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Abstract 
Motivation: A complex disease is usually driven by a number of genes interwoven into networks, rather than a single 
gene product. Network comparison or differential network analysis has become an important means of revealing the 
underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, 
however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the 
assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. 
Results: We propose a new Joint density based non-parametric Differential Interaction Network Analysis and 
Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At 
the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its 
potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to 
adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene 
measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and 
lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive 
Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes 
and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC 
discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a 
general framework for feature selection and classification using high-dimensional sparse omics data.   
Availability: R scripts available at https://github.com/jijiadong/JDINAC 
Contact: lxie@iscb.org  
Supplementary information: Supplementary data are available at bioRxiv online. 

 
1 Introduction  
It is well known that a complex biological process, such as the 
development and progression of cancer, is seldom attributed to a single 
molecule. Numerous cellular constituents, such as proteins, DNA, RNA 
and small molecules do not function in isolation, but rather interact with 
one another to fulfill particular biological functionality. In the view of 
network biology (Yoshimura et al., 1998; Zhou et al., 2011), a cellular 
function is a contextual attribute of quantifiable patterns of interactions 
between myriad of cellular constituents. Such interactions are not static 

processes, instead they are dynamic in response to changing genetic, 

epigenetic, and environmental factors (Bandyopadhyay et al., 2010; 
Califano, 2011). The molecular interactions can be effectively abstracted 
as a network. Thus, differential network analysis becomes an important 
tool to understand the roles of different modules in complex biological 

processes, and draws tremendous attention. Typically, differential 
genetic interactions are a reflection of which cellular processes are 
differentially important under the studied condition (de la Fuente A, 
2010; Ideker and Krogan, 2012). 

In the past decade, many methods have been proposed to detect the 
differential network connection patterns between two condition-specific 
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groups (e.g. patients and health controls). Gambardella et al. (2013) 
introduced DINA procedure to identify whether a known pathway is 
differentially co-regulated between different conditions. Yates and 
Mukhopadhyay et al. (2013) provided a dissimilarity measure that 
incorporates nearby neighborhood information for biological network 

hypothesis tests. Recently, Ruan et al. (2015) developed the dGHD 
algorithm for detecting differential interaction patterns in two-network 
comparisons. All of the aforementioned methods endeavor to identify 
whether the global network topology changed significantly between two 
groups. However, it will be of benefit to reveal critical pairwise 
molecular or genetic interactions that are responsible for the different 
physiological or pathological states of an organism in many applications. 
The identification of such interactions may help us to illuminate the 
underlying genetic mechanisms of complex diseases (e.g. cancer), to 

predict drug off-target effects (T Evangelidis, 2014), to develop multi-
target anti-cancer therapy (Xie and Bourne, 2015), and to discover 
clinical biomarkers for disease classification. 

To this end, the primary focus in this paper is to identify pairwise 
differential interactions among genes that are most closely related to a 
certain disease status. Most of such studies first require to divide the data 
into two separate groups according to the factor of interest. Besides, a 
certain correlation metric is often involved to represent the strength of 
pairwise interaction between nodes in the network. The existing methods 

mainly fall into two categories. The first category is to compare 
topological characteristics, such as degree, clustering coefficient of 
vertices within the network, of the constructed sparse network on 
grouping specific data (Reverter et al., 2006; Zhang et al., 2009). The 
main challenge of this approach lies in how to select appropriate 
threshold for constructing sparse network, although there have been 
miscellaneous methods proposed to address this challenge (Carter et al., 
2004; Elo et al., 2007). To the best of our knowledge, no commonly 
feasible approach has been available yet. Approaches in the second 

category normally handle weighted group-specific network to further 
construct the differential network. In one manner such approach can only 
concentrate on edge-level to construct edge-difference based differential 
network (Hudson et al., 2009; Liu et al., 2010; Tesson et al., 2010). On 
the other hand, it could focus more on finding gene sets and identify 
correlation patterns difference between groups. For example, the 
CoXpress (Watson, 2006) first performs hierarchical clustering with 
correlation matrix obtained from normal samples (or disease sample), 
then applies statistical test to determine whether the average correlation 

within one cluster is higher (or lower) than expected by chance and thus 
finally identifies the differentially co-expressed gene groups. Similarly, 
DiffCorr (Fukushima, 2013) identifies the first principle component 
based ‘eigen-molecules’ in the correlation matrices constructed from the 
grouped dataset, then performs Fisher z-test between the two groups to 
discover differential correlation. In addition, Zhao et al.(2014) proposed 
a direct estimation method (DEDN), which modeling each condition-
specific network using the precision matrix under Gaussian assumption. 
However, most of the methods mentioned above are based on marginal 

or partial correlation. It can only capture the linear relationship among 
genes, which could be restrictive in real applications. It is often the case 
that nonlinear relationships exist between genes. Another critical but 
inadequately addressed issue is how to adjust the confounding factors in 
the differential network analysis. For instance, the condition-specific 
label is the length of the survival time of cancer patients, one group are 
patients with longer survival time and the other group are those with 
short survival time. Then the age of the patients is a potential 
confounding factor which needs to be adjusted. If the patients’ ages are 

different between two groups, it’s hard to know whether the identified 

differential network is associated with the survival time or the age. 
Furthermore, how to use the identified network biomarkers to achieve 
classification still poses great challenge in discriminant analysis 
especially in high-dimensional settings (He et al, 2016).  

To address the challenges in differential network analysis and 

classification mentioned above using high dimensional sparse omics data, 
we propose a Joint density based non-parametric Differential Interaction 
Network Analysis and Classification (JDINAC) method to identify 
differential patterns of network activation between condition-specific 
groups (e.g. patients and health controls). The contribution of our work 
lies in that we can not only deal with the nonlinear relationship between 
the genes but also adjust the confounding factors in the differential 
network analysis. Furthermore, JDINAC is free of the assumption of a 
parametric probability distribution of gene measurements. We compare 

the ability of identifying differential network of our methods with 
DiffCorr (Fukushima, 2013), DEDN (Zhao et al., 2014) and Lasso based 
method. By integrating the logistic regression into our method, our 
method is capable of accurate classification using high-dimensional 
sparse data. We also compared the classification performance of our 
method with Random Forest (RF) (Breiman, 2001), Naive Bayes (NB) 
and Lasso based methods in both simulation studies and real data 
example. 

2 Methods 
Network differential analysis and classification using high-dimensional 
sparse omics data face several challenges. Firstly, the number of data 
points n is often much smaller than the number of features p, e.g. p>>n 
problem. Secondly, the relationship between two biological variables is 
often non-linear. Thirdly, confounding factors often need to be adjusted 

in the differential network analysis and classification. Finally, the 
underlying distribution of biological variable may not follow Gaussian or 
other probability distribution on which many algorithms are based. 
JDINAC is proposed to address these problems. 

Assume that we have observed gene-level activities (such as mRNA, 
methylation or copy number) for p genes measured over individuals. For 
individual l (l = 1, 2, …, N), the binary response variable is denoted as 

0 0

1 1l

l class
Y

l class

∈⎧
= ⎨ ∈⎩

and the expression level of ith gene is denoted as lix . 

The JDINAC approach based on the logistic regression model can be 
constructed as, 
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where sZ ( 1, ,s S= L ) denote the covariates (e.g. age and gender). ijf

and ijg denote the class conditional joint density of ix and jx respectively 

for class 1 and class 0, i.e., (( , ) | 1) ~i ijjx x fY = and (( , ) | 0) ~i ijjx x gY =

.The conditional joint densities ( , )ij i jf x x can indicate the strength of 

association between ix and jx  in class 1.  Since the number of pairs 

( , )i jx x  can be larger than the sample size, the 1L penalty (Tibshirani, 

1996) was adopted in this high-dimensional setting. Note that the above 
formulation can be viewed as an extension of the FANS approach (Fan et 

al., 2016). Parameters 0ijβ ≠ indicate differential dependency patterns 

between condition-specific groups. 

1L regularized estimate for β : 
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The advantages of the JDINAC approach over existing methods lie in 

the following aspects:1) it can achieve differential network analysis and 
classification simultaneously;2) it can adjust confounding factors in the 
differential network analysis, for example, if the samples are from cancer 
patients with different length of survival time, then the age of the patient 
is a potential confounding factor which needs to be adjusted.3) it is a 
nonparametric approach and can identify the nonlinear relationship 
among variables. Besides, it does not require any conditions on the 
distribution of the data, which makes it more robust. 

JDINAC can be implemented as follows with its workflow shown in 

Figure 1. 

 
Fig. 1. Workflow of JDINAC. 

Step 1. Given N observations {( , ), 1, , }l lD Y l N= =X L . Randomly 
split the data into two parts: 1 2( , )D D D= . 

Step 2. On part 1D , estimate the joint kernel density functions
ˆ ( , )ij i jf x x and ˆ ( , )ij i jg x x , , 1, ,i j p= L , j i> . 

Step 3. On part 2D , fit an 1L -penalized logistic regression

0
1 1

ˆ ( , )
logit( ) log
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= + +∑ ∑∑ , using cross validation 

to get the best penalty parameter. 

Step 4. Repeat Step 1-Step 3 for T times, for individual l using the 

average prediction
1

1ˆ ˆT

l l tt
Y Y

T =
= ∑ as the final prediction, and assign the 

lth individual to class 1 if ˆ 0.5lY > , and class 0 otherwise. 

Setp 5. Calculate the differential dependency weight of each pair 

( , )i jx x between two groups, ,1
( 0)

T

ij ij tt
w I β

=
= ≠∑ ， , 1, ,i j p= L , j i> ; 

where ( )I is the indicator function. 

2.1 Simulation studies 
Four simulation scenarios were designed for assessing the 

performances of differential network analysis and classification accuracy. 

In scenarios 1 and 2, the difference of association strength between pairs 

of genes in a network is caused by the different correlation (Figure 2a, 
Figure 2b). In scenario 3, the differential pairs have the same correlation 
structure between condition-specific groups but different joint density 
(Figure 2c). In scenario 4, the differential strength of association between 
pairs of genes in a network is caused by the nonlinear dependence 

(Figure2d). For scenario 1, 2 and 3, we generated 100 pairs of datasets, 
each representing the case (class 1) and the control (class 0) conditions. 
Each dataset contains 300 observations with p variables drawn from the 
multivariate normal distribution with mean 0 and covariance matrix Σ , 

that is, ~ ( , )pX N Σ0 . Σ consists of 3 blocks along the diagonal.

1 2 3( , , )diagΣ = Σ Σ Σ , 1 ( )ij m mσ ×Σ = , i j
ijσ ρ −=  for , 1, ,i j m= L ; 80m = ; 

2 3 10 10( )ijσ ∗
×Σ = Σ = . 

 
Fig. 2. The scenarios of simulation studies. The blue square and red triangle represents 

the scatter plots for the two variables in class 0 and class 1 respectively, (a) scenario 1, the 

two variables is negatively correlated in class 0 and positively correlated in class 1, (b) 

scenario 2, the two variables are correlated in one group and are independent in the other, 

(c) scenario 3, the two variables are equally correlated but with different density in the 

two groups, (d) scenario 4, the two variables are independent in one group and have 

nonlinear relationship in the other group. 

Scenario 1: In class 0, 100p = , 0.5ρ = , 1iiσ ∗ = for 1, ,10i = L , 

( 1) 0.5i j
ijσ −∗ = − × for i j≠ ; in class 1, 100p = , 0.5ρ = ,

1iiσ ∗ = for 1, ,10i = L , 0.5ijσ ∗ = for i j≠ . 

Scenario 2: In class 0, 100p = , 0.5ρ = , 1iiσ ∗ = for 1, ,10i = L , 0ijσ ∗ =
for i j≠ ; in class 1, 100p = , 0.5ρ = , 1iiσ ∗ = for 1, ,10i = L , 

0.7ijσ ∗ = for i j≠ . 

Scenario 3: In class 0, 100p = , 0.5ρ = , 1iiσ ∗ = for 1, ,10i = L , 

0.6ijσ ∗ = for i j≠ ; in class 1, 100p = , 0.5ρ = , 5iiσ ∗ = for 

1, ,10i = L , 3ijσ ∗ = for i j≠ . 

Scenario 4: In class 0, generate data (0) (0) (0)
1( , , )pX X X= L , where 

(0) 2
j j jX u v= + , 1, , 2j p= L , ~ ( 2,2)ju Unif −  and

~ ( 4 3,1 4)jv N − ; (0)
j jX u= , 2 1, ,j p p= + L , 100p = . In 

class 1, generate data (1) (1) (1)
1( , , )pX X X= L , where 

(1) 2
2j j p jX u v+= + , 1, , 2j p= L , ~ ( 2,2)ju Unif −  and

~ ( 4 3,1 4)jv N − ; (1)
j jX u= , 2 1, ,j p p= + L , 100p = . 

We compared JDINAC with several existing state-of-the-art methods 
under the aforementioned 4 scenarios in differential network analysis 
and classification. 

Differential network 
We compare the performance of JDINAC in terms of differential 
network estimation with DiffCorr (Fukushima, 2013), DEDN (Zhao et 

al., 2014) and cross-product penalized logistic regression (cPLR). The 
cPLR is defined as 

0
1

logit( )
p p

ij i j
i j i

Y x xβ β
= >

= +∑∑ . 

The 1L penalty function was used to optimize the parameters, which is 
the same for JDINAC. Parameters 0ijβ ≠ indicate differential 
dependency patterns between two groups. 
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True discovery rate (TDR; Precision), true positive rate (TPR; Recall), 
and true negative rate (TNR) are used to evaluate the performance of 
different methods. TDR, TPR and TNR are defined as follows, 

ˆ( 0)iji j
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I δ
≠

=
≠∑

, 
( 0)iji j

TP
TPR

I δ
≠

=
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, 
( 0)iji j
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TNR

I δ
≠

=
=∑

, 

where TP and TN are the numbers of true positives and true negatives 

respectively, which are defined as ˆ( 0)ij iji j
TP I δ δ

≠
= ≠∑ , 

ˆ{ ( 0) ( 0)}ij iji j
TN I Iδ δ

≠
= = =∑ �  respectively. ( )ij p pδ × is the differential 

adjacency matrix, 0ijδ ≠ indicate the pair ( , )i jx x are differential 

dependency between two groups; ˆ( )ij p pδ × is the estimated differential 

adjacency matrix. 
Classification: We compare the classification performance of JDINAC 
with Random Forest, Naive Bayes, cPLR and original penalized logistic 
regression (oPLR).The oPLR is defined as 

0 1 1logit( ) p pY x xβ β β= + + +L . 

Similarly, the 1L penalty function was used to optimize the parameters for 
high-dimensional data. Both cPLR and oPLR are Lasso based methods. 

Receiver operating characteristic (ROC) curve and classification 
error are used to assess the accuracy of 4 methods. 

2.2 Application 
Breast Invasive Carcinoma (BRCA) is the most common type of breast 

cancer. This subtype of breast cancer is able to spread to other parts of 
the body through the lymphatic system and bloodstream, which makes 
BRCA potentially a highly lethal killer. Most of the genome-wide 
studies for BRCA focus on identifying differentially expressed genes. 
However, BRCA is largely determined by a number of genes that 
interact in a complex network, rather than a single gene perturbed (gene 
mutation, expression, and methylation etc.). A key but inadequately 
addressed issue is how to identify the underlying molecular interaction 
mechanisms. The TCGA BRCA study include 1098 patients, along with 

their matched mRNA, copy number, methylation and microRNA data. 
The RNASeq Version 2 expression data and clinical data were 
downloaded from TCGA through TCGA-Assembler (Zhu et al., 2014). 
In this study, we select 114 patients who have both tumor and matched 
normal samples as our training subjects. The proposed method was 
applied to identify differential patterns of network activation between the 
tumor group and the control group. We focus on the 397 genes listed in 
the cancer pathway (hsa05200) of KEGG as our candidate gene sets. 
After filtering those genes which include more than 30% of zero gene 

expression values in the training data, we have373 genes as our final 
candidate genes. To evaluate the performances of classification, we 
randomly choose 50 of 114 individuals in each group as our test data set. 
More detailed data description and processing is provided in 
Supplementary. 

3 Results 
3.1 Simulation 
We calculate the TDR, TPR and TNR of identifying the differential 
network that corresponds to a given threshold by varying thresholds from 
1 to 20 (number of random split was set to be 20 in the Step 4). We 
average those measures over 100 datasets in each of the 4scenarios.  

Table 1 presents the TPR, TNR and TDR of the JDINAC, DiffCorr, 
DEDN and cPLR under different scenarios. It shows that JDINAC 
significantly outperforms all the other 3 methods. Although DiffCorr was 

set to control the false discovery rate (FDR) less than 0.1, the FDR 
tended to be significantly inflated. In particular, JDINAC performs quite 

well in scenario 4. The TDR, TPR and TNR of JDINAC are close to 1, 
but the TDR and TPR of the other 3 methods are close to 0. It indicates 
that JDINAC can indeed capture the perturbation of nonlinear 
dependence in the network. 

Table 1. The TPR, TNR and TDR of different methods. (average of 100 

replications, %), The best performance is highlighted in bold. 

Scenario 
JDINACa  DiffCorrb  DEDN  cPLR 

TDR TPR TNR  TDR TPR TNR  TDR TPR TNR  TDR TPR TNR 

1 93.7 81.6 99.9 
 

81.3 100 99.8 
 

33.5 96.7 99 
 

19.8 64.9 97.3 

2 95.6 74.5 99.9 
 

85 100 99.7 
 

16.5 89.1 94.3 
 

25.6 49.8 97.1 

3 88.3 69.5 99.3 
 

7.5 0.2 99.8 
 

2.1 10.1 81.6 
 

53.6 23.6 98.1 

4 99.9 99.8 100  3.8 0.4 99.9  5 0.2 100  0.7 0.3 99.8 

a.Pair ( , )i jx x was taken as differential edge in the network for JDINAC, when the 

differential dependency weight 4ijw ≥ . 

b.Set to control the false discovery rate equal to 0.1. 

Figure 3 illustrates the precision-recall curve of JDINAC under 

different scenarios. The JDINAC has high precision-recall curve in all 
scenarios. 

 
Fig. 3. Precision-recall curve for JDINAC for differential network analysis under scenario 

1 (a), scenario 2 (b), scenario 3 (c), scenario 4 (d). The differential dependency weights

ijw were used as the differential adjacency matrix, ˆ( ) ( )ij p p ijI w tδ × = ≥ , 1, ,20t = L . 

The average ROC curves over 100 replications for the classification 
using 5 methods under different scenarios (Figure 4) show that JDINAC 
performs the best among the 5 methods. The fractions of votes were used 
as the continuous predictions for RF models. After getting the 
continuous prediction, we used 0.5 as the cutoff of prediction to obtain 

the classification errors (Table 2). JDINAC is much more accurate than 
other methods. 
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Fig. 4. ROC curves of 5 methods for the classification under different scenarios. The 

asterisk indicates the location where the cutoff of prediction was set to 0.5. 

Table 2. Average classification errors (%). Standard errors are in the 

parentheses. The best performance is highlighted as bold. 

Scenario JDINAC RF NB cPLR oPLR 

1 12.3 (1.4) 49.7 (1.9) 40.4 (2.2) 14.5 (1.6) 50.1 (1.0) 

2 6.5 (1.2) 29.6 (2.8) 39.5 (2.1) 23.4 (2.0) 49.9 (1.4) 

3 7.0 (1.0) 6.6 (1.1) 8.3 (1.2) 26.1 (1.6) 49.8 (1.5) 

4 0.1 (0.1) 3.4 (1.3) 40.7 (2.1) 50.0 (1.4) 50.1 (1.3) 

3.2 Application 
Figure 5 depicts the differential network estimated by JDINAC, cPLR, 
RF, NB and oPLR. Only genes connected with at least one other gene 
were included in the figure. The top 10 differential dependency pairs 
identified by JDINAC ordered by weight are shown in Table 3. Figure 6 

presents the Venn diagram for the edges in the differential networks 
identified by different methods DiffCorr, cPLR, and DEDN. There are 
few overlaps of predicted differential interactions (edges in the network) 
among these methods. Thus, JDINAC may identify complementary 
information to the existing methods. The overlapped edges between 
JDINAC and DiffCorr, JDINAC and cPLR, and DiffCorr and cPLRare 
shown in Supplementary Table S1. 

No gold standard is available for evaluating differential network 
analysis in the real dataset since the true underlying dependence 

relationships are unknown. Therefore, we can no longer study the 
performance of JDINAC in terms of TDR, TPR and TNR in the real data 
analysis. Supplementary Table S2 presents the hub genes and the 
corresponding number of neighbor genes identified by JDINAC. The hub 
genes are the ones that have at least 3 neighbor genes in the differential 
networks. 

Next, we study the classification performances of methods JDINAC, 
RF, NB, cPLR and oPLR.The classification errors are shown in Table 4. 
The classification accuracy of JDINAC is the same with oPLR that uses 

single genes as features, but better than RF, NB and cPLR, all of which 
use the pair of genes for the classification The low error rate of JDINAC 

implies that the identified differential network could be biological 
meaningful to distinguish the disease state with the normal one. 
 

 
Fig. 5. The differential network of cancer pathway between BRCA tumor samples 

and controls. An edge presented in the differential network means the dependency of 

corresponding pair genes is different between two condition-specific groups. The red 

nodes stand for hub genes. (a) Differential network estimated by JDINAC; The orange 

edges indicate the top 10 differential dependency pairs. (b) Differential network estimated 

by DiffCorr; (c) Differential network estimated by DEDN; (d) Differential network 

estimated by cPLR. 

Table 3. Top 10 differential dependency pairs identified by JDINAC. 

Gene 1 Gene 2 1,2w    Gene 1 Gene 2 1,2w  

GNG11 F2R (PAR1) 18 LAMA3 ADCY4 12 

FN1 FGF1 17 EGFR AR 10 

LAMB3 FGF2 17 DAPK2 ARNT2 10 

TPM3 RAC3 17 FGF2 ARNT2 10 

FGF1 ADCY4 13 
  

LAMC2 CBLC 10 

 

 
Fig. 6. Summary of the number of edges in the differential networks for the 4 

methods. 

Table 4. Classification errors on application test data set (%). 

Dataset JDINAC RF NB cPLR oPLR 

BRCA 1 19 2 17 1 

4 Discussion 
A complex disease phenotype (e.g. cancer) is rarely a consequence of an 
abnormality in a single gene, but reflects various pathobiological 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/099234doi: bioRxiv preprint 

https://doi.org/10.1101/099234
http://creativecommons.org/licenses/by-nc-nd/4.0/


J.Ji et al. 

 

processes that interact in a network (Barabasi et al., 2011). Network 
comparison or differential network analysis has become an important 
means of revealing the underlying mechanism of pathogenesis. The 
identified differential interaction patterns between two group-specific 
biological networks can be taken as candidate biomarkers, and have 

extensive biomedical and clinical applications (Ji et al., 2015, 2016; 
Laenen et al., 2013; Yang et al., 2013). Although numerous differential 
network analysis methods (Fukushima, 2013; Ha et al., 2015; Watson, 
2006; Yates and Mukhopadhyay, 2013; Zhao et al., 2014) have been 
proposed, most of the methods rely on marginal or partial correlation to 
measure the strength of connection between pairs of nodes in a network. 
They usually cannot capture the nonlinear relationship among genes, 
which could be ubiquitous in real applications. 

We propose a joint kernel density based method, JDINAC, for 

identifying differential interaction patterns of networks between 
condition-specific groups and conducting discriminant analysis 
simultaneously. A multiple splitting and prediction averaging procedure 
were employed in the algorithm of JDINAC. It can not only make the 
approach more robust and accurate, but also make more efficient use of 
limited data (Fan et al., 2016). Moreover, the nonparametric kernel 
method was used to estimate the joint density, which does not require 
any conditions on the distribution of the data; this also makes JDINAC 
more robust and has the ability to capture the nonlinear relationship 

among genes. Extensive simulations were conducted to assess the 
performances of differential network analysis and classification accuracy. 
It indicated that JDINAC has high reliability (Figure 2) and significantly 
outperforms other state-of-the-art methods, DiffCorr, DEDN and cPLR, 
especially in scenarios 3 and 4 for the differential network analysis 
(Table 1). One advantage for JDINAC is that it can achieve classification 
simultaneously, making it more attractive in practical applications. 
Figure 3 and table 2 further highlighted that JDINAC is much more 
accurate in classification than other methods. 

JDINAC was applied to BRCA dataset, the differential network was 
estimated and several hub genes were found. We found there are 
experimental support for the top ranked pairs by JDINAC. For example, 
F2R (PAR1) is a G protein coupled receptor (GPCR) that binds and 
regulates G-protein. It contributes to tumor progression and metastasis in 
breast cancer (Shi et al., 2004). Meanwhile, GNG11 is a G-protein, plays 
a role in the transmembrane signaling system. It implies that the 
molecular role of F2R in the breast cancer progression and metastasis 
origins from the altered F2R-GNG11 interaction. In other cases, 

dysregulated pairs may not have direct physical interactions, but strong 
functional associations. The matrix form of fibronectin (FN1) is believed 
to support cell adhesion, tumor growth, and inflammation. Fibroblast 
growth factors (FGF1, FGF2) are important factors regulating 
expression of FN1 and LAMB3 (Kashpur et al., 2013; Tang et al., 2007). 
RAC3 is a GTPase which is related to the cell growth and the activation 
of protein kinases. RacGTPase activity and paxillin phosphorylation are 
elevated in cells from the TPM3tropomyosin gene deleted mice(Lees et 

al., 2013).  

FGF1and TGFB3 have the largest number of neighbor genes in the 
differential networks of BRCA data. FGF1 plays an important role in a 
variety of biological processes involved in embryonic development, cell 
growth and differentiation, morphogenesis, tumor growth and invasion 
(Zhou et al., 2011). The expression of FGF1 is dysregulated in breast 
cancer and contributes to the proliferation of breast cancer 
cells(Yoshimura et al., 1998; Zhou et al., 2011). Laverty et al. (Ghellal 
et al., 2000) reviewed numerous literatures and reported TGFB3 is 
associated with the progression of breast cancer. PDGFA is confirmed to 

be one of the progesterone target genes on breast cancer cells (Soares et 

al., 2007). FOXO1 contributes to multiple physiological and pathological 
processes including cancer, and targeting of FOXO1 by microRNAs may 
promote the transformation or maintenance of an oncogenic state in 
breast cancer cells(Fu and Tindall, 2008; Guttilla and White, 2009). 
Moreover, FOXO1 is regulated by AKT (Tzivion et al., 2011), and 

PDGFA is the upstream gene of AKT. Indeed, we identified an edge 
between PDGFA and FOXO1 (Figure 4a). Wendt M K et al. (2015) 
demonstrated that EGFR is a critical gene in primary breast cancer 
initiation, growth and dissemination.FZD7 plays a critical role in cell 
proliferation in triple negative breast cancer (TNBC) via Wnt signaling 
pathway and was considered to be a potential therapeutic target for 
TNBC (Yang et al., 2011). An edge between FZD7 and CTBR2 was 
identified by JDINAC (Figure 4a). Actually, CTBP2 is a key gene in 
Wnt pathway. The identified differential network provides new insight 

into the underlying genetic mechanisms of BRCA, and testable 
hypothesis for further experimental validations. The differential 
interaction patterns and hub genes may serve as biomarkers for early 
diagnosis or drug targets.  

Although JDINAC can in principle be applied to genome-wide data 
sets, such application may be limited due to high computational costs. In 
this study, we focus on identifying the differential interaction patterns 
between genes in a given pathway (or a candidate gene set). JDINAC 
can be directly used in most cases, since more than 95% pathways from 

KEGG database contain less than 150 genes. Under the scenario when 
the pathway is too large or in the case of genome-wide study, prior 
knowledge or screening method can be used to shrink the candidate gene 
pair numbers before applying JDINAC. Although the proposed JDINAC 
method was applied to gene network differential network analysis in this 
paper, it can be used to incorporate other biological networks, such as 
metabolic network and brain functional connectivity network. It can also 
be generalized to identify of between pathway interactions. 

The freely available JDINAC software is available as R script at 

https://github.com/jijiadong/JDINAC. 
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