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Abstract: 
Most decisions are accompanied by a feeling of confidence, i.e., a subjective estimate of the probability of 
being correct. Although confidence accuracy is critical, notably in high-stakes domains such as medical or 
financial decision-making, little is known about how incentive motivation influences this metacognitive 
judgment. In this article, we hypothesized that motivation can, paradoxically, deteriorate confidence 
accuracy. We designed an original incentive-compatible perceptual task to investigate the effects of monetary 
incentives on human confidence judgments. In line with classical theories of motivated cognition, our results 
first reveal that monetary incentives improve some aspects of confidence judgments. However, over three 
experiments and in line with our hypothesis, but unpredicted by normative or classical motivated cognition 
theories, we further show that incentives also robustly bias confidence reports: the perspective of potential 
gains (respectively losses) bias confidence upward (respectively downward), with potential detrimental 
consequences on confidence accuracy. Connecting our findings with recent models of confidence 
formation, we demonstrate that these two effects of incentives have dissociable signatures on how 
confidence builds on decision evidence. Altogether, these findings enrich current cognitive and evolutionary 
models of confidence, and may provide new hints about its healthy or pathological miscalibration. 
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Significance Statement: 
Most decisions are accompanied by a feeling of confidence, i.e., a subjective estimate of the probability of 
being correct. Although achieving accurate confidence judgments is theoretically fundamental for individual 
decision-makers, miscalibrations such as overconfidence appear to be “widespread, stubborn, and costly” 
(D. Kahneman, in Thinking Fast and Slow. 2011). In this manuscript, we investigated the influence of incentive 
motivation on confidence accuracy in humans. In a series of behavioral experiments, we found that, 
although incentives can improve confidence accuracy, they also paradoxically systematically bias confidence 
judgments, thereby creating detrimental miscalibrations such as overconfidence. These findings have 
important implications for cognitive and evolutionary models of confidence, and may provide new hints 
about its healthy or pathological miscalibration.  
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Introduction: 
Imagine you have to cross a road. It’s dark and raining, the visibility is low. At some point, you estimate that 
there does not seem to be any danger, and decide to cross. However, because you feel quite unsure about 
crossing with such low visibility, you decide to check one last time, and spot a car coming at high speed to 
your direction. Luckily, you have enough time to withdraw from the street and avoid being hit by the car. 
Just like in this example, most decisions in everyday life are accompanied by a subjective feeling of 
confidence emerging from the constant monitoring of our own thoughts and actions by metacognitive 
processes (1, 2). Formally, confidence is a decision maker’s estimate of the probability –or belief- that her 
action, answer or statement is correct, based on the available evidence (3, 4). Although high confidence 
accuracy seems critical to monitor and re-evaluate previous decisions (5) or to arbitrate between different 
strategies (6, 7), converging evidence suggests that confidence judgments often significantly differ from the 
actual probability of being correct. Notably, we seem to often overestimate the probability of being correct, 
a phenomenon called overconfidence (8). This bias, potentially detrimental for the decision-maker or 
society, has been consistently reported in numerous domains and situations, from simple sensory 
psychophysics (9) or knowledge (10) tasks in the laboratory, to medical (11), financial, and managerial (12, 
13) decision-making.  
Altogether, the importance of confidence as a cognitive variable mitigating decision-making and the societal 
relevance of its miscalibration have considerably stimulated the search for the computational and 
neurobiological mechanisms subsuming confidence estimation (14, 15). Several studies have investigated 
factors which modulate or bias confidence estimation, and have notably established links between (over-
)confidence and an elevated mood (16), absence of worry (17), emotional arousal (18, 19) or increased 
desires (20). Recently, functional neuroimaging studies also reported neural correlates of confidence in the 
ventromedial prefrontal cortex (21, 22), a brain region associated with the encoding of economic, 
motivational and affective values (23). Such an overlap in the neural correlates of confidence and values 
suggests that these variables also interact at the behavioral level. In practice, this hypothesis entails that a 
decision-maker reports higher confidence not only because she strongly believes to be correct or to perform 
better, but also because she is in a high expected- or experienced- value context. Although this values-
confidence interaction could parsimoniously explain associations between positive affective-states and 
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overconfidence (16–20), it could also be the cause of new critical motivational biases. We conjectured that 
incentivizing confidence accuracy paradoxically biases confidence reports: following expected values, we 
expect higher monetary incentives to bias confidence judgments upwards in a gain frame, and downward in 
a loss frame, despite the potentially detrimental consequences on the final payoff.  
In order to test this hypothesis, we designed an original task, where participants had to first make a difficult 
perceptual decision, and then to judge the probability of their answer being correct, i.e., their confidence in 
their decision. Critically, we incentivized the truthful and accurate reporting of confidence using an adapted 
version of the Becker-DeGroot-Marschak (BDM) auction, a well-validated method from behavioral 
economics (24, 25). This incentivization was implemented after the perceptual choice, which made it 
possible to separately motivate the accuracy of confidence judgments without directly influencing the 
performance on the perceptual decision per se (Fig. 1 and Methods). Briefly, the BDM auction mechanism 
considers participants’ confidence reports as bets on the correctness of their answers, and implement trial-
by-trial comparisons between these bets and random lotteries. Under utility maximization assumptions, this 
guarantees that participants maximize their earnings by reporting their most precise and truthful confidence 
estimation (26, 27). Experimental evidence and theories of motivated cognition from behavioral economics 
(28–30) and cognitive psychology (31) predict that higher stakes (irrespective of their valence, i.e., gain or 
loss) increase participants tendency to conform to rational model predictions, hence should improve 
confidence accuracy.  
In three experiments, we systematically varied the monetary stakes magnitude and valence (gains or losses), 
used to incentivize confidence accuracy. Confirming our initial hypotheses and unpredicted by normative 
or motivated cognition theories, we show that monetary incentives bias confidence judgments: the prospect 
of potential gains increases confidence –in our case harming people’s overall payoff-, while the prospect of 
potential losses decreases confidence. We further investigated the properties of this bias, and demonstrated 
that it is independent from the amount of evidence on which the choices are based.   
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Results: 
Experiment 1. Twenty-four subjects participated in our first experiment. They performed four sessions of 
our confidence elicitation task (Fig. 1, Table 1 and Methods): in each trial, participants briefly saw a pair 
of Gabor patches first, then had to indicate which one had the highest contrast, and finally had to indicate 
how confident they were in their answer (from 50 to 100%). Critically, the confidence judgment was 
incentivized: after the binary choice and before the confidence judgment, a monetary stake was displayed, 
which could be neutral (no incentive) or indicate the possibility to gain or lose 1 euro. Participants were 
explicitly instructed that they could maximize their chance to gain (respectively not lose) the stake by 
reporting their subjective probability of being correct as truthful as possible in the confidence judgment 
step, because a BDM incentivization mechanism (24, 25) determined the outcome of the trial. In addition 
to extensive instructions explaining the BDM procedure, participants gained direct experience with this 
procedure through a series of 24 training trials that did not count towards final payment. 
Prior to the task, participants performed a calibration session, which we used to estimate the parameters of 
a logistic choice function linking individual choices (probability of choosing the left Gabor) and the contrast 
intensity difference (CL-CR) (see Methods). These parameters were then used to generate the main task 
stimuli, such that the decision situations spanned a pre-defined range of individual subjective difficulties. 
Results show a very good agreement between ex ante model choice predictions from this psychophysical 
model and actual subject choice behavior (R = .974 ± .003, t23 = 364, P = 9.06e-45; Fig. 2.A). In addition, 
both decision correctness and confidence are highly correlated with the amount of evidence, a measure 
which normalizes the contrast difference by their sum to adjust for saturation effects (correctness: logistic 
β = 7.46 ± .479, t23 = 15.6, P = 1.03e-13; and confidence linear β = .187 ± .018, t23 = 10.2, P = 5.09e-10; 
Fig. 2.A). These results confirm that our task is well calibrated, and that subjects’ behavior conforms to a 
priori predictions. 
We next assess three important properties of our confidence measure (Fig. 2.B). First, confidence is highly 
correlated with the probability of being correct (R = .736 ± .055, t23 = 13.2, P = 2.66e-12). Second, the link 
between confidence and evidence is positive for correct and negative for incorrect responses (correct: linear 
β = .193 ± .016, t23 = 11.8, P = 2.85e-11; and incorrect: linear β = -.288 ± .063, t23 = -4.58, P = 1.31e-4). 
Finally, the link between evidence and performance differs between high and low confidence trials 
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(respectively, logistic β = 11.3 ± 1.00, and logistic β = 4.70 ± .637, difference: t34 = 5.45, P = 1.54e-5). These 
properties suggest that the confidence measure elicited in our task actually corresponds to subjects’ 
estimated posterior probability of being correct (15).  
We then turn to the original feature of our design: the incentivization of confidence accuracy (Fig. 2.C). 
Critically, monetary incentives have a significant impact on confidence (F2,23= 8.26, P = 8.63e-4;). In line 
with our confidence-value interaction hypothesis, this translates into a monotonic increase of confidence 
from the loss to the neutral and gain conditions (R = .604 ± .090, t23 = 6.69, P = 8.02e-7), although post-
hoc t-tests revealed that the prospect of winning 1 euro does not significantly differ from the neutral 
condition (SI Results). As expected from our task design, incentives have no effect on performance (F2,23= 
.715, P = .494), which rules out the possibility that the effect of incentives on confidence is driven by an 
effect on performance. 
In order to explore how the incentive effect on confidence judgments impacts confidence accuracy, we 
focused on two distinctive metacognitive metrics: discrimination and calibration (see Methods for formal 
definitions). Discrimination (or resolution) measures how confidence distinguishes between correct and 
incorrect responses, and is computed as the difference between the average confidence for correct answers 
and the average confidence for incorrect answers; the higher the discrimination, the more accurate the 
confidence judgments. On the other hand, calibration measures how averaged confidence matches averaged 
objective performance, and is computed as the difference between the averaged confidence and the averaged 
performance. Therefore, a calibration of zero signals high confidence accuracy, whereas a positive 
(respectively negative) calibration signals overconfidence (respectively underconfidence). 
Our results first show that incentives affect discrimination (F2,23 = 4.62, P = .0148): prospects of gains and 
losses lead to better discrimination than no-incentives (gain vs neutral: t23 = 2.33, P = .0288; loss vs neutral: 
t23 = 2.41, P = .0244). Because those results are in line with motivated cognition theories, we refer to this 
first effect as the motivational effect of incentives on confidence accuracy. 
Second, incentives also significantly influence calibration (F2,23= 6.73, P = 2.72 e-3); however, mirroring the 
effects on confidence, increasing incentive value lead to higher calibration, (R = .452 ± .115, t23 = 3.95, P 
= 6.43.e-4). Since participants are overconfident on average, calibration is thereby improved by loss 
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prospects, but paradoxically worsened by gain prospects. We refer to this second effect as the biasing effect 
of incentives on confidence. 
Because mechanistic models of confidence formation propose that it builds on perceptual evidence (15), we 
next explore how incentives modulate the relationship between those two quantities, for correct and 
incorrect answers (Fig. 2.D). We estimate linear regressions linking confidence and evidence for each 
incentive level, and assess whether incentives influence this linear relationship. Our results show a clear 
dissociation between the motivational and biasing effects of incentives on confidence in this model. On the 
one hand, the motivational effect is found in the slopes of those regressions (correct answers: F2,23= 4.40, 
P = .0179; incorrect answers: F2,23= 3.38, P = .0428): in both cases, gains and losses increase the linear 
relationship between confidence and evidence, compared to no incentives (SI Results). On the other hand, 
the biasing effect of incentives is found in the intercept of those regressions (correct answers: F2,23= 7.21, P 
= 1.88e-3; incorrect answers: F2,23= 6.35, P = 3.66e-3), paralleling the effect of incentives on confidence 
judgment (correct answers R = .498 ± .119, t23 = 4.20, P = 3.45.e-4; incorrect answers R = .420 ± .130, t23 
= 4.20, P = 3.66.e-3). Therefore, while the motivational effect of incentives actually influences the way 
confidence is built from evidence, the biasing effect appeared to be a purely additive effect of incentives on 
confidence, unrelated to the amount of evidence.  
Additional analyses assessed the possibility that incentives impact other critical features of our design, such 
as the predictive accuracy of our psychophysics model, or the participants’ reaction time, but none of these 
effects are significant. (SI Results). 
Overall this first set of results reveal and dissociate two concurrent effects of monetary incentives on 
confidence accuracy: a motivational effect, which improves discrimination with monetary stakes (gains or 
losses), and a biasing effect, which monotonically alters confidence with incentive values (i.e. upward for 
gains, and downward for losses), degrading calibration (i.e. increasing overconfidence) with increasing 
incentive values. 
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Experiment 2. If the value of monetary incentives actually interacts with confidence judgments -rather 
than simply creating a framing effect- then the magnitude of the incentives should modulate the observed 
effects. We invited thirty-five subjects to participate in a second task where incentives for confidence 
accuracy varied in both valence (gains and losses) and magnitude (1€ vs 10¢) (see Table 1). As a first sanity 
check, we replicate the validation of our experimental design together with the fundamental features of 
confidence (SI Results). A two way-ANOVA reveals significant effects of both valence (i.e. gains or losses) 
and magnitude (high vs low stakes) on confidence (valence: F1,34= 24.7, P = 1.88e-5; magnitude: F1,34= 3.40, 
P = .0740; valence*magnitude: F1,34= 6.86, P = .0131; Fig. 3.A). This replicates our biasing effect, where 
incentives monotonically bias confidence reports (R = .658 ± .054, t34 = 12.2, P = 5.09.e-14). However, 
post-hoc t-tests show that the effect of magnitude is not significant in the gain domain (SI Results). This 
effect on confidence judgments percolates confidence accuracy, as a similar effect is found on calibration 
(R = .431 ± .073, t34 = 5.91, P = 1.11.e-6), similarly driven by the incentive valence (SI Results). Control 
analyses show no effects of incentives on performance (SI Results). Contradictory to the first experiment, 
discrimination was not significantly influenced by incentives, suggesting the motivational effect evidenced 
in the first experiment was due to the mere presence of incentives rather than the magnitude of those 
incentives (SI Results). Finally, we confirm that the biasing effect of incentives is independent from the 
amount of evidence, impacting the intercepts and not the slope of the linear relationship between evidence 
and confidence for both correct and incorrect answers (Fig. 3.B and SI Results).  
The results from this second experiment have important implications. First, they replicate the biasing effect 
of incentives on confidence, and furthermore demonstrate that these effects depend on incentive 
magnitude. Additionally, they isolate this biasing effect from the motivational effects, supporting our 
proposed dissociation. 
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Experiment 3. While the biasing effect of incentives on confidence and calibration revealed in our first 
two experiments appeared robust and replicable, it seemed to be driven by the loss frame. A first hypothesis 
is that those biasing effects are purely restricted to the loss frame. However, an alternative hypothesis is that 
subjects are simply less sensitive to gains, as suggested by prospect theory (32). To dissociate between those 
two possibilities, we invited twenty-four subjects to participate in a final study which included higher stakes 
(2€) in both gain and loss frames (Table 1). As in the first two experiments, we replicate the validation of 
our experimental design, together with the fundamental features of confidence (SI Results). Once again, 
our results reveal a significant effect of incentives on confidence, which depends on both the valence and 
the magnitude of the stakes (valence: F1,23= 18.8, P = 2.45e-4; magnitude: F1,23= .770, P = .469; 
valence*magnitude: F1,23= 6.52, P = 1.34e-5; Fig. 3.C). This translates into a parametric increase of 
confidence with incentives (R = .604 ± .082, t23 = 7.34, P = 1.80.e-7), with a significant effect of incentive 
magnitude in both gain and loss domains (SI Results). This result confirms our initial hypothesis: following 
expected values, higher incentives bias confidence judgments upwards in a gain frame, and downward in a 
loss frame, independent from the amount of evidence on which the decisions are based (Fig. 3.D and SI 
Results). This bias also affects confidence accuracy, i.e., calibration (R = .302 ± .100, t23 = 3.02, P = 6.04.e-
3), although this is mostly driven by the valence effect (SI Results). Similar to the second experiment, 
though, the motivational effects on discrimination were not found, suggesting that they are mostly driven 
by the incentive versus no-incentive contrast (SI Results).  
This last set of results replicates, for the third time, the biasing effects of incentives on confidence (see SI 
Results for a comparison of effect sizes between the three experiments), and confirms that monetary gains 
and losses both contribute to biasing confidence in perceptual decisions. 
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Discussion: 
In this article, we investigated how monetary incentives influence confidence accuracy. To do so, we 
designed an original experimental setting which combined a perceptual decision task and a BDM auction 
procedure inspired from behavioral economics (24, 25). In addition to replicating important features of a 
recent model of confidence formation (15), we revealed and dissociated two effects of monetary incentives 
on confidence accuracy.  
The first effect is a motivational effect: incentivizing confidence judgments improves discrimination. This 
means that high (respectively low) confidence is more closely associated with correct (respectively incorrect) 
decisions when confidence reports are incentivized, regardless of the valence of the incentive (gain or loss). 
This nicely extends a recent study reporting a similar effect of incentivization on discrimination, although 
limited to the gain domain (33). In addition, we show that this motivational effect is underpinned by a better 
integration of perceptual evidence in the confidence judgment when stakes increase, in line with theories of 
motivated cognition (28–31).  
Although validating our initial hypothesis, the second effect of incentives on confidence accuracy is counter-
intuitive: confidence judgments are parametrically biased by the value of the incentive. The prospect of gains 
increases confidence, while the prospect of losses decreases confidence. Because, people generally exhibited 
overconfidence in our experiment, the gain prospects detrimentally increased overconfidence (i.e. 
deteriorated calibration) while prospects of losses improved calibration. As opposed to the motivational 
effect, the biasing effect of incentive was purely additive, i.e., independent of the amount of evidence on 
which decisions and confidence judgments are based. While other studies linked (over)confidence with 
affective states such as elevated mood (16), absence of worry (17), emotional arousal (18, 19) or increased 
desires (20), the present study is, to our knowledge, the first to demonstrate this biasing effect of incentive 
values on confidence accuracy, to dissociate it from motivational effects, and to link those effects with 
models of confidence formation. One plausible interpretation for this effect is an affect-as-information 
effect: people use their momentary affective states as information in decision-making (34) which, in our 
case, means that they integrate the trial expected value into their confidence judgment. This interpretative 
framework could also connect the present findings to other results reported in the literature: in line with 
our hypotheses, Folke and colleagues (5) reported that confidence in value-based decisions is driven by the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2017. ; https://doi.org/10.1101/099382doi: bioRxiv preprint 

https://doi.org/10.1101/099382
http://creativecommons.org/licenses/by-nc-nd/4.0/


unsigned difference in value between options (i.e. decision evidence), but also biased by the summed value 
of the options. 
In order to incentivize confidence reports, we used a mechanism inspired from BDM auction procedures 
(24, 25), sometimes referred to as reservation or matching probability. Contrary to other incentivization 
methods, such as the quadratic scoring rule (QSR), the BDM mechanism is still valid when subjects are not 
risk neural, and conveniently allowed us to manipulate the incentives on a trial-by-trial- basis (27, 33). Several 
studies have investigated the relative impact of different incentivization mechanisms on subjective 
probability judgments (confidence or belief), but with mixed results (see (27) for a review). Additional 
research should investigate how the value-confidence interaction impacts elicitation mechanisms which 
associate confidence levels with different payoffs, such as the QSR. 
In this study, we only used relatively small monetary amounts as incentives; how the motivational and biasing 
effect of incentive scales when monetary stakes increase significantly remains an open question. Critically, 
higher stakes may also impact physiological arousal, which influence confidence and interoceptive abilities 
(19, 35). In general, the effects of incentives on confidence accuracy could also be mediated by inter-
individual differences in metacognitive or interoceptive abilities (35, 36), and to incentive motivation 
sensitivity (37). Because our subject sample was mostly composed of university students, the generalization 
of those findings in the general population will have to be assessed in further studies.  
Our results confirm that confidence judgments do not just represent rational estimates of the probability of 
being correct (4), but also integrate information and potential biases processed after a decision is made (38). 
The mere notion of confidence biases, notably overconfidence, and the actual conditions under which they 
can be observed sparked an intense debate in psychophysics (9, 39, 40) and evolutionary theories (41, 42). 
Critically, here, confidence accuracy was properly incentivized, hence deviations from perfect calibration 
can be appropriately interpreted as cognitive biases (42). The striking effects of incentive valence on 
confidence seem to make sense when considering evolutionary perspective: in natural settings, whereas 
overconfidence might pay off when prospects are potential gains, e.g., when claiming resources (41), a better 
calibration might be more appropriate when facing prospects of losses, e.g., death or severe injuries, given 
their potential dramatic consequences on reproductive chances. Interestingly, the observed valence 
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difference in the effect of incentives magnitude –higher in the loss than in the gain domain- seem to mimic 
valence asymmetries observed in economic decision-making theories such as prospect theory (32).  
How confidence is formed in the human brain and how neurophysiological constraints explain biases in 
confidence judgments remain critical research questions (4, 43). Although functional and structural 
neuroimaging studies initially linked confidence and metacognitive abilities to dorsal prefrontal regions (1), 
confidence activations were also recently reported in the ventro-medial prefrontal cortex (21, 22, 44), a 
region which has been consistently involved in motivation and value-based decision making (23). It is 
therefore possible that this region plays a role in the motivational and biasing effects of incentives on 
confidence, and constitutes the neurophysiological basis for the affect-as-information theory (34). However, 
this remains highly speculative and should be investigated in future neuroimaging studies.  
Overall, our results suggest that investigating the interactions between incentive motivation and confidence 
judgments might provide valuable insights on the cause of confidence miscalibration in healthy and 
pathological settings.  
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Experimental Procedures 
Subjects. All studies were approved by the local Ethics Committee of the University of Amsterdam 
Psychology Department. All subjects gave informed consent prior to partaking in the study. The subjects 
were recruited from the laboratory's participant database (https://www.lab.uva.nl/spt/). A total of 83 
subjects took part in this study (see Table 1). They were compensated with a combination of a base amount 
(10€), and additional gains and/or losses from randomly selected trials (one per incentive condition per 
session for experiment 1, and one per incentive condition from one randomly selected session for 
experiments 2 and 3). 
 
Tasks. All tasks were implemented using MATLAB® (MathWorks) and the COGENT toolbox 
(http://www.vislab.ucl.ac.uk/cogent.php). In all three experiments, trials shared the same basic steps (Fig. 
1.A): after a brief fixation cross (750 ms) participants viewed a pair of Gabor patches displayed on both 
sides of a computer screen (150 ms), and judged which had the highest contrast (self-paced), by using the 
left or right arrow. They were thereafter presented with a monetary stake (1000 ms), and asked to report 
their confidence C in their answer on a scale from 50 to 100%, by moving a cursor with the left and right 
arrows and selecting their desired answer by pressing the spacebar (self-paced). The steps following the 
confidence rating, and the relation between the monetary stake, the confidence and the correctness of the 
answer were manipulated in two main versions of this task. In the Extended Version, at the trial level, the 
lottery draw step was separated in two smaller steps: first, a lottery number L was drawn in a uniform 
distribution between 50 and 100% and displayed as a scale under the confidence scale. After 1200 ms the 
scale with the highest number was highlighted for 1200 ms. Then, during the resolution step, if C happened to 
be higher than L, a clock was displayed for 750 ms together with the message “Please wait”. Then, a feedback 
was displayed which depended on the correctness of the initial choice. Back at the resolution step, if the L 
happened to be higher than C, the lottery was implemented. A wheel of fortune, with a L% chance of losing 
was displayed, and played: the lottery arm spin for ~750 ms, and would end up in the winning (green) area 
with L% probability or in the losing (red) area with 1-L% probability. Then, a feedback informed whether the 
lottery was winning or losing. 
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Subject would win (gain frame) or not lose (loss frame) the incentive in case of a “winning” trial, and they 
would not win (gain frame) or lose (loss frame) the incentive in case of a “losing” trial. Thanks to this BDM 
auction procedure, the strategy to maximize one’s earnings is to always report on the confidence scale one’s 
subjective probability of being correct as truthfully and accurately as possible (SI Text). Subjects were 
explicitly instructed so. In the Short version, the incentivization scheme was the same as in the Extended 
Version, but part of it was run in the background. Basically, the lottery scale appeared, and the scale with 
the highest number was highlighted concomitantly (1200ms). Besides, the resolution step was omitted. Still, 
the complete feedback relative to the lottery and or the correctness of the answer was given to subjects in 
the feedback step. Analysis of Experiment 2 data showed that participants’ behavior is not impacted by the 
different versions of the task (SI Results).  
 
Stimuli & design: Participants initially performed a 144 trials calibration session (~5min), where they only 
performed the Gabor contrast discrimination task, without incentive or confidence measure (Fig. 1.A). 
During this calibration, the distribution of contrast difference (i.e. difficulty) was adapted every 12 trials 
following a staircase procedure, such that performance reached approximatively 70% correct.  
The calibration data was used to estimate individual psychometric function: 
(ۺܐ܋)݌ =  1 + exp (−ߤ − ߪ  × ۺ۱) −  ଵି((܀۱
where (ۺܐ܋)݌ is the probability of subjects choosing the left Gabor, and ۱ۺ and ۱܀ are the contrast 
intensities of the left and right Gabors. In this formalization, μ quantifies subjects’ bias toward choosing the 
left Gabor in the absence of evidence, and σ quantifies subjects’ sensitivity to contrast difference. The 
estimated parameters (μ and σ) were used to generate stimuli for the confidence task, spanning defined 
difficulty levels (i.e. known (ۺܐ܋)݌) for all incentives levels. After the first session of the confidence task, μ 
and σ were re-estimated for each session from the data of the preceding session (experiments 1 and 3), or 
from a new calibration session (experiment 2). 
 
Statistics. All statistical analyses were performed with Matlab. All statistical analyses are based on second-
level two-sided tests across subjects, using repeated measures n-way(s) ANOVAs with subjects as a random-
effect, or (one-sample or paired) t-tests. Reported correlations were computed at the individual level, on 
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binned or averaged data. Reported parameters from logistic and/or linear multiple regressions were 
computed at the individual level, on all-trial data, aggregated across sessions. In both cases, statistical tests 
are performed on the parameters at the population level, using t-tests or ANOVAs. 
 
Metacognitive metrics. Calibration was computed as  

۱ =  1
݊ ෍ ௞ܥ

௡

௞ୀଵ
− 1

݊ ෍ ௞ܲ
௡

௞ୀଵ
 

Where n is the total number of trials, Ck is the reported confidence at trial k, and Pk is the performance at 
trial k (1 for a correct answer and 0 for an incorrect anser); 
Discrimination was computed as 
۱ =  ଵ

௡೎ ∑ ௞೎ܥ
௡೎௞೎ୀଵ − ଵ

௡೔ ∑ ௞೔ܥ
௡೔௞೔ୀଵ , 

Where ݊௖ (respectively ݊௜) is the number of correct (respectively incorrect answer). 
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 Exp. 1 Exp. 2 Exp. 3 
M/F (total) 6/18 (24) 9/26 (35) 7/17 (24) 

Age 23.8±6.00 24.8±5.43 24.3±7.79 
Stakes (€) 0; ±1; ±0.1; ±1; ±0.1; ±1;±2 
P(c=L)  50 ± [10:10:40] (×4)  50±[0:05:15] (×2)  50±[0:10:40] (×2) 
Tasks  Short (×4) Ext. (×1) + Short(×1) Short (×3) 

 Table.1: Demographics and experimental design. P(c=L) indicates the level of difficulty (i.e probability of choosing the left Gabor) used to generate the stimuli. The number of times all levels of difficulty were repeated per incentive and per session is indicated between brackets. Tasks indicate which task version (short or extended) was offered to participants, and the number of session per task is indicated between brackets.   
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Fig. 1. Behavioral task. Successive screens displayed in one trial are shown from left to right with durations in ms.  A. Common part. Participants viewed a couple of Gabor patches displayed on both sides of a computer screen, and judged which had the highest contrast. They were thereafter presented with a monetary stake (in a green frame for gain, grey for neutral and red for losses), and asked to report their confidence C in their answer on a scale from 50 to 100%. Then, a lottery number L was drawn in a uniform distribution between 50 and 100%, displayed as a scale under the confidence scale and the scale with the highest number was highlighted. B. Lottery > Confidence. If the L > C, the lottery was implemented. A wheel of fortune, with a L% chance of losing was displayed, and played. Then, a feedback informed whether the lottery was winning or losing.  C. Confidence > Lottery. If C > L, a clock was displayed together with the message “Please wait”, followed by a feedback which depended on the correctness of the initial choice.  Subject would win (gain frame) or not lose (loss frame) the incentive in case of a “winning” trial, and they would not win (gain frame) or lose (loss frame) the incentive in case of a “losing” trial.   
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Fig. 2. Experiment 1. A. General behavior. Left: Frequency of left Gabor choices, plotted against the ex-ante predictions from the psychometric model. Right: reported confidence (dots) and performance (diamonds) –i.e. % correct- as a function of evidence. Evidence is calculated as abs(CL-CR)./(CL+CR), where CL and CR are the contrast values of the left and right Gabor, respectively. B. Statistical model of confidence. Left: observed performance (% correct choices) as a function of reported confidence. Middle: reported confidence as a function of evidence for correct (green) and incorrect (red) choices. Right: observed performance (% correct) as a function of evidence, for high (gray) and low (black) confidence trials. C. Overall incentive effects. Left: reported confidence (dots) and performance (diamonds) –i.e. % correct- as a function of incentives. Right: computed calibration (dots) and discrimination (diamonds) as a function of incentives. D. Linking incentives, evidence and confidence for correct (left) and incorrect (right) answers. In those two panels, the scatter plots display reported confidence as a function of evidence, for the different incentive levels. The histograms represent the intercepts (top) and slope (bottom) of this relationship, estimated at the individual level and averaged at the population level. In B and D, the solid line represents the best (linear or logistic) regression fit at the population level. Error bars indicate inter-subject standard errors of the mean. *: P<.05; ** P<.01; ***P<.001;   
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Fig. 3: Experiments 2 and 3. These panels depict the results of experiment 2 (A and B) and 3 (C and D). A and C. Overall incentive effects. Left: reported confidence (dots) and performance (diamonds) –i.e. % correct- as a function of incentives. Right: computed calibration (dots) and discrimination (diamonds) as a function of incentives. B and D. Linking incentives, evidence and confidence for correct (left) and incorrect (right) answers. In those panels, the scatter plots display reported confidence as a function of evidence, for the different incentive levels. The histograms represent the intercepts (top) and slope (bottom) of this relationship, estimated at the individual level and averaged at the population level. In B and D, the solid line represents the best (linear) regression fit at the population level. Error bars indicate inter-subject standard errors of the mean. *: P<.05; ** P<.01; ***P<.001;  
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