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SUMMARY: 

To capture the transcriptional dynamics within proliferating cells, methods to differentiate nascent transcription from pre-

existing mRNAs are desired. One approach is to label newly synthesized mRNA transcripts in vivo through the 

incorporation of modified pyrimidines. However, the human malaria parasite, Plasmodium falciparum, is incapable of 

pyrimidine salvage for mRNA biogenesis. To capture cellular mRNA dynamics during Plasmodium development, we 

have engineered parasites that can salvage pyrimidines through the expression of a single bifunctional yeast fusion gene, 

cytosine deaminase/uracil phosphoribosyltransferase (FCU). We show that expression of FCU allows for the direct 

incorporation of thiol-modified pyrimidines into nascent mRNAs. Using developmental stage-specific promoters to 

express FCU-GFP enables the biosynthetic capture and in-depth analysis of mRNA dynamics from subpopulations of 

cells undergoing differentiation. We demonstrate the utility of this method by examining the transcriptional dynamics of 

the sexual gametocyte stage transition, a process that is essential to malaria transmission between hosts. We find that 

sexual stage commitment is governed by transcriptional reprogramming and the stabilization of a subset of essential 

gametocyte transcripts.  This new method for biosynthetic labeling of Plasmodium mRNAs is incredibly versatile and can 

be used to measure transcriptional dynamics at any stage of parasite development, and thiol-modified RNAs will allow for 

future applications to measure RNA-protein interactions in the malaria parasite. 

 

INTRODUCTION: 

Plasmodium falciparum, the causative agent of malaria, has a complex life cycle that includes development in multiple 

tissues within the human host and the female Anopheles mosquito vector (Bannister and Mitchell 2003). A mosquito 

initiates infection by injecting Plasmodium sporozoites into a human, which migrate to the liver where they undergo 

asexual replication (schizogony) forming thousands of merozoites. When merozoites are released from the liver they 

initiate the blood stage of infection. The intraerythrocytic development cycle (IDC) consists of continuous 48-hour cycles 

of maturation and cell division, during which up to 32 new daughter cells are formed and released each cycle. These 

clonal progeny invade uninfected red blood cells and repeat the asexual replication process, exponentially increasing the 

population size. During the IDC a small proportion of asexual parasites transition to the sexual stage and differentiate into 

female or male gametocytes (Guttery et al. 2015). Gametocytogenesis is a stochastic process that is obligatory for parasite 

transmission, as asexual forms cannot propagate within the mosquito vector (Josling and Llinas 2015). These gamete 

precursors are morphologically and functionally distinct from their asexual blood stage counterparts, which is reflected in 

their cellular development, metabolism, and patterns of gene expression (Liu et al. 2011). 

Gene expression in eukaryotic systems is comprised of many levels of regulation including chromatin modification, active 

transcription mediated by trans-acting factors, and post-transcriptional mRNA turnover or stabilization (Lelli et al. 2012). 

Similarly, Plasmodium differentiation and growth within various cell types and hosts involves complex regulatory 

mechanisms that govern both transcriptional and post-transcriptional processes (Hughes et al. 2010; Cui et al. 2015; 

Vembar et al. 2016). Development during the IDC is driven by a coordinated transcriptional cascade with the majority of 

genes expressed in a “just-in-time” fashion (Bozdech et al. 2003; Le Roch et al. 2003), although the mechanisms that 

underlie the coordination and specificity of active transcription remain largely uncharacterized (Hughes et al. 2010; 
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Painter et al. 2011). Thus far, only a single transcription factor family, the 27-member Apicomplexan AP2 (ApiAP2) 

proteins, has emerged as transcriptional regulators with functions across all developmental stages (Balaji et al. 2005; 

Painter et al. 2011; Iwanaga et al. 2012; Josling and Llinas 2015; Yuda et al. 2015). Given the task of regulating roughly 

5,500 Plasmodium genes with such a small repertoire of transcription factors, it has been proposed that mRNA dynamics 

in Plasmodium parasites are greatly influenced by post-transcriptional regulatory mechanisms (Hughes et al. 2010; 

Bunnik et al. 2016; Vembar et al. 2016). 

Evidence for post-transcriptional regulation in Plasmodium spp. includes several studies that have reported a significant 

delay between transcription and translation (Le Roch et al. 2004; Hall et al. 2005; Foth et al. 2008; Foth et al. 2011), and 

recent studies have demonstrated ribosomal influence on the timing of mRNA translation (Bunnik et al. 2013; Caro et al. 

2014). Despite these insights, the proteins that regulate these processes are largely unknown. Surprisingly, although 

bioinformatic analyses have suggested that between 4-10% of the Plasmodium genome encodes RNA-binding proteins 

(RBPs), only a handful have been characterized to date (Reddy et al. 2015; Bunnik et al. 2016). Evolutionarily conserved 

post-transcriptional regulatory factors such as DOZI (DDX-6 class DEAD box RNA helicase), CITH (Sm-like factor 

homolog of CAR-I and Trailer Hitch) and a pumilio family protein (PUF2) play critical roles in the translational 

repression (TR) of essential genes throughout Plasmodium sexual development (Cui et al. 2015; Vembar et al. 2016). 

Other important RBPs are the Alba-domain containing proteins (PfAlba1-4) which interact with RNA throughout the 

parasite’s lifecycle and are found associated with TR-complexes (Chene et al. 2012; Vembar et al. 2015). Although the 

role of Plasmodium RBPs in gene regulation is a growing area of interest, techniques to accurately measure mRNA 

dynamics and identify post-transcriptional regulatory factors in Plasmodium parasites lag far behind those available for 

other eukaryotic systems. 

In recent years, the ability to incorporate thiol-modified pyrimidines into nascent mRNA transcripts from human cells 

(Cleary et al. 2005), mice (Kenzelmann et al. 2007; Gay et al. 2013), Drosophila (Miller et al. 2009), and yeast (Miller et 

al. 2011; Munchel et al. 2011; Neymotin et al. 2014) has afforded an effective tool to evaluate mRNA dynamics of diverse 

cellular populations, both spatially (Miller et al. 2009; Gay et al. 2013) and temporally (Miller et al. 2011; Munchel et al. 

2011). However, thiol-modified mRNA capture is dependent upon pyrimidine salvage, and the evolutionary lineage of 

Plasmodium has lost this biochemical capacity (Hyde 2007). Genetic supplementation of pyrimidine salvage enzymes in 

Plasmodium would restore this metabolic pathway, thereby enabling methods that utilize biosynthetically labeled RNA 

(Friedel and Dolken 2009) 

To probe transcriptional dynamics in P. falciparum, we have developed a customizable approach to capture active 

transcription and mRNA stabilization in the parasite. Our method is made possible by the exogenous expression of two 

enzymes involved in pyrimidine salvage: the Saccharomyces cerevisiae gene fusion of Cytosine Deaminase and Uracil 

Phosphoribosyltransferase (FCU). With an active pyrimidine salvage pathway, P. falciparum can readily uptake 

biosynthetically modified pyrimidines and incorporate these into nascent transcripts, which can be tracked at various time 

points or in specific cells throughout parasite development. These transcripts can subsequently be captured and analyzed 

with common comprehensive transcriptomic approaches such as DNA microarrays or RNA-seq. This mRNA capture 
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method from FCU-expressing parasites can be used to temporally profile the transcriptional dynamics of the developing 

Plasmodium parasite at all stages of development.  

As a proof of concept, we used biosynthetic mRNA capture to measure mRNA dynamics from the small fraction of 

Plasmodium parasites undergoing commitment to gametocytogenesis. Capturing the transcriptional program of early 

gametocytes is difficult because of technical challenges associated with isolating and distinguishing early stage 

gametocytes from asexual trophozoites (Sinden 1982; Silvestrini et al. 2010). To circumvent these challenges, we 

generated parasites lines engineered to express FCU-GFP using the established gametocyte-specific pfs16 

(PF3D7_1302100/PFD0310w) promoter, which is only actively transcribed and expressed in a subset of parasites 

committed to gametocytogenesis (Bruce et al. 1994; Dechering et al. 1997; Dechering et al. 1999) and which restricts the 

biosynthetic capture of 4-thiouracil modified mRNA to early gametocytes. Our methodology does not require physical 

isolation of the early gametocyte subpopulation, even though it identifies the sexual-stage mRNA dynamics associated 

with this developmental differentiation process. Using this approach, we find that regulation of early sexual stage 

development is dictated by a combination of transcriptional reprogramming and enhanced stabilization of gametocyte 

stage-specific transcripts. 

 

 

RESULTS: 

Addition of a functional pyrimidine salvage pathway into Plasmodium  

The measurement of transcriptional dynamics is greatly facilitated by the exogenous incorporation of modified 

pyrimidines, which allows for the biosynthetic labeling, capture, and subsequent analysis of newly transcribed RNAs (Fig. 

1A). Plasmodium parasites are naturally unable to incorporate pyrimidine nucleoside precursors via salvage and instead 

rely on de novo pyrimidine biosynthesis (Reyes et al. 1982). To enable parasites to salvage pyrimidines, we genetically 

modified the P.f. 3D7 laboratory strain to exogenously express a functional S. cerevisiae fusion gene of cytosine 

deaminase (FCY1) and uracil phosphoribosyltransferase (FUR1) (Erbs et al. 2000), with a C-terminal GFP-tag (FCU-

GFP) under the control of a constitutively active P.f. calmodulin promoter (cam, PF3D7_1434200) (Crabb and Cowman 

1996) (Fig. 1B). Transgenic 3D7cam parasites, but not wild-type parasites, readily incorporated the thiolated pyrimidine 

precursor 4-TU in a concentration dependent manner (3D7) (Fig. 1C).  

To ensure that cyclical progression through the 48-hour IDC was not detrimentally affected by the incorporation of thiol-

modified pyrimidines, 3D7cam parasites were incubated in the presence of increasing concentrations of 4-TU (0, 20, 40, 

80, 160µM), while monitoring parasitemia for 72 hours (Fig. S1A). Based on these data, we selected 40µM 4-TU for 

further experimentation, since concentrations at or below this value had no effect on parasite growth (Fig. S1A). Global 

transcriptional profiling by DNA microarray analysis of a complete 48-hour cycle of 3D7cam grown in 40µM 4-TU further 

indicated that developmental progression is unperturbed (Fig. S1B). To ensure that the uptake and incorporation of 4-TU 

was consistent throughout development, pulses of 4-TU (40µM) were administered at the ring (10hr), trophozoite (24hr), 

and schizont stages (38hr) for varying lengths of time (0, 1, 2, and 4hrs) (Fig. S1C). Our results indicated that 3D7cam  
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Figure 1: Engineering P. falciparum to salvage pyrimidines and generate thiol-
modified RNAs. A) Schematic of 4-TU biosynthetic mRNA capture method. Transgenic 
P. falciparum expressing a fusion gene containing cytosine deaminase/uracil 
phosphoribosyltransferase tagged with GFP (FCU-GFP) under the control of the 
calmodulin (CAM) promoter (3D7cam) enables 4-TU salvage and incorporation into RNA. 
Thiolated-RNA can be biotinylated and detected by Northern blot or affinity purified by 
streptavidin magnetic beads for analysis by DNA microarray. B) Expression of FCU-GFP 
from 3D7cam was verified by Western blot when probed with anti-yeast cytosine 
deaminase and by live fluorescence microscopy (GFP = green, nuclear DNA stained with 
DAPI = blue) C) Both wild-type and 3D7cam parasites were grown for 12 hrs in the 
presence of increasing 4-TU concentrations. The specificity of RNA thiol-incorporation 
and biotinylation was assessed by running 2 µg of each RNA sample with and without 
EZ-link Biotin-HPDP incubation (top panel). Total RNA was transferred to a nylon 
membrane and probed with streptavidin-HRP to detect biotinylated RNAs (bottom 
panel).  
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parasites were fully capable of transporting and incorporating 4-TU into the total RNA pool at all stages. Nascent 

transcripts that incorporated 4-TU were readily isolated from total RNA through covalent biotinylation of the thiol-labeled 

RNAs, followed by affinity purification (Fig. 1A and S1D).  

To ensure robust incorporation of 4-TU into the pyrimidine pool, we determined the efficiency of the transgenic 

pyrimidine salvage pathway versus endogenous de novo pyrimidine synthesis (Fig. 2A). Using liquid chromatography-

mass spectrometry (LC-MS), we directly measured the incorporation of 15N2-uracil into the uracil monophosphate (UMP) 

pyrimidine pool. The results clearly show that 3D7cam parasites expressing FCU-GFP incorporated heavy-labeled uracil  

(15N2-UMP) into 50% of the pyrimidine pool in 10 minutes (Fig. 2A and 2B). We next tested whether 3D7cam parasites 

could grow in the absence of de novo biosynthesis, by using the antimalarial drug atovaquone to inhibit the cytochrome 

bc1 complex in the mitochondrial electron transport chain (mtETC). Atovaquone treatment blocks ubiquinone 

 

Figure 2: Efficiency of pyrimidine salvage in FCU-GFP expressing P. falciparum. A) In Plasmodium parasites, 
pyrimidines are metabolized de novo from bicarbonate and ammonia through a series of enzymatic reactions (blue 
arrows) resulting in the generation of UMP, which can be incorporated into nascent RNA (black arrow). FCU-GFP 
allows for salvage of the pyrimidine precursor uracil (red dashed arrow) to UMP, which can then be incorporated 
into RNA. Inhibition of de novo pyrimidine synthesis is achieved via treatment with the mitochondrial inhibitor 
atovaquone. B) 4-TU is efficiently taken up and incorporated into the pyrimidine pool by P.f. 3D7cam parasites grown 
in the presence of  40µM 15N2-uracil for 10 and 30min. Cellular metabolites were detected via LC-MS and the 
proportion of total UMP pool that is unlabeled (blue) and labeled with 15N2 (orange) was calculated (n = 2 ± s.d. 
performed in triplicate). C) Flux through de novo pyrimidine synthesis and salvage was measured in treated and 
untreated parasites by LC-MS after the addition of 13C-bicarbonate (13C-HCO3-) and 15N2-uracil to the culture 
medium for 30 min. The percentage of UMP derived from de novo synthesis (13C-UMP) and salvage (15N2-UMP) 
was determined in the presence or absence of the inhibitor atovaquone (n = 2 ± s.d. performed in triplicate). D) Early 
ring stage P. falciparum 3D7 and 3D7cam were exposed to titrating concentrations of atovaquone with or without 
supplementation of 40 µM uracil to the medium. Parasite survival was determined using a traditional 48 hr SYBR-
green growth inhibition assay and plotted as an average of three technical replicates (± s.d.). 
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regeneration, which in turn leads to an inhibition of dihydroorotate dehydrogenase (DHOD), an essential enzyme in 

pyrimidine de novo biosynthesis requiring ubiquinone (Fig. 2A) (Painter et al. 2007). 3D7cam parasites were grown in the 

presence of atovaquone (10xIC50) for 3 hours, followed by supplementation of the medium with 15N2-uracil and 13C-

bicarbonate. We found that these parasites readily salvaged the exogenously supplied pyrimidine (15N2-UMP), while de 

novo pyrimidine synthesis was disrupted by atovaquone (13C-UMP) (Fig. 2A and 2C). As expected, 3D7cam parasites were 

able to bypass the effect of atovaquone when uracil was supplied as a pyrimidine precursor to the growth medium (Fig. 

2D). Therefore, the introduction of the FCU enzyme resulted in parasites that rapidly and efficiently salvage pyrimidine 

precursors and can proliferate independent of de novo pyrimidine biosynthesis. 

 

Stage-specific expression of pyrimidine salvage allows for biosynthetic labeling of parasites committed to sexual 

development 

The 3D7cam parasite line ubiquitously expresses functional pyrimidine salvage enzymes in all cells from a relatively strong 

constitutive promoter. To demonstrate the utility and universality of the FCU-GFP mediated biosynthetic mRNA capture 

methodology in P. falciparum, we wanted to characterize the mRNA dynamics of a subpopulation of cells undergoing a 

unique developmental state. As a proof of concept, we focused on parasite differentiation from the asexual blood stage to 

the sexual stage (gametocyte). To enable biosynthetic mRNA capture during the developmental transition to sexual 

differentiation, we placed fcu-gfp under the control of the pfs16 promoter (3D7pfs16) (Dechering et al. 1999; Pradel 2007; 

Eksi et al. 2008; Adjalley et al. 2011) (Fig. 3A, 3B and S2A). By regulating expression using pfs16, the FCU-GFP fusion 

protein should be expressed only in the subpopulation of cells that are committed to become gametocytes, thereby 

enabling 4-TU salvage exclusively from these cells (Fig. 3A). As anticipated, 3D7pfs16 parasites have a reduced number of 

GFP positive cells compared to the 3D7cam parasite population (Fig. 3A and S2B). Direct quantification of 4-TU 

incorporation into cellular RNA from 3D7cam vs. 3D7pfs16 parasites also demonstrated a significant reduction in 3D7pfs16 

(Fig. 3C and S2C). As observed in the 3D7cam parasites, mRNA abundance profiles of 3D7pfs16 throughout the IDC were 

unperturbed when grown in the presence of 4-TU (Fig. S1B). Therefore, we conclude that pfs16-FCU-GFP is expressed 

only in a sub-population of parasites undergoing sexual differentiation (Fig. 3A). 

To capture the transcriptional dynamics associated with early gametocyte formation in P. falciparum, we compared the 

gametocyte producing 3D7 parasite line to the non-gametocyte producing F12 clone of 3D7 (Alano et al. 1995). The F12 

parasite line is developmentally blocked due a loss-of-function nonsense mutation in the pfap2-g transcriptional regulator 

that prevents mature gametocyte formation (Kafsack et al. 2014) (Fig. S2D).  Therefore, any significant differences 

detected in the transcriptional dynamics of 3D7 and F12 would be attributable to gametocyte commitment and 

development.  To do this, the F12 parasite strain was modified to express FCU-GFP driven by either the pfs16 or cam 

promoters (Fig. 3A).  Expression of FCU-GFP within each strain was verified and all strains actively incorporate 

pyrimidines through salvage (Fig. 3B, 3C, S2A, S2B, S2C, S2E and S2F) enabling the temporal detection of differences 

in the mRNA dynamics during commitment to gametocytogenesis for both strains.  Interestingly, the activity of the pfs16-

promoter is independent of a parasite’s ability to form mature gametocytes (Fig. S2D), as F12pfs16 incorporated 4-TU 

through salvage albeit at significantly reduced levels compared to 3D7pfs16 (Fig. S2F).   
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Stage-specific biosynthetic capture in various strains reveals asexual vs. gametocyte-specific mRNA dynamics 

To measure the mRNA dynamics in 

early gametocytes from the 3D7 

and F12 strains, we performed 

comparative biosynthetic mRNA 

capture (Fig. 1A) from 

synchronized cam- or pfs16-FCU-

GFP expressing parasites at four 

time points throughout the 48-hour 

IDC (Fig. 3A) beginning with the 

ring stage of development. These 

highly synchronous parasites were 

separated into 4 equal fractions 

which were incubated with 40 µM 

4-TU for a duration of 12 hours 

beginning at 36, 0, 12, and 24 hours 

post-invasion (hpi) (Fig. 3A). The 

first 12 hour incubation was 

initiated at 36 hpi, the point at 

which differentiation of asexual 

schizogony and stage I gametocyte 

development occurs (Bruce et al. 

1990; Eksi et al. 2012) with the last 

extending to 36 hpi of the 

subsequent IDC. To enable the 

head-to-head comparison of the 

cam- versus pfs16-FCU-GFP 

expressing parasites, twelve hour 

incubations were used to ensure 

sufficient 4-TU incorporation into 

the small population of parasites 

that are committing to gametocytogenesis (pfs16-FCU-GFP positive, Fig. 3C and Fig. S2F). Following each 12 hour 

exposure, total RNA was extracted and biotinylated to separate thiol-labeled mRNAs (nascent transcription) from the 

unlabeled (stabilized) mRNAs via streptavidin-magnetic beads (Fig. 1A and 3A).  

Figure 3: Stage-specific pyrimidine salvage for detection of early gametocyte 
transcription. To measure mRNA from a subpopulation of cells, we expressed FCU-
GFP under the control of the gametocyte-specific promoter pfs16 (3D7pfs16). A) 
Schematic representation of the experimental design including the timing of 4-TU 
incubation (black arrows) and RNA extraction (dashed black arrows), plasmids 
transfected into P. falciparum strains, and a depiction of the highly synchronous cell 
populations that express cam- and pfs16-FCU-GFP throughout the 48 h IDC. All 
parasites express the constitutive cam-FCU-GFP (green) regardless of developmental 
stage (left panel, 100% GFP+). Only a small proportion (~1% GFP+) of parasites 
committed to sexual development express pfs16-FCU-GFP (green) while asexual 
parasites do not (right panel, ~99% GFP-). B) FCU-GFP protein from uninduced 
asexual cultures of 3D7cam and 3D7pfs16 measured by Western blot probed with anti-
yeast cytosine deaminase. C) Detection of subpopulation FCU-mediated thiol-tagged 
RNA was carried out by incubating highly synchronized P.f. 3D7, 3D7cam and 3D7pfs16 
in the presence or absence (top panel) of 4-TU for 12 hrs. Total RNA was extracted, 
biotinylated (top panel), and assayed by Northern blot probed with Streptavidin-HRP 
(bottom panel) demonstrating that thiol-tagging occurs at a much lower level in 3D7pfs16 
(*) than in 3D7cam, representing the minor sexual-stage parasite subpopulation. 
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To identify differences in the mRNA dynamics of parasites committed to gametocytogenesis versus asexually replicating 

parasites, purified streptavidin-bound and unbound mRNAs from the four strains were analyzed using DNA microarrays 

at four timepoints (Fig. 3A). Microarray data from streptavidin-bound nascent mRNAs are referred to as “transcription” 

(containing newly incorporated 4-TU) (Fig. 4B) and the remaining unbound mRNAs (existing before 4-TU labeling) are 

referred to as “stabilization” (Fig. 4C).  All genes identified by DNA microarray analysis were K10 means clustered based 

on the 3D7cam and 3D7pfs16 strains (Fig. 4B and 4C, Table S1).  An examination of the nascently transcribed genes 

identified from the cam-FCU-GFP expressing parasites demonstrates developmentally regulated gene expression of the P. 

falciparum transcriptome (Fig. 4B) similar to that previously reported from total mRNA abundance measurements (Fig. 

4C) (Bozdech et al. 2003; Le Roch et al. 2003; Llinas et al. 2006). On the other hand, stabilized transcript dynamics 

follow a different periodic stage-specific pattern, demonstrating that nascent mRNA transcription and stabilization are 

independently regulated (Fig. 4C).  Because the cam promoter is ubiquitously expressed in both asexual and sexual stage 

parasites, mRNAs from cam-FCU-GFP expressing parasites represent genes that are actively transcribed or stabilized in 

all parasites tested (Fig. 4A and S3A). Conversely, mRNAs from pfs16-FCU-GFP expressing parasites only represent the 

transcriptional dynamics of the subpopulation that are committing to gametocytogenesis (Fig. 4A and S3A).  

 

We calculated the medium Pearson’s correlation at each of the IDC time-points for cam-FCU-GFP (asexual cells plus 

committed gametocytes) versus pfs16-FCU-GFP (committed gametocytes only) for both 3D7 and F12 parasites (Bottom, 

Fig. 4B, 4C,. S3C and S3D). These correlations directly reflect the strain’s ability to produce gametocytes (Fig. S2D). 

F12, which cannot produce gametocytes, has an almost perfect correlation for both newly transcribed and stabilized 

mRNAs, irrespective of the activity of either FCU-GFP promoter (transcription median r = 0.95, stabilization median r = 

0.94) (Fig. S3B). In contrast, 3D7 has a significantly reduced intra-strain correlation (transcription median r = 0.39, 

stabilization median r = 0.35) (Fig. S3B).  From these data, we concluded that the differences between pfs16-FCU-GFP 

and cam-FCU-GFP 3D7 parasite lines reveal a significantly altered gene regulatory program that reflects the parasite’s 

ability to commit to gametocytogenesis. 

 

Upon closer examination of the 3D7 parasite strain data, we find several striking examples that reflect the difference 

between transcription in pfs16- and cam-FCU-GFP parasites.  For example, Clusters 1 and 2 represent a large number of 

genes which are significantly down-regulated (or no longer transcribed) in pfs16-FCU-GFP 3D7 parasites. Of particular 

interest, is Cluster 8 (Fig. 4B, Table S1) which contains 320 genes that are highly transcribed in the cam-FCU-GFP strains 

and includes genes involved in merozoite egress and invasion (enrichment of GO:004409, entry into host, p-value = 

9.69e-10) (Cowman et al. 2012) (Fig. S4, Table S1). These same transcripts are largely undetectable in the pfs16-FCU 

labeled pool (Fig. 4B, Cluster 8). For example, the gene encoding for merozoite surface protein 1 (msp1, 

PF3D7_0930300/PFI1475w) which is essential for asexual parasite invasion of erythrocytes, is transcribed at 36 hours in 

both F12cam and F12pfs16 (Fig. S5A).  However, msp1 is only transcribed in 3D7cam (Fig. S5A), presumably because 

sexually committed 3D7pfs16 parasites no longer require robust nascent transcription of this gene for reinvasion of 

erythrocytes.  This suggests that we are measuring the transcriptional dynamics of a distinct subpopulation of parasites 

that no longer require active transcription of invasion ligands as might be expected for gametocytes, which develop for  
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Figure 4: Biosynthetic mRNA capture of whole-genome thiol-labeled and non-labeled mRNAs during asexual and sexual 
development. A) Expression of cam-FCU-GFP occurs in the parasite strains 3D7 and F12 regardless of developmental stage.  
3D7 produces gametocytes and the transcriptional dynamics in 3D7cam are representative of both asexual (A) and committed 
gametocytes (cG). Expression of pfs16-FCU-GFP in 3D7pfs16 captures mRNA dynamics only in parasites committed to 
gametocytogenesis (cG). F12 is not able to produce mature gametocytes and mRNA dynamics occurring prior to 
gametocytogenesis can be measured regardless of the promoter used.  B) Thiol-tagged RNA was separated from the total pool 
by streptavidin magnetic purification. mRNAs eluted from the beads are 4-TU labeled (representing “Transcription”) while C) 
unbound mRNAs were present before the addition of 4-TU (representing “Stabilization”). Each column represents the 
Log2(Cy3/Cy5) ratio for every gene in the sample detected above background for mRNAs transcribed (5168 genes) or stabilized 
(5175 genes) at 0, 12, 24, or 36 hours post invasion (h.p.i.).  Ratios for each gene were K10 means clustered (1-10) and ordered 
according to their peak value starting at 0 h.p.i.  The median Pearson’s r for each gene over time between strains is shown below 
the respective time-course. The fold change in transcription and stabilization for each gene (cam-FCU Log2(Cy3/Cy5)/pfs16-
FCU Log2(Cy3/Cy5) was calculated and represented to aid in determining enrichment in the gametocyte-specific population. 
Clusters highlighted in the text are noted with an asterix. 
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10-12 days within the same red blood cell. Conversely, Cluster 10 (Fig. 4B, Table S1) contains 492 genes that are highly 

transcribed in 3D7pfs16, many of which have been previously reported as gametocyte genes (see below).  For example, the 

gametocyte-specific gene pf11-1 (PF3D7_1038400/PF10_0374) (Scherf et al. 1992) is highly transcribed in 3D7pfs16 at 

36h, but not in F12pfs16 (Fig. S5A). Together, these data support the notion that we are capturing nascent transcription from 

the sexual stage subpopulation of parasites. 

 

Biosynthetic mRNA capture detects gametocyte-specific transcription and stabilization during sexual commitment 

One of the goals of using our biosynthetic pfs16-FCU-GFP-based capture method was to detect genes transcribed early in 

gametocytogenesis. To identify these genes we calculated the fold change in the transcribed or stabilized signal intensities 

between the pfs16-FCU-GFP and cam-FCU-GFP expressing 3D7 and F12 parasite strains (Final column, Fig. 4B and 4C).  

The fold changes for the 3D7 parasite microarray data clearly show variation in the patterns of mRNA dynamics for 

virtually all transcripts measured (Fig. 4B and 4C).  These ratios reveal that a large number of genes are no longer 

expressed in 3D7 gametocytes (Fig. 4B, ex: Transcription Clusters 1- 3, and 8), while other gene sets are strongly 

transcribed and stabilized (Fig. 4B and 4C, ex: Cluster 10). Using these data we defined a subset of 808 genes whose fold 

change ratio is higher in either the transcribed or stabilized data between 3D7pfs16 and 3D7cam (Log2 fold change >1, 95th 

percentile; Fig. 5A, Table S2).  We hypothesized that these genes are likely to be involved in gametocyte commitment and 

development. To predict new genes associated with gametocytogenesis, we compared these gametocyte-enriched genes 

with previously published gametocyte datasets and found that many (672 of 808) of the genes enriched in pfs16-FCU-GFP 

parasites have been previously identified in gametocytes by RNA-seq (Stage II), DNA microarray (Stage II-IV), or 

proteomic (Stage I-V) analyses (Fig 5A) (Eksi et al. 2005; Silvestrini et al. 2005; Young et al. 2005; Mair et al. 2010; 

Silvestrini et al. 2010; Lopez-Barragan et al. 2011; Eksi et al. 2012; Brancucci et al. 2014; Tao et al. 2014).  However, we 

found 136 genes that, to our knowledge, have not been associated with the gametocyte stage previously.  Interestingly, 

among these genes, we found 35 rRNAs, 24 tRNAs, and 16 non-coding RNAs suggesting that the regulation of small 

RNAs may also play a role in the sexual differentiation of Plasmodium parasites (Table S2). While the majority of 

differences between 3D7cam and 3D7pfs16 are reflected by an increase in transcription (Fig. 5A, Clusters 2-4), a smaller 

subset are stabilized (Fig. 5A, Cluster 1 and 5). These clusters of stabilized transcripts include a number of well-

established gametocyte markers, but surprisingly also contains invasion genes such as msp2, rhoph3, and merozoite 

TRAP-like protein (mtrap) (Baum et al. 2006; Cowman et al. 2012) (Fig. 5A and Table S2).  This finding support recent 

studies that have identified an essential role for MTRAP in mature gametocytes (Bargieri et al. 2016; Kehrer et al. 2016). 

Our results demonstrate the specificity and robustness of mRNA biosynthetic capture for measuring the mRNA dynamics 

from the parasite subpopulation undergoing gametocytogenesis.  

 

Biosynthetic mRNA capture in F12 reveals initiation of gametocyte-specific transcription 

Examining the same 808 genes differentially expressed in committed versus non-committed 3D7 parasites, we find that 

the “transcription” and “stabilization” patterns are largely identical between the cam- and pfs16-FCU-GFP F12 parasite 

populations as seen by the overall low fold changes in transcription and stabilization (Fig 5A).  For example, Cluster 4 is 

comprised of genes whose patterns of transcription are invariant between F12cam and F12pfs16, but are highly altered in  
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Figure 5: Dynamics of putative gametocyte-specific genes. A) Genome-wide gametocyte transcription and 
stability was calculated by determining the fold change in log2(Cy3/Cy5) ratio of pfs16-FCU-GFP/cam-FCU-GFP. A 
total of 809 genes enriched in pfs16-FCU-GFP expressing lines (≥ 1 log2 fold change, 95% percentile ranking) were 
ordered by K5 means clustering based on 3D7 (Table S1). Enriched genes compared to previously published RNA-
seq analysis (green) (Lopez-Barragan et al., 2011), DNA microarray (identified in ≥ 50% of analyses) (red) 
(Brancucci et al., 2014; Eksi et al., 2005; Eksi et al., 2012; Mair et al., 2010; Pelle et al., 2015; Silvestrini et al., 
2005; Young et al., 2005), and mass spectrometry identification of sexual-stage peptides (blue) (Lindner et al., 2013; 
Silvestrini et al., 2010; Tao et al., 2014). Genes characteristic of gametocytogenesis and newly identified 
gametocyte-enriched genes are noted adjacent to the clusters in which they are enriched. B) A subset of 433 genes 
significantly enriched in F12 (≥ 0.5 log2 fold change, 95% percentile ranking) were ordered by K5 means clustering.  
Genes characteristic of both asexual invasion and gametocytogenesis are labeled. C) Dot-plots representing the 
median fold change (pfs16/cam) of each gene in both 3D7 and F12 transcription and stabilization arrays. Highlighted 
in blue are gametocyte genes frequently detected (95th percentile) in previously published transcriptomic and 
proteomic analyses (Table S2 and S3). Example gametocyte gene markers, pfs16, pfg27/25, pf14.744, adenylate 
kinase, and mdv1 are noted in red.  
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3D7pfs16 gametocytes (Fig. 5A).  Of the 808 gametocyte-specific genes identified in 3D7, we find a subset of 431 genes 

which are significantly (>0.5 log2 fold change, 95th percentile) transcribed or stabilized in F12pfs16 (Fig. 5B).  This is 

interesting, because we know that F12 parasites cannot produce gametocytes and yet we measure the active transcription 

of these gametocyte-associated genes.  These genes include several well-established markers of gametocytogenesis such 

as pfpuf2, pfs25 and pfs16 (Fig. 5B, S5A and S5B) (Josling and Llinas 2015) as well the transcription and stabilization of 

genes involved in merozoite invasion (Fig. 5B, Cluster 4 and 5) {Cowman, 2012 #2078}.  Comparison with a list of 

established P. falciparum male and female gametocyte markers (Lasonder et al. 2016) reveals that a large number of 

dynein genes, NIMA related kinase 4 (nek4, PF3D7_0417100/PFD0825c), Pfgabc2 (PF3D7_1426500/PF14_0244), and 

p48/45 6-cysteine protein (PF3D7_0208900/PF02_0085) are also transcribed in F12pfs16 (Table S2, Fig. S5A).  However, 

mass spectrometry analysis has shown that these sex-specific gene products do not appear until Stage V of gametocyte 

development (Silvestrini et al. 2010) (Table S2), and are likely translationally repressed.  These data support previous 

studies demonstrating that male and female sex determination occurs very early on during commitment (Silvestrini et al. 

2000; Smith et al. 2000) and that this likely precedes PfAP2-G activity since it is non-functional in F12.  

Most notably, we find a weaker gametocyte-specific transcriptional program (involving fewer genes) is initiated in F12 

than in 3D7 (Table S2).  However, a direct comparison of these genes reveals that they are highly stabilized in 3D7pfs16 

parasites, but not in F12pfs16 (Fig. 5C and S5B).  Therefore, it is likely that in F12, the lack of stabilization of these 

transcripts, perhaps due to a missing RNA-binding protein may result in an inability to commit to gametocytogenesis.  

Interestingly, Pfgexp05 (PF3D7_0936600/PFI1775w), which has been identified as the earliest marker of committed 

gametocytes (Tiburcio et al. 2015), is actively transcribed during the ring-stage in all strains except 3D7pfs16 (Fig. S5A), 

supporting the notion that early gametocyte genes are transcribed independently of the PfAP2-G transcriptional regulator.  

Taken together, these results suggest that F12 parasites are attempting to commit to gametocytogenesis, but appear to 

abort prematurely and resume asexual developmental progression possibly due to the lack of stabilization of essential 

gametocyte-specific transcripts.  

 

Gametocyte mRNA dynamics support metabolic rewiring and membrane restructuring  

Gametocytogenesis is associated with drastic alterations in the morphology, surface-adhesion properties and metabolic 

functions of the parasite (Liu et al. 2011).  To determine if such alterations are predicted by the gametocyte-specific 

mRNA dynamics we measured, we performed GO-term and KEGG-pathway enrichment analysis on the five gene clusters 

differentially regulated in pfs16-FCU-GFP expressing parasites (Fig. 5A and S6).  We find an enrichment of genes 

involved in membrane structural integrity and transport (Fig. 5A, S6A and S6B; fatty acid metabolism, Clusters 1 and 2; 

membrane ultrastructure, Clusters 1, 2, and 5; and metabolite transport, Clusters 2 and 5) indicative of the parasite’s 

preparation to undergo morphological change.  Cluster 3 contains genes which are highly transcribed from mtDNA and 

stabilized post-transcriptionally, including ribosomal subunits and cytochrome c oxidase III (Fig. 5A). Genes encoding 

additional enzymatic subunits of the mitochondrial electron transport pathway and mitochondrial-associated metabolic 

pathways are enriched in Cluster 4 (Fig. 5A and S6A) supporting an increase in the mitochondrial metabolic functions of 

gametocytes (MacRae et al. 2013; Ke et al. 2015). Interestingly, a significant proportion of nuclear encoded tRNAs 
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(24/45) are highly transcribed during this developmental transition (Fig. 5A). Although little is known regarding the role 

of tRNAs in Plasmodium beyond translation, a wide variety of alternative functions have been identified in other 

eukaryotes (Kirchner and Ignatova 2015). The coordinated upregulation of Plasmodium tRNAs warrants further 

investigation to define their role during gametocytogenesis.  

 

Gametocyte-specific cis-regulatory motif enrichment reveal multi-layered regulation of mRNA dynamics   

To predict whether gametocyte mRNA transcription or stabilization is guided by specific DNA/RNA-binding proteins, we 

performed a DNA sequence motif enrichment analysis on the gametocyte-specific genes in Fig. 5. We found that the 

DNA motif AGACA was enriched in the 5’ UTR (within 1 kb upstream of the start codon) of a significant proportion 

(371 of 808 genes, z-score = 191.0, p-value = 1.33e-55) of gametocyte-specific transcribed genes (Fig. S7). This motif has 

been associated with gametocyte-specific genes in prior bioinformatic analyses of the Plasmodium genome and 

transcriptome (Wu et al. 2008; Young et al. 2008; Russell et al. 2015); however, it has not been associated with any 

specific transcription factors such as the ApiAP2 DNA-binding proteins (Campbell et al. 2010; Russell et al. 2015). 

Interestingly, the AP2-G associated motif GTAC was also identified in our search but at a much lower frequency (Fig. S7) 

(Campbell et al. 2010; Kafsack et al. 2014; Sinha et al. 2014). This suggests that PfAP2-G may regulate a small subset of 

gametocyte-related genes and additional regulation of gametocyte commitment is required. In the 3’ UTR we detect 

enrichment of UGUR, which resembles the motif recognized by the PfPUF2 RNA-binding protein (Cui et al. 2002; Miao 

et al. 2010; Miao et al. 2013) (Fig. S7), indicating that post-transcriptional regulatory mechanisms play a role in 

gametocytogenesis. The identification of independent regulatory motifs associated with the early gametocyte stage 

suggests a need for further characterization of the complex gene regulatory network that coordinates mRNA dynamics 

during this developmental transition, as well as the maturation of the gametocyte. 

 

DISCUSSION: 

This study presents a new method to capture and probe transcriptional and post-transcriptional mRNA dynamics in a cell-

specific manner at distinct stages of Plasmodium development. We have shown that parasites expressing FCU-GFP can 

readily salvage pyrimidine precursors such as 4-TU, which allows for direct incorporation of this labeled nucleotide into 

newly transcribed mRNA. Biosynthetic mRNA capture with 4-TU can be genetically tuned to measure either whole 

populations or stage-specific subpopulations of parasites by altering the promoter driving the expression of FCU-GFP. 

The separate pools of labeled (transcribed) and unlabeled (stabilized) mRNAs can be isolated from developing 

Plasmodium parasites, and comprehensively measured by DNA microarray analysis (Fig. 1A, 4B and 4C). 

In addition to demonstrating the feasibility of this approach in Plasmodium parasites, we have applied biosynthetic mRNA 

capture to examine the dynamic regulation imparted upon transcripts at the developmental transition between the asexual 

blood-stage and the sexual gametocyte stage.  Although previous studies aimed at elucidating the gametocyte 

transcriptional regulatory program using genome-wide transcriptome analyses have revealed subsets of genes that are 

differentially abundant during gametocytogenesis (Gissot et al. 2004; Silvestrini et al. 2005; Young et al. 2005; Lopez-
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Barragan et al. 2011; Pelle et al. 2015), these studies have not measured transcriptional activity or mRNA stability. 

Rather, they serve to identify genes that have higher transcript abundance during gametocyte development.  This study is 

the first to measure transcription and stabilization of genes necessary at the point of commitment without the need for 

physical separation of this small subpopulation from the total cell culture.  Our results indicate that the mRNA dynamics 

of commitment to gametocytogenesis consist of a balance of transcription and stabilization in the gametocyte producing 

line 3D7 (Table S3). Interestingly, we also find that F12 initiates a limited gametocyte-specific transcriptional program 

(Fig. 5B) which is aborted in each asexual development cycle. Given the weak, but detectable activity of the pfs16 

promoter in F12pfs16 (Fig. 3C, S2F), these parasites are likely attempting to follow a gametocyte commitment 

transcriptional program, but due to the lack of a functional AP2-G (Kafsack et al. 2014), they cannot proceed to produce 

mature gametocytes (Kafsack et al. 2014).  Interestingly, biosynthetic capture in F12pfs16 reveals transcription of genes 

essential to both asexual and sexual development raising the possibility that the mRNA dynamics are more complex than 

a single factor regulating sexual commitment. Our results also support recent work suggesting a role for commitment 

events preceding the activity of PfAP2-G (Tiburcio et al. 2015), and suggests a more complex role for AP2-G in 

gametocytogenesis.  However, unlike the gametocyte producing 3D7 parasite line, F12 is not capable of stabilizing 

transcripts necessary for gametocytogenesis and therefore aborts sexual differentiation. From this study we find that 

transcription and stabilization of gametocyte specific-genes is an essential determinant of commitment to 

gametocytogenesis.  

We also evaluated the transcriptional dynamics of previously reported gametocyte-specific gene markers and found 

significant differences between the transcription and stabilization of gametocyte associated genes (Fig. 5A and Table S2). 

These dynamics allowed us to identify essential metabolic processes and potential DNA regulatory motifs in transcripts 

associated with gametocyte commitment. While our understanding of gametocyte-specific transcriptional regulation is in 

its infancy, our data demonstrate that the AP2-G DNA binding motif is associated with several mRNAs transcribed in 

sexually committed parasites (from pfs16-FCU-GFP).  However, a majority of gametocyte mRNAs contain an enriched 

motif (AGACA) for which an associated trans-acting factor remains to be identified.  Recently, in the murine malaria 

model, a second ApiAP2 protein PbAP2-G2 has been reported to transcriptionally repress asexual development genes 

(Yuda et al. 2015). The AP2-G2 motif is distinctly absent from gametocyte-associated genes (Figure 5, Fig. S6) 

(Campbell et al. 2010; Yuda et al. 2015), suggesting that this repressive role may similarly be conserved in P. falciparum.  

Additionally, our data demonstrate that many markers of gametocytogenesis are stabilized upon commitment, supporting 

a significant role for translational repression of mRNAs during sexual development.  A handful of RNA-binding proteins 

have been demonstrated to play a role in gametocyte maturation (Cui et al. 2015); however, a specific factor(s) involved 

in stabilization of transcripts upon commitment to gametocytogenesis remains to be identified.  

Although this study has focused on the sexual stage of Plasmodium, stage-specific biosynthetic mRNA capture is poised 

to advance our understanding of parasite transcriptional and post-transcriptional processes at key developmental 

transitions throughout the entire parasite life cycle.  By altering the promoter driving FCU-GFP expression, this method 

can be adapted to examine mRNA dynamics at any defined point of development using stage-specific promoters from 

genes known to be upregulated in the ookinete, oocyst, sporozoite, and liver stages. These transcriptional programs can 
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also be determined in vivo, since RNA-tagging from insects (Miller et al. 2009), human cell lines (Cleary et al. 2005), and 

mouse systems (Cleary 2008) have already been established. In vivo systems provide further opportunities to explore the 

relationship between the Plasmodium parasite and its diverse host cell types, the mosquito midgut, hepatocytes, and red 

blood cells. Biosynthetic mRNA capture can also be combined with bioinformatic models to calculate real-time in vivo 

rates of transcription and decay on a whole genome scale (Dolken et al. 2008; Miller et al. 2011; Sun et al. 2012; 

Neymotin et al. 2014), and may also be used to identify specific responses to environmental perturbations (such as drug-

treatment) on short timescales.   

We envision that thiol-modified labeling will enhance efforts to define specific or global RNA-protein interactions in the 

malaria parasite. A recent study identified a large number of RNA-interacting proteins during asexual development; 

however, the methodology used was not capable of identifying a direct link between these proteins and their target RNAs 

(Bunnik et al. 2016).  Incorporation of 4-TU into the parasite’s mRNA enables photo-activatable UV cross-linking to 

RBPs that are bound to the thiolated transcripts. This allows for genome-wide RNA-protein interactions to be determined 

using Photoactivatable-Ribonucleoside-Enhanced Crosslinking (PAR-CL) (Baltz et al. 2012; Castello et al. 2012), or to 

query the interaction of specific proteins by coupling to an immunoprecipitation step (PAR-CLIP) followed by RNA-

sequencing which captures the exact footprint of a specific protein on each transcript (Hafner et al. 2010a; Hafner et al. 

2010b). Ultimately, the use of this methodology in the malaria field will advance our understanding of the transcriptional 

dynamics required for all stages of parasite development, identify regulatory factors involved in gene expression, and 

enable the identification of new molecular drug targets. 

 

METHODS: 

Transgene construction.  The open reading frame of the yeast FCU gene was PCR amplified from Plasmodium 

falciparum vector pCC1 (Maier et al. 2006), and cloned as a translational fusion into the unique BglII and XbaI sites of 

the pCBM-BSD-684 5’Pfs16-gfp vector (Eksi et al. 2008), placing the transcription of the fused gene under the control of 

a P. falciparum gametocyte-specific pfs16 (PF3D7_0406200/PFD0310w) promoter, yielding the plasmid pCBM-5’Pfs16-

FCU–GFP. Likewise, FCU was PCR amplified, and cloned into the AvrII and BsiWI sites of the pLN-ENR-GFP 

(Nkrumah et al. 2006) vector, resulting in pLN-5’CAM-FCU-GFP plasmid and placing transcriptional control under the P. 

falciparum calmodulin promotor (PF3D7_1434200/PF14_0323).  These plasmids were transformed into, replicated in, 

and isolated from DH5α E. coli for transfection into P. falciparum. 

Strains and culture maintenance.  P. falciparum strains 3D7 (Rovira-Graells et al. 2012) and F12 (Alano et al. 1995) 

have been described in previous studies and parasite cultures were maintained under standard conditions (Trager and 

Jensen 1976) at 5% hematocrit of O+ human erythrocytes in RPMI1640 containing hypoxanthine, NaH2CO3, HEPES, 

glutamine and 5 g/L AlbuMAX II (Life Technologies).   

Generation of genetically modified parasite lines.  Transfection of P. falciparum strains was performed as previously 

described (Fidock and Wellems 1997).  Briefly, 5-7% ring-stage parasite cultures were washed three times with 10 times 

the pellet volume of cytomix. The parasitized RBC pellet was resuspended to 50% hematocrit in cytomix.  In preparation 
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for transfection, 100µg of either pCBM-5’Pfs16-FCU-GFP or a plasmid was precipitated and resuspended in 100μl 

cytomix. The plasmid and 250μl of the 50% parasitized RBC suspension were combined and transferred to a 0.2cm 

electroporation cuvette on ice. Electroporation was carried out using a BioRad GenePulser set at 0.31kV, 960uF. The 

electroporated cells were immediately transferred to a T-25 flask containing 0.2ml uninfected 50% RBCs and 7ml 

medium. To select for parasites containing plasmid, medium containing 1.5ug/µl Blasticidin S (Sigma-Aldrich) was added 

at 48 hours post transfection. Cultures were maintained under constant 1.5ug/µl Blasticidin S pressure, splitting weekly, 

until viable parasites were observed.  

Verification of transgene expression.  Western blot analysis of FCU-GFP protein expression was carried out on mixed 

stage transgenic P. falciparum (10% parasitemia, 5% hematocrit), isolated by saponin (0.01%) lysis.  Equal volumes of 

protein extracts were run on a SDS-10% polyacrylamide gel and transferred to a nitrocellulose membrane.  The membrane 

was blocked with 5% milk. To detect protein, the membrane was exposed to Sheep IgG anti-Cytosine Deaminase 

antibody primary antibody (Thermo Fisher Scientific) diluted 1:500 in 3% bovine serum albumin and incubated overnight 

at 4°C followed by a 1 hour incubation with goat-anti sheep-HRP secondary antibody (Thermo Fisher Scientific) diluted 

1:1000 in 3% BSA.  The membrane was incubated for 1 min in Pierce® ECL-reagent (Thermo Fisher Scientific) and 

protein detected by exposure to film.  

Assessment of FCU-GFP transgene ability to salvage 4-thioluracil via Northern blot. Function and stage-specific 

expression of the FCU-GFP transgene was verified in the 3D7cam compared to wild-type 3D7 by the addition of various 

concentrations (0, 10, 20, 40µM) of 4-thiouracil (Sigma Aldrich) to the culture medium from a 200mM stock 

concentration prepared in DMSO.  After parasites were grown in the presence of 4-TU for 12 hours, total RNA was 

prepared from parasites in 5ml of Trizol. Total RNA was biotinylated using EZ-link Biotin-HPDP (Thermo Fisher 

Scientific) and 2.5ug run on an Ethidium Bromide 1% agarose gel for 30min at 200V.  RNA was transferred to Hybond-

N+ nitrocellulose (Amersham) membrane using traditional northern blotting techniques.  The RNA was UV-crosslinked 

to the membrane and probed with streptavidin-HRP (1:1000) (Thermo Fisher Scientific). Biotinylated RNA was detected 

via incubation with ECL-reagent and exposure to film. 

Thiol-labeling timecourse.  P. falciparum transgenic parasites were cultured in human erythrocytes at 5% hematocrit in 

RPMI1640 complete medium as described above.  All transgenic parasites were synchronized with three successive (48 

hours apart) L-Alanine treatments to remove late stage parasites (Haynes and Moch 2002).  To ensure that the resulting 

population consisted of exclusively asexual parasites, synchronized ring stages were subjected to a 60% Percoll (GE 

Healthcare) density gradient and any remaining late stages were removed by centrifugation (Wahlgren et al. 1983).  These 

highly synchronous cultures were placed back into culture and allowed to recover for at least 24 hours.  At 36 hours post 

invasion 4-TU was added to the medium at a final concentration of 40µM and parasites were incubated for 12 hours 

followed by total RNA isolation with TriZol.  This 4-TU addition, incubation, and RNA extraction was repeated every 12 

hours in 4 successive timepoints throughout intraerythrocytic development.   

Biosynthetic modification and isolation of labeled mRNA throughout development.  (Supplemental Detailed 

Protocol is available in the Supplementary Materials)  Briefly, transgenic P. falciparum was incubated with 4-TU and 
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total RNA was extracted as described above.  All RNA was subjected to the biosynthetic modification and isolation as 

previously published with a few adjustments (Cleary et al. 2005; Cleary 2008; Zeiner et al. 2008).  Specifically, 80µg of 

total RNA (at a concentration of 0.4µg/µl) was incubated at room temperature protected from light for 3 hours in the 

presence of 160 µl of 1mg/ml solution of EZ-link Biotin-HPDP (Thermo Fisher Scientific).  Biotinylated total RNA was 

precipitated and resuspended in DEPC-treated water to a final concentration of 0.5µg/ml.  Incorporation of 4-TU and 

biotinylation was determined by NanoDrop analysis and Northern blot probed with streptavidin-HRP.   4-TU labeled-

biotinylated RNA was purified using Dynabeads® MyOne™ Streptavidin C1 magnetic beads (Life Technologies) at a 

concentration of 2µl/µg of RNA. Beads should be prewashed as per manufacturers protocol to remove any RNases and 

blocked with 16µg of yeast tRNA (Life Technologies). 4-TU labeled-biotinylated RNA is added to the bead slurry and 

incubated at room temperature for 20min with rotation.  The RNA-bead slurry was placed on a magnetic stand for 1 min, 

and liquid carefully removed and saved for RNA precipitation.  This sample contains RNA that was not thiolated or 

biotinylated.  Then the RNA-bound beads underwent five rounds of stringent washes with buffer consisting of 1M NaCl, 

5mM Tris-HCL (pH 7.5), 500µM EDTA in DEPC-treated water.  4-TU labeled-biotinylated RNA was eluted from the 

beads with 5% 2-mercaptoethanol incubated for 10min, placed back on the magnetic stand and liquid removed and saved 

for RNA precipitation. The RNA in this fraction contains mRNA transcribed in the presence of 4-TU from FCU-GFP 

expressing cells.  Reverse transcription of RNA and DNA microarray analysis is described in the Supplementary 

Materians.  

Additional experimental and data analysis are provided in Supplementary Information. 
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