 represent the signal values of the receptor in the 
ligand-free state, and the ligand-bound state, respectively. Correspondingly, k1 and k2 represent the pseudo-
first-order rate constant of ligand binding to the receptor, and the first-order rate constant of ligand dissociation 
from the receptor, respectively. As such, the concentration-dependence of k1 is given by k1 = k1

*·[L], where k1
* 

is the second-order rate constant for binding of the ligand to the receptor, and [L] is the ligand concentration; k2 
is not dependent on [L]. In order to emulate a titration experiment, we varied the [L] to alter the fraction of 
ligand-bound receptor from ~0.1% to ~99.9%, and simulated signal trajectories where the [L] spanned six 
decades centered around the equilibrium dissociation constant, [L] = KD.  

For these simulations of a ligand-receptor system, we chose to use parameters that are consistent with 
total internal reflection fluorescence (TIRF) microscope smFRET experiments. As such, we chose k2 = τ-1 = 10 
sec-1, because τ = 0.1 sec is typical of many smFRET experiments, and in this rate constant regime, the 
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process of idealizing signal trajectories into state trajectories yields many missed events, which introduces 
errors into the analysis of rate constants and signal values.9 Moreover, we chose k1

* to be 10 μM-1 sec-1 in 
order to yield an equilibrium dissociation constant of KD = 1 μM for this simulated system, which is typical of 
many naturally occurring, weakly interacting, ligand-receptor systems.2 Time-averaged signal trajectories were 
generated by using values of ϵ1 = 0.0, ϵ2 = 1.0, and σ = 0.04; these values are typical of experimental EFRET 
trajectories recorded using a wide-field, TIRF microscope. Notably, each signal trajectory was simulated for 
1000 data points to be consistent with a typical length of time that single-molecule EFRET trajectories can be 
recorded before fluorophore photobleaching terminates data collection; this creates an intrinsic limitation to the 
amount of kinetic information contained in each signal trajectory. Finally, all of these simulated signal 
trajectories were then analyzed using both threshold-based idealization and using BIASD in order to obtain 
estimates of the underlying simulation parameters; HMM-based idealization methods provide similar results to 
threshold-based idealization (data not shown). 
 As shown in Figure 2, the values of k1 and k2 obtained using idealization-based methods are highly 
inaccurate. The traditional (maximum-likelihood) estimates of the rate constants9 are not even defined for many 
of the [L]s, because no transitions occurred and/or were observed during the finite length of those signal 
trajectories. Notably, using a Bayesian approach to calculate the rate constants from the idealized signal 
trajectories at least allows rate constants to be defined across the entire span of [L].9 Regardless, these rate 
constants were systematically underestimated by idealization-based methods across nearly the entire range of 
[L]s that were simulated, and this underestimation worsens with increasing [L]. Notably, the values of k1 and k2 
obtained using these methods are also relatively precise–a misleading consequence of using these methods.9  

With regard to the values of ϵ1 and ϵ2 obtained using idealization-based methods, Figure 2B 
demonstrates that, while these methods can accurately determine the value of ϵ1 if the receptor preferentially 
occupies the ligand-free state (low [L]) or ϵ2 if the receptor preferentially occupies the ligand-bound state (high 
[L]), the time averaging caused by fast values of k1 shift the inferred value of ϵ1, sometimes quite significantly, 
toward the simulated value of ϵ2, and vice versa. Additionally, we note that for the fastest values of k1, 
idealizing the signal trajectories resulted in no data points being assigned to the ligand-free state, and thus no 
estimate of ϵ1 could even be made. 
 In contrast to the idealization-based methods, the values of k1 and k2 obtained using BIASD are highly 
accurate (Fig. 2). The simulated values of k1 and k2 are well encompassed by the posterior probability 
distribution across the entire range of [L]s that were simulated, which includes rate constants that are three 
orders of magnitude greater than the simulated time resolution. In addition, these results are remarkably 
precise, as the posterior probability distributions are strikingly narrow over a range of [L]s that corresponds to 
k1 being over an order of magnitude slower to over an order of magnitude faster than τ–1. Importantly, the 
results are relatively insensitive to the prior probability distributions that BIASD uses for the analysis  (i.e., the 
initial knowledge of k1, k2, ϵ1, ϵ2, and σ) (data not shown). 

At the lower [L]s, the broadening of the posterior probability distribution that limits the precision for the 
estimates of k1 and k2 in both BIASD as well as the Bayesian transition probability method arises from the finite 
amount of information regarding k2 and, to a lesser extent, ϵ2 that is contained in signal trajectories that, at 
these [L]s, exhibit very low occupation of the ligand-bound state of the receptor. Likewise, at the higher [L]s, 
the broadening of the posterior probability distribution and the implied limitations to the precision for estimating 
k1 and k2 that is observed arises from the finite amount of information regarding k1 and ϵ1 that is contained in 
signal trajectories that, at these [L]s, exhibit very little occupation of the ligand-free state of the receptor. As a 
consequence of this finite amount of information, many reciprocal pairs of k1 and ϵ1 values (i.e., a faster k1 and 
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a smaller ϵ1, or a slower k1 and a larger ϵ1) can be consistent with the data. In an experimental situation, this 
imprecision can be alleviated by employing stronger prior probability distributions for the ϵ values using the 
results of experiments performed under conditions in which one or the other state is preferentially occupied, for 
instance, in the absence of ligand or in the presence of saturating [L]. In the case of large-scale conformational 
rearrangements, one could similarly use a buffer condition, ligand, temperature, or mutation that preferentially 
stabilizes one or the other state, or, alternatively, one could use molecular structures or modeling to estimate 
distributions of ϵ values.  

With regard to the values of ϵ1 and ϵ2 obtained using BIASD, Figure 2B demonstrates that these values 
were accurately inferred regardless of the value of [L], even when the idealization-based methods drastically 
misestimate these values. Moreover, ϵ1 and ϵ2 were inferred with high precision across all values of [L]. Finally, 
unlike the maximum-likelihood approach, which was only able to successfully infer σ when the signal 
trajectories were almost entirely in the ligand-bound or ligand-free states, BIASD was also able to accurately 
and precisely infer σ from all of the simulated signal trajectories (Fig. 2C). 
 In summary, we were able to use BIASD to obtain accurate and precise posterior probability 
distributions for k1, k2, ϵ1, ϵ2, and σ across the entire range of [L]s that were simulated. Notably, BIASD was 
even successful when the rate constants in the simulated, single-molecule signal trajectories were much 
slower then τ–1, although we note that, in this regime, the conventional analysis of idealizing the signal 
trajectories is much more computationally efficient. Most importantly, BIASD was able to accurately and 
precisely infer the rates constants and the signal values for simulated, single-molecule signal trajectories in 
which the rate constants were three orders of magnitude faster than τ–1 and about four orders of magnitude 
faster than that where conventional idealization of signal trajectories begins to yield significant errors in the rate 
constants. 
 
Analysis of Experimentally Observed Single-Molecule EFRET Trajectories Reporting on the Kinetics of a 
Large-Scale Conformational Rearrangement 

To demonstrate the utility of BIASD in the analysis of experimental data, we chose to analyze 
experimentally observed, single-molecule EFRET trajectories reporting on a large-scale conformational 
rearrangement of the ribosome. This essential, two-subunit, ribonucleoprotein-based, biomolecular machine is 
universally responsible for the synthesis of proteins in living cells, which is a process known as translation. The 
ribosome synthesizes proteins by repeatedly incorporating amino acids, delivered in the form of aminoacyl-
transfer RNA (tRNA) substrates, into a nascent polypeptide chain in the order dictated by the messenger RNA 
being translated. During the elongation stage of protein synthesis,33 the ribosomal pre-translocation (PRE) 
complex undergoes stochastic, thermally driven fluctuations between two major, on-pathway conformational 
states that we refer to as global state 1 (GS1) and global state 2 (GS2), defining a dynamic equilibrium, 
GS1⇌GS2.3,4 These transitions between GS1 and GS2 constitute large-scale rearrangements of the PRE 
complex that involve relative rotations of the ribosomal subunits, reconfigurations of the ribosome-bound 
tRNAs, and repositionings of a ribosomal structural domain known as the L1 stalk (Fig. 3A).34  

Previously, we have conducted wide-field, TIRF microscopy smFRET studies of the temperature 
dependence of the rate constants governing GS1→GS2 and GS2→GS1 transitions by imaging a Cyanine 3 
(Cy3) FRET donor fluorophore- and Cyanine 5 (Cy5) FRET acceptor fluorophore-labeled PRE complex analog 
lacking a tRNA at the ribosomal aminoacyl-tRNA binding (A) site (PRE–A) in a temperature-controlled, 
microfluidic, TIRF observation flowcell.10 Unfortunately, the increase in thermal energy that accompanied the 
increasing temperature caused the rate constants for the transitions between GS1 and GS2 to increase such 
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that, at the highest temperatures, the EFRET trajectories contained a significant number of time-averaged data 
points (Fig. S1). Regrettably, the time averaging in these EFRET trajectories precluded accurate determination of 
the rate constants, and, correspondingly, an analysis of the thermodynamic properties of the transition-state 
energy barriers that control the GS1→GS2 and GS2→GS1 conformational rearrangements.10 To overcome 
these limitations, we have used BIASD to analyze the sets of EFRET trajectories of PRE-A complexes that we 
have previously collected at 22, 25, 28, 31, 34, and 37 °C.10 Here, we assume that the GS1⇌GS2 equilibrium 
can be represented by the reversible, two-state kinetic scheme discussed earlier. In this kinetic scheme, kGS1 
and kGS2 represent the rate constants for the GS1→GS2 and GS2→GS1 conformational rearrangements, 
respectively. Correspondingly, ϵGS1 and ϵGS2 represent the EFRET values of GS1 and GS2, respectively. Using 
this approach, all six sets of EFRET trajectories were analyzed using BIASD to provide estimates of kGS1, kGS2, 
ϵGS1, ϵGS2, and σ at each temperature. Unfortunately, we cannot speak to the accuracy of results obtained 
through the analysis of experimental, as opposed to computer-simulated, data. However, the values of kGS1 
and kGS2 that were inferred using BIASD increase monotonically with temperature (Fig. 3B), and, at the highest 
temperatures, were greater than 1/10th of τ–1 – the regime where idealization-based methods begin to 
systematically underestimate rate constants. Additionally, we note that the posterior probability distributions of 
ϵGS1 and ϵGS2 inferred using BIASD have means of 0.13 and 0.78, respectively, which are values of ϵGS1 and 
ϵGS2 that very closely match the values of the mean EFRET of GS1 and GS2 reported in previous, room-
temperature studies of the analogous PRE−A complex (0.16 and 0.76, respectively).35 This correspondence 
strongly suggests that the values of ϵGS1 and ϵGS2 obtained here using BIASD are accurate, regardless of the 
time averaging of the EFRET trajectories recorded at the highest temperatures. 

With the inferred values of kGS1 and kGS2 as a function of temperature, we then used transition-state 
theory to quantify the apparent transition-state energy barriers along the apparent GS1→GS2 and GS2→GS1 
reaction coordinates.36–39 Kramers’ barrier-crossing theory, which was developed to analyze thermally 
activated, condensed-phase transitions of a Brownian particle37–39 and is increasingly being used to analyze 
the conformational dynamics and folding of small, globular proteins,13,40 may ultimately provide a more exact 
analysis of the apparent transition-state energy barriers along the apparent GS1→GS2 and GS2→GS1 
reaction coordinates. However, its application requires knowledge regarding the viscosity of the aqueous buffer 
in which the PRE–A complex is dissolved and the ‘internal friction’ of the PRE–A complex that are unavailable in 
the current study.13,41 As such, we have opted to use transition-state theory, and regard the results as upper 
limits on the apparent transition-state energy barriers along the apparent GS1→GS2 and GS2→GS1 reaction 
coordinates that do not account for internal friction or transition-state recrossings. To apply transition-state 
theory, we fit the mean rate constants at each temperature to the equation kTST = (κkBT/ℏ) exp(–(ΔH‡–
TΔS‡)/(kBT)), where κ is the transmission coefficient and is taken to be unity, kB is the Boltzman constant, ℏ is 
Planck’s constant, and ΔH‡ and ΔS‡ are the enthalpic and entropic differences between the transition and 
ground states, which are associated with the temperature-dependent- and temperature-independent 
contributions to the rate constants, respectively (Fig. 3B). The results of these fits for the GS1→GS2 transition 
are ΔH‡

GS1 = 14.3 ± 1.7 kcal mol–1 (±1σ) and ΔS‡
GS1 = –9.9 ± 5.6 cal mol–1 K–1 (±1σ), and for the GS2→GS1 

transition are ΔH‡
GS2 = 13.5 ± 1.6 kcal mol–1 and ΔS‡

GS2 = –11.8 ± 5.4 cal mol–1 K–1. Unfortunately, a structure-
based interpretation of the absolute ΔH‡ and ΔS‡ values for the GS1→GS2 and GS2→GS1 transitions of a 
single PRE−A complex is significantly complicated by the complexity of the enthalpic and entropic changes that 
are associated with conformational rearrangements of large macromolecular complexes and the inherent 
limitations of transition-state theory.8,36,42 Nonetheless, structure-based interpretations of the relative changes 
of the ΔH‡s and ΔS‡s (ΔΔH‡s and ΔΔS‡s) between different pairs of PRE−A complexes (e.g., containing 
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different tRNAs at the peptidyl-tRNA binding (P) site; containing wildtype or mutant P-site tRNAs; consisting of 
wildtype or mutant ribosomes; etc.) are much more straightforward and can reveal the thermodynamic 
contributions that particular structural features of tRNAs or ribosomes make to the apparent transition-state 
energy barriers along the apparent GS1→GS2 and GS2→GS1 reaction coordinates. Combined with the 
temperature-controlled, single-moleucle TIRF microscopy platform that we have previously described,10 the 
analytical framework presented in this section now enables the collection, analysis, and interpretation of such 
data. 
 
Inferring rate constants and signal values from systems with sub-populations of molecular properties 

BIASD can be easily extended to address the presence of multiple, time-averaged sub-populations of 
molecular properties. These sub-populations may be static or interconvert, and may be present in an individual 
molecule or found among an ensemble of molecules. In such a situation, we can classify each data point as 
belonging to one of K different types of time-averaged sub-populations, and then use a ‘1-of-K’ vector, 𝑧

→
!", to 

denote to which of the K sub-populations the ith data point from the jth molecule belongs. Given the one 
particular sub-population specified by 𝑧

→
!", the likelihood of this data point being described by the parameters of 

this sub-population is calculated as described above for the case of the time-averaged, single-population 
system. Unfortunately, in an experimental situation there is no way of knowing which sub-population a 
particular data point belongs to, thereby preventing the likelihood of this data point from being evaluated; this 
situation is similar to that of the unknown fractional occupancy, f, described above. 

To address this shortcoming, we could try to infer the value of 𝑧
→
!" along with all of the other BIASD 

model parameters for each data point, but this is an unreasonable number of variables for an inference 

procedure. Additionally, we are often not concerned with the exact values of 𝑧
→
!", so much as with the 

occupancies of the K states (e.g., steady-state occupation probabilities) or with the rate constants that describe 
transitions between the K states. Fortunately, instead of performing inference to learn the model parameters 
and the set of 𝑧

→
!"s, {𝑧

→
!"}, we can marginalize out all of the {𝑧

→
!"} by using expressions for the probabilities of 

each 𝑧
→
!". For instance, in the case of a mixture of static sub-populations of molecular properties among an 

ensemble of molecules (e.g., a mixture of post-translationally modified and unmodified molecules within an 
ensemble), these probabilities would be time-independent variables that specify the fraction of each sub-
population of the ensemble; this approach is called a mixture model. Marginalization would then involve 
summing the likelihoods for the different sub-populations, weighted by the probabilities of those sub-
populations. Consequently, during the inference procedure, the probabilities of the sub-populations would then 
become model parameters that are also inferred using Bayes’ rule. 
 Additionally, it is possible to have a time-dependent system with hierarchical transitions between the 

different sub-populations. In this case, the probabilities of each 𝑧
→
!" in the {𝑧

→
!"} would not be constant for each 

sub-population, as they would be for a mixture model, but would instead depend upon the sub-population of 

the previous data point 𝑧
→
!!!,! and a K x K transition matrix, 𝐀!" = 𝑒𝐐!!", where 𝐐 is the rate matrix that depends 

upon the set of rate constants for transitioning between the K different states and 𝑡!" is the time that has 
elapsed since the previous data point, which may not necessarily be equal to τ (Fig. 1B). Here, marginalization 
is efficiently performed with the forward-backward algorithm43 and the state probabilities, as calculated from the 
rate constants for the kinetic scheme under consideration, for instance using the diagram method,44 are used 

to set the initial probability of each 𝑧
→
!!. In total, this approach amounts to a hierarchical, continuous-time, 
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ensemble HMM for sub-temporal resolution systems, where inference is performed directly upon the rate 
constants, instead of the transition probabilities. Consequently, this approach can handle shuttering of the laser 
light source in TIRF microscopy experiments or other types of irregular spacing of data points, sub-temporal 
resolution data, and population-level analyses with non-parametric posterior distributions that can be used to 
ascertain the underlying thermodynamic landscape of the mesoscopic ensemble.  

To highlight this hierarchical approach, consider a single-molecule fluorescence microscopy experiment 
in which a fluorophore-labeled biomolecule transitions between two states, 1 and 2, with forward and reverse 
rate constants 𝑘!" and 𝑘!", respectively (Fig. 4A). Unfortunately, such fluorescence microscopy experiments 
often suffer from photophysical phenomena such as fluorophore photoblinking, in which a fluorophore 
temporarily transitions into a ‘dark’, long-lived, excited molecular electronic state and thus transiently stops 
fluorescing, or fluorophore photobleaching, where a fluorophore that has transitioned into an excited molecular 
electronic state undergoes a photochemical reaction and permanently stops fluorescing.45 Often, the transition 
rates into and out of the dark states responsible for photoblinking are faster than the time resolution of 
techniques such as wide-field TIRF microscopy. As a result, instead of detecting a steady level of fluorescence 
intensity from the fluorophore, sub-temporal resolution transitions between fluorescent and dark states of the 
fluorophore manifests as an extra, and often dominant, source of ‘noise’ in the single-molecule fluorescence 
intensity signal trajectory (Fig. 4B, inset). Intense experimental effort has gone into minimizing these 
photophysical effects, including the use of fluorophores, such as Cy3B, that have been chemically altered so 
as to minimize transitions to dark states;46 elaborate excitation laser modulation schemes, such as triplet-state 
relaxation (T-Rex) and dark-state relaxation (D-Rex) schemes, that minimize transitions to higher-order dark 
states;47,48 photostabilizing additives, such as Trolox, that accelerate transitions out of dark states;49,50 and 
fluorophore-photostabilizer conjugates, such as Cy3- and Cy5-triplet state quencher conjugates, that 
accelerate transitions out of dark states.51,52 Here, we show how extending BIASD with the hierarchical HMM 
described above allows us to computationally overcome these photophysical effects. 

To demonstrate this ability, we simulated the kinetic scheme shown in Fig. 4A, where the afore-
mentioned fluorophore-labeled biomolecule transitions between conformational states 1 and 2 with signal 
values of 𝜖! and 𝜖!, respectively. However, in this simulation, both of these states can rapidly transition into 
and out of a photoblinked state, denoted 0 with signal value 𝜖! = 0, at rates much faster than the time 
resolution of the simulated data. These dynamics continue until the system eventually transitions into a 
photobleached state, denoted Ø with signal value 𝜖Ø = 0. As expected, by analyzing this simulation using this 
hierarchical approach, the posterior probability distribution of the parameters describing the fluorescence 
emission from each sub-population (𝜖!, 𝜖!, 𝜎, 𝑘!", 𝑘!", 𝑘!", and 𝑘!"; see Fig. 1B), as well as the rate constants 
describing the transitions between states 1 and 2 (𝑘!", and 𝑘!"; see Fig. 4A), were all found both accurately 
and precisely (Fig. S2). To provide intuition into the power of this calculation, we also have shown the Viterbi-
idealized path from the maximum a posteriori (MAP) estimate of the model parameters in order to present the 
corrected fluorescence intensity signal trajectory in the absence of photoblinking (Fig. 4B). Detection noise 
from the marginalized posterior distribution of 𝜎 was added to this path to show what the data would have 
looked like in the absence of photoblinking. Regardless, we note that this path is essentially a point estimate of 

the {𝑧
→
!"}, whereas, by marginalizing out all of the {𝑧

→
!"} during the inference procedure, we have actually 

considered all the other possible paths. As such, the posterior probability distribution of the model parameters 
is a more encompassing result (Fig. S2). Finally, we note that the hierarchical HMM treatment that we present 
here is general and applicable to not just two, but to any number of K sub-populations. 
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CONCLUSION 

By analyzing the fraction of time that a single-molecule spends in each state of a defined kinetic 
scheme as well as the signal value corresponding to each of those states during each τ in a signal trajectory, 
BIASD adopts a fundamentally different approach to the analysis of time-resolved single-molecule experiments 
than that which has been traditionally employed by methods that idealize the trajectories (e.g., thresholding 
and HMMs). Using computer-simulated and experimentally observed data, we have demonstrated that this 
powerful approach enables BIASD to accurately and precisely infer the rate constants of a two-state kinetic 
scheme as well as the signal values corresponding to these two states, even when the rates of transitions 
between the states are orders of magnitude faster than the time resolution of the signal trajectories. When 
used to analyze previously described experimental EFRET trajectories reporting on the dynamics of single PRE–A 
complexes recorded as a function of temperature,10 BIASD allowed us to infer the thermodynamic activation 
parameters characterizing the transition-state energy barriers along the GS1→GS2 and GS2→GS1 reaction 
coordinates, which had thus far remained inaccessible to traditional smFRET data analysis approaches. 
Moreover, we have demonstrated that a straightforward extension of the BIASD framework enables the 
kinetics of experimental systems exhibiting multiple sub-populations of molecular properties to be accurately 
and precisely inferred. 

It is important to note that the BIASD framework is general and can be applied to any experimentally 
observed signal trajectory that exhibits stochastic transitions between distinct states, regardless of the nature 
or the origin of the signal. Thus, BIASD can be used to temporally super-resolve data collected using virtually 
any time-resolved single-molecule experimental method, including single-molecule fluorescence microscopy, 
force spectroscopy, conductance, and tethered particle motion methods. Moreover, although here we have 
developed BIASD to analyze single-molecule signal trajectories, BIASD does not consider the temporal 
ordering of the data. Consequently, in addition to analyzing individual single-molecule signal trajectories, 
BIASD can also be used to analyze the distribution of fractional occupancies observed across an entire 
ensemble of individual molecules during a given τ. This could allow non-equilibrium phenomenon to be 
monitored across an ensemble of single molecules (e.g., stopped-flow delivery of a ligand, substrate, cofactor, 
or inhibitor to an enzyme or other biomolecule). In addition, BIASD can be expanded to include the time 
evolution of the state occupation probabilities (c.f., Eq. 2 of the Supporting Information), or to incorporate time 
dependence into the model parameters ki, ϵi, and σ (e.g., the varying of ϵi in single-molecule particle tracking 
experiments).  

Regarding the performance of BIASD on experimental data, we note that the rate constants and signal 
values of a system can be more precisely inferred from experiments that collect higher SNR data, because 
then there is less uncertainty in the time-averaged fractional occupancies of the signal trajectories. Therefore, 
somewhat counterintuitively, sub-temporal-resolution dynamics can, to some degree, be more precisely 
inferred from signal trajectories recorded with lower time resolutions, but higher SNRs (e.g., due to better 
photon conversion efficiencies on an electron-multiplying charge-coupled device), than those recorded with 
higher time resolutions, but lower SNRs. Additionally, although we have focused the current work on the most 
widely applicable case of a Markovian, two-state system in which the noise of the signal can be modeled using 
a Gaussian distribution, the Bayesian inference-based framework underlying BIASD can be readily extended to 
non-Markovian dynamics,19,53 N-state kinetic schemes,54,55 or systems in which the noise of the signal can be 
modeled using distributions other than a Gaussian distribution.56,57 To facilitate the analysis of single-molecule 
data using BIASD, as well as to enable the future extension of BIASD along the lines described here, we have 
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made the BIASD source code available at https://github.com/ckinzthompson/biasd. The source code is written 
in Python and integrated with computationally intensive functions provided in C as well as in CUDA (for GPU-
based computation) in order to balance accessibility with high-performance. 
 
MATERIALS AND METHODS 
Simulating Sub-temporal-resolution Signal Trajectories 
 To simulate state trajectories with the stochastic simulation algorithm,32 sequential random lifetimes 
were drawn from exponential distributions with the appropriate rate constants, and subsequent states were 
chosen randomly according to the splitting probabilities. A random starting point for the initiation of the 
trajectory (t=0 sec) was selected with a uniform distribution from the first lifetime. The fractional occupancies of 
each state during each sequential τ were then calculated from the sequence of lifetimes. The resulting 
fractional occupation versus time trajectories were turned into signal trajectories by computing μ, and then 
adding normally distributed noise with standard deviation, σ. 
 
Idealizing Trajectories 

Signal trajectories were idealized by thresholding any measurement period with signal less than (ϵ2 - 
ϵ1)/2 + ϵ1 into state 1, and otherwise into state 2. Rate constants from the ith state to jth state were then 
calculated from the resulting transition matrix, pij, as kij = -ln(1-pij)/τ.9 Credible intervals on the transition 
probabilities, and rate constants were calculated with uniform prior distributions.9 
 
BIASD Calculations 

The adaptive Simpson method was used to numerically integrate the BIASD likelihood function on an 
Nvidia GeForce GTX 750 Ti graphics card; the likelihood of each data point took about 1 μs to compute. The 
posterior probability distribution was sampled using emcee, an ensemble, affine-invariant MCMC method.30,31 
For each trajectory, 100 MCMC walkers were employed to draw 2000 samples each, and the first 1000 
samples were discarded to burn in the chain. From the remaining samples, independent samples were chosen 
spaced apart by the maximum parameter autocorrelation time, and credible intervals and means were 
calculated from these samples.  
 
Processing PRE–A EFRET Data 

Previously published Cy3 and Cy5 fluorescence intensity, ICy3 and ICy5, versus time trajectories from the 
PRE–A complex from the study by Wang and coworkers10 were transformed into EFRET trajectories by 
calculating EFRET = ICy5/(ICy3 + ICy5) at each measurement period. Outliers where EFRET < -0.4  or EFRET > 1.4 were 
then removed. The number of EFRET trajectories retained in the 22, 25, 28, 31, 34, and 37 °C datasets were 
490, 456, 435, 452, 270, and 459, respectively. Posterior probability distributions were found with the Laplace 
approximation of the BIASD likelihood function, and used to set the means of the prior probability distributions 
employed for ϵGS1, ϵGS2, and σ (normal distribution, normal distribution, and gamma distribution, respectively). 
The prior probability distributions for kGS1 and kGS2 were both taken to be gamma distributions with a mean 
determined from the Laplace approximation solution, and shape parameter α = 1 to ensure a weakly-
informative prior. 
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Figure 1: Graphical models for BIASD. (A) In BIASD, the dependence of the observed data, d, upon the fractional occupancy,
f , is marginalized to yield the graph on right, which depends upon stochastic parameters ε1, ε2, σ, k1, and k2, as well as upon
the deterministic value of τ . (B) A directed graph describing hierarchical, Markovian transitions between hidden sub-temporal-
resolution sub-populations. The rate matrix, Q, dictates the steady state-occupation probabilities, as well as transition probabilities
between sub-temporal-resolution sub-populations.
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Figure 2: Analysis of k1 and k2 using BIASD (blue) and idealization-based (green and red) methods for a computer-simulated
titration of a ligand to a receptor. [L] was varied three decades above and below the concentration where the equilibrium occupation
probability of both states (KD) is equal to 0.5. (A) Analysis of estimated rate constants k1, and k2. The regions where the rate
constants are less than 1/10th of the acquisition rate, τ−1, is shown in dark grey; the regions where the rate constants are less
than the acquisition rate are shown in light grey. The simulated rate constants are plotted as the black dashed lines. The red line
denotes maximum-likelihood estimate of the rate constant calculated by idealizing the signal trajectory. The green and blue areas
denote the 95% credible intervals of the posterior probability distributions from analysis with idealization-based Bayesian transition
probability analysis,9 and BIASD, respectively. (B) Analysis of signal values ε1, and ε2. Simulated values are plotted as black
dashed lines. The maximum-likelihood estimate of threshold-idealized signal trajectories is shown in red. The blue area denotes
the 95% credible interval from the marginalized posterior probability distribution from BIASD. (C) Analysis of the signal noise σ.
Line styles correspond to those in (B). All lines and curves were smoothed with a discrete Gaussian filter with standard deviation
of 0.5 to temper variations due to the limited number of data points in each signal trajectory in order to show the general trends.
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Figure 3: (A) Cartoon schematic of the GS1−⇀↽− GS2 equilibrium on the PRE-A complex previously studied by Wang and coworkers.16

Approximate positions of the Cy3 FRET donor and Cy5 FRET acceptor fluorophores of the ‘L1-tRNA’ labeling scheme used
by Wang and coworkers are shown as green and red circles, respectively. The size of the fluorophores denotes the relative
fluorescence intensity of each fluorophore in each state due to FRET. (B) Temperature dependence of kGS1 and kGS2 for PRE-A

complexes using BIASD. The scatter plots show the expectation value of the posterior probability distributions of kGS1 and kGS2

and the error bars represent the 95% credible interval. The solid lines are the non-linear, least-squares fit to transition-state theory
and the shaded regions represent 95% uncertainty from the fitting procedure.
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Figure 4: (A) Kinetic mechanism used to simulate an experimental system in which a biomolecule transitions between two con-
formational states that can each transition, with sub-temporal resolution dynamics, into and out of a photoblinked state, until
eventually photobleaching. Exact values of the rate constants used in the simulation are given in the Supporting Information. (B)
Plot of simulated signal trajectory and the resulting, corrected fluorescence intensity signal trajectory in the absence of photo-
blinking. The green- and blue-colored regions at the top of the plot denote the transitions between states 1 (blue) and 2 (green).
The signal corrupted by sub-temporal resolution photoblinking that was analyzed by BIASD is shown in black; the inset shows a
cartoon of a single τ where fast transitions are taking place between the fluorescent and photoblinked state 2. After analysis with
BIASD, the MAP solution of the posterior probability distribution was used to generate a Viterbi-idealized path, which is plotted in
red with noise added back from the MAP value of σ; this demonstrates what a corrected fluorescence intensity signal trajectory in
the absence of photoblinking would look like.
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