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SUMMARY 

Across the domains of spatial navigation and episodic memory, the hippocampus is 

thought to play a critical role in disambiguating (pattern separating) representations of 

overlapping events. However, the mechanisms underlying hippocampal pattern 

separation are not fully understood. Here, using a naturalistic route-learning paradigm 

and spatiotemporal pattern analysis of human fMRI data, we found that hippocampal 

representations of overlapping routes gradually diverged with learning to the point that 

they became less similar than representations of non-overlapping events. This 

representational ‘reversal’ of the objective route similarity (a) was selective to the 

hippocampus, (b) only occurred for the specific route segments that were shared across 

routes, and (c) was predicted by the degree to which individual hippocampal voxels were 

initially shared across route representations. These findings indicate that event overlap 

triggers a repulsion of hippocampal representations—a finding that provides critical 

mechanistic insight into how and why hippocampal representations become separated. 
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INTRODUCTION 

Distinct experiences often contain overlapping elements, creating the potential 

for memory interference. For example, a single location (e.g., a living room) may be the 

site of many different experiences and corresponding memories. The hippocampus is 

widely thought to play a critical role in coding overlapping events such that interference 

is minimized. Compelling evidence for this function comes from intracranial recordings in 

rodents during spatial navigation. For example, when rodents alternate between left- and 

right-hand turns in a T-maze, cells within the hippocampus differentially fire during the 

central stem (the overlapping path), according to whether the current route is a ‘right-

turn’ or ‘left-turn’ route (Wood et al., 2000; Frank et al., 2000). Likewise, hippocampal 

place fields may completely remap with contextual changes in a rodent’s environment 

(Bostock et al., 1991; Colgin et al., 2008). In human studies of episodic memory, fMRI 

evidence indicates that visual stimuli that are shared across multiple event sequences 

are distinctly coded in the hippocampus according to the specific sequence to which they 

belong (Hsieh et al., 2014). While these studies and others have led to general 

agreement that the hippocampus forms distinct codes for overlapping experiences 

(Favila et al., 2016; Chadwick et al., 2010; Ginther et al., 2011; Agster et al., 2002; 

McKenzie et al., 2014; Brown et al., 2010; Kumaran and Maguire, 2006; Gilbert et al., 

2001; Schlichting et al., 2015; Grieves et al., 2016; Kyle et al., 2015; LaRocque et al., 

2013) the factors that trigger divergence of hippocampal representations are not fully 

understood. 

The formation of distinct hippocampal representations is traditionally thought to 

be a result of sparse coding within the hippocampus (O’Reilly and McClelland, 1994; 

O’Reilly and Rudy, 2001; Marr, 1971; Leutgeb et al., 2007; McHugh et al., 2007; Bakker 

et al., 2008; Yassa and Stark, 2011; Treves and Rolls, 1994; McClelland and Goddard, 

1996; GoodSmith et al., 2017). Although there are not enough neurons in the 

hippocampus to entirely avoid representational overlap, sparse coding ensures that 

similar experiences are less likely to share neural units, thereby resulting in 

orthogonalized representations. While this coding property of the hippocampus may play 

a critical role in reducing overlap during initial encoding, it is unlikely to provide a 

complete account of how hippocampal representations become distinct. In particular, 

overlap among hippocampal representations also changes with experience, suggesting 

learning-related factors that contribute to divergence. For example hippocampal 

remapping in rodents may emerge over the course of learning (Lever et al., 2002; 
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Bostock et al., 1991), and even the sensitivity of stable hippocampal place fields can be 

tuned by experience (Mehta et al., 2000). Similarly, experience-dependent divergence of 

hippocampal activity patterns has been observed in human fMRI data (Favila et al., 

2016; Schlichting et al., 2015; Schapiro et al., 2012; Kim et al., 2017). Computational 

models suggest that one factor that drives learning-related divergence of hippocampal 

representations is competition (Norman et al., 2006; Norman et al., 2007; Hulbert and 

Norman, 2014; Kim et al., 2017). That is, when activity patterns overlap–which may 

reflect residual overlap following initial orthogonalization–this overlap creates 

competition during learning that the hippocampus ‘solves’ by reducing similarity among 

representations. This perspective makes a critical prediction: that overlapping 

representations should systematically move apart from one another over the course of 

learning. Indeed, the representational distance between overlapping events should 

increase to a greater degree than the distance between non-overlapping events. This 

idea, which can be thought of as repulsion, is quite distinct from the idea of 

orthogonalization, because repulsion necessarily requires that an event’s representation 

is directly shaped by a similar (competing) event’s representation. Limited evidence from 

human fMRI studies hints at repulsion among overlapping hippocampal 

representation (Favila et al., 2016; Schlichting et al., 2015; Schapiro et al., 2012) but 

these observations come from episodic memory paradigms with static visual stimuli, 

which contrasts sharply with the spatial learning and navigation paradigms that have 

been used to study disambiguation of hippocampal activity patterns in rodents. 

Here, we sought to bridge evidence from spatial learning paradigms in rodents 

and human episodic memory paradigms by testing, in a pair of human fMRI studies, 

whether overlap among spatial routes triggers an experience-dependent repulsion of 

hippocampal representations. Modeled after canonical rodent T-maze paradigms, we 

used a real-world route-learning paradigm that contained pairs of spatially-overlapping 

routes. However, in contrast to rodent T-maze paradigms, we also included pairs of non-

overlapping routes, so that the similarity of overlapping route representations could be 

expressed relative to the similarity of non-overlapping route representations–a critical 

comparison for testing whether divergence preferentially occurs among overlapping 

routes. fMRI data were collected over the course of an extended learning session, 

allowing for representational similarity to be compared across time. Additionally, 

because our route stimuli were temporally dynamic, we used a novel spatiotemporal 
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pattern analysis method wherein neural representations consisted of patterns of activity 

distributed across space (fMRI voxels) and time. 

Our paradigm allowed us to test several critical predictions. First, if repulsion 

occurs, representations of overlapping events should diverge to a greater degree than 

non-overlapping events—that is, overlapping events should systematically move apart 

from each other. An unambiguous sign of repulsion is if overlapping event 

representations become less similar than non-overlapping event representations—what 

we will refer to as a ‘reversal effect’–as this outcome cannot be explained by 

orthogonalization of neural codes. Recently, we have shown at least one learning 

context in which a reversal effect is observed in the hippocampus (Favila et al., 2016), 

but it remains to be determined whether this seemingly paradoxical result is a general 

property of the hippocampus and whether it applies to the types of spatial learning 

paradigms commonly used in rodent studies. Second, to establish the critical point that 

event overlap itself triggers repulsion of hippocampal representations, it is essential to 

establish that repulsion only occurs for the segments of routes that actually overlap. For 

example, in a T-maze paradigm, repulsion should only occur in the central stem of the 

maze, which is shared across the left- and right-turn routes. To our knowledge, rodent 

studies have not directly compared population-level neural similarity during overlapping 

vs. non-overlapping segments of a maze. Third, repulsion should be relatively slow to 

develop as it is inherently a learning phenomenon (Hulbert and Norman, 2014), which 

contrasts with the idea that coding properties of the hippocampus allow for an immediate 

orthogonalization of activity patterns. Finally, as an extension of the prediction that event 

overlap triggers divergence, we also conducted a novel analysis in which we tested 

whether the degree of learning-related plasticity that an individual hippocampal voxel 

experienced was predicted by initial representational overlap within that voxel. This 

allowed us to determine whether learning-related plasticity preferentially occurs in 

representational units that are shared across events (Norman et al., 2006; Norman et al., 

2007). 
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Figure 1. Route stimuli and experimental design. (A) In the behavioral experiment and fMRI 
Experiment 1, stimuli consisted of 8 routes that traversed the New York University campus. Each 
subject learned 4 routes–either Set 1 (routes 1-4) or Set 2 (routes 5-8). Each set included pairs of 
routes that shared a common path (‘overlapping routes’; e.g. routes 1 and 2) and pairs of routes 
with no common paths (‘non-overlapping routes’; e.g. routes 1 and 3). Individual routes contained 
two segments: Segment 1 refers to the portion of each route that shared a path with another 
route; Segment 2 refers to the unique portion of each route (after the overlapping routes 
diverged). (B) In fMRI Experiment 2 the stimuli again consisted of 8 routes with each subject 
learning 4 of the 8 routes, with the 4 routes per set containing overlapping and non-overlapping 
pairs. However, some of the non-overlapping route pairs in Experiment 2 terminated at the same 
destination (e.g. routes 1 and 3) whereas others terminated at distinct destinations (e.g., routes 1 
and 4). (C) In each Experiment, each trial consisted of a series of rapidly presented pictures that 
lasted a total of 24s. 
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RESULTS 

Behavioral measures of route discrimination 

  In an initial behavioral experiment, subjects studied sets of real-world routes that 

traversed the New York University campus. For each subject, the set of routes included 

pairs that shared a common path before diverging to terminate at distinct destinations 

(‘overlapping routes’) and pairs with no paths in common (‘non-overlapping routes’) 

(Figure 1A). Importantly, each route contributed to both conditions. For example, ‘route 

1’ and ‘route 2’ were overlapping routes, but ‘route 1’ and ‘route 3’ were non-overlapping 

routes (Figure 1C). Each route contained an initial segment that was shared with 

another route (Segment 1), and a later segment, including the destination, that was 

route-specific (Segment 2; Figure 1A). Although the real-world spatial locations of the 

overlapping segments were identical, the pictures for each route were taken at different 

times and therefore differed subtly in terms of pedestrians, vehicles, etc. (Figure 1C and 

Supplementary Videos 1-8). Routes were studied twice per round for 14 rounds. 

Subjects were instructed to learn each route (i.e., the specific path to each destination), 

but were not told the destination at the start of the route. After each study round, 

subjects were shown individual pictures drawn from the routes and were asked to select 

the destination associated with each picture. Of central interest was accuracy for 

pictures drawn from Segment 1 of each route because selecting the correct destination 

for these pictures required discriminating between overlapping routes. Overall, subjects 

selected the correct destination (‘target’) at a higher rate than the destination of the 

overlapping route (‘competitor’) (F1,21 = 43.31, p = 0.000002; Figure 2A). The relative 

rate of target vs. competitor responses also markedly increased across learning rounds 

(F1,21 = 38.11, p = 0.000004; Figures 2B and 2C). 
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Figure 2. Memory performance for Segment 1 pictures in the behavioral experiment. (A) After 
each learning round subjects were shown static images sampled from each route and were asked 
to choose the corresponding destination from a set of four picture options: the target destination, 
the destination associated with the overlapping route (‘competitor’) and two destinations 
associated with non-overlapping routes (‘other’). Subjects were significantly more likely to select 
the target destination than competitor destination (F1,21 = 43.31, p = 0.000002) and significantly 
more likely to chose the competitor destination than other destinations (F1,21 = 41.39, p = 
0.000002), despite the fact that ’other’ options were more prevalent (2/4) than competitor options 
(1/4). (B) The relative percentage of target vs. competitor responses markedly increased over 
learning rounds (F1,21 = 38.11, p = 0.000004). (C) Discrimination between overlapping routes 
(percentage target responses - competitor responses) was significantly greater in the 2nd half of 
learning than the 1st half (t21 = 5.78, p = 0.00001). Error bars reflect 95% confidence intervals. *** 
p < 0.001 
 

 

 

Hippocampal representations of overlapping routes diverge with learning 

We next tested for evidence of hippocampal repulsion of overlapping routes in 

two fMRI studies. The first fMRI study used the same stimuli as the behavioral study 

(Figure 1A). The second fMRI study used a new set of stimuli that again included 

overlapping and non-overlapping routes, but some of the non-overlapping routes 

terminated at a common destination (Figure 1B). Unless otherwise noted, all analyses 

below combine data across experiments and all comparisons of non-overlapping routes 

are restricted to those that terminated at distinct destinations. For Segment 1 of each 

route, we obtained a corresponding neural activity pattern by extracting voxel-wise 

patterns of activity as they unfolded over time. These spatiotemporal activity patterns 

were then correlated for every pair of routes, resulting in a correlation matrix reflecting 

pairwise route similarity (Figure 3A). We considered pattern similarity for (1) repetitions 

of the same route, (2) overlapping routes, and (3) non-overlapping routes. Separate 

correlation matrices were generated for each subject’s hippocampus and for a control 

region: the ‘parahippocampal place area’ (PPA), which is adjacent to the hippocampus 
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and is involved in scene processing and navigation (Figure 3B) (Epstein et al., 1999; 

Epstein, 2008). Because our behavioral experiment indicated that discrimination of 

overlapping routes robustly improved from the 1st to 2nd half of learning (Figure 2C), we 

divided the fMRI data into halves and independently computed pattern similarity 

measures within each of these halves. As in the behavioral experiment, subjects in both 

fMRI experiments were able to successfully discriminate between the overlapping routes 

by the end of learning (see Figure S1). 

Of critical interest, there was a learning-related decrease in pattern similarity 

among overlapping compared to non-overlapping routes, as reflected by an interaction 

between overlap (overlapping/non-overlapping) and learning (1st half/2nd half) (F1,39  = 

13.163, p = 0.0008; Figure 3C). Whereas pattern similarity among overlapping routes 

decreased with learning (F1,39  = 35.21, p = 0.0000006), similarity among non-

overlapping routes did not change (F1,39 = 0.24, p = 0.63; Figure 3E). This dissociation is 

striking when considering that all routes contributed to both the overlapping and non-

overlapping comparisons. Thus, learning did not globally reduce similarity among routes; 

rather, learning specifically reduced similarity between overlapping routes. Moreover, 

overlapping route similarity decreased to the point that in the 2nd half of learning 

overlapping routes were markedly less similar than non-overlapping routes (F1,39 = 

14.20, p = 0.0005; Figure 3F). This result was significant in each of the fMRI 

experiments (ps < .05; see Figure S2 for results separated by experiment). Thus, 

despite the fact that overlapping routes were spatially and visually more similar than 

non-overlapping routes, the hippocampus represented overlapping routes as less similar 

than non-overlapping routes–a result we refer to as a ‘reversal effect’ because the 

representational structure is opposite to the inherent similarity structure of the routes. 

This reversal effect was not present in the 1st half of learning (F1,39 = 1.41, p = 0.24), 

confirming that it developed over learning (See Figure S3 for hippocampal pattern 

similarity computed at a finer time scale). 
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Figure 3. Learning-related changes in hippocampal pattern similarity. (A) Sample similarity 
matrices depicting analyses for Experiments 1 and 2 (routes 5-8 are not shown). For each 
Experiment, Pearson correlations were applied to spatiotemporal activity patterns to measure the 
similarity between: repetitions of the same route (‘same route’), routes with overlapping paths but 
distinct destinations (‘overlapping routes’), and routes with non-overlapping paths and distinct 
destinations (‘non-overlapping routes’). Experiment 2 included an additional comparison of routes 
with non-overlapping paths that ended at a common destination (‘same destination’). All 
correlations were applied to spatiotemporal activity patterns from independent fMRI runs (odd vs. 
even runs). (B) Hippocampus and parrahipocampal place area (PPA) regions of interest for a 
representative subject, displayed on T1 anatomical scan. (C) Within the hippocampus, the 
similarity of overlapping routes relative to same routes decreased across learning (1st vs. 2nd 
half; p = 0.009). Likewise, there was a learning-related decrease in the similarity of overlapping 
routes relative to non-overlapping routes (p = 0.0008). (D) Within PPA, there was no learning-
related change in the relative similarity of overlapping vs. same routes (p = 0.96) nor in the 
relative similarity of overlapping vs. non-overlapping routes (p = 0.13). (E) Within the 
hippocampus, overlapping route similarity decreased across learning (1st vs. 2nd half, p = 
0.0000006) whereas non-overlapping route similarity did not change with learning (p = 0.63). (F) 
In the 2nd half of learning, overlapping route similarity was significantly lower than non-
overlapping route similarity within the hippocampus (p = 0.0005; ‘reversal effect’) whereas in PPA 
the opposite was true: overlapping route similarity was significantly greater than non-overlapping 
route similarity (p = 0.038). Error bars reflect 95% confidence intervals. * p < 0.05, ** p < 0.01, *** 
p < 0.001. 
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Next, we tested whether this reversal effect was selective to the overlapping 

route segments (Segment 1). If the reversal effect was triggered by route overlap, this 

makes a paradoxical prediction: that there should be relatively greater similarity among 

hippocampal activity patterns once the overlapping routes diverged. Indeed, when 

considering data from Segment 2–i.e., after overlapping routes diverged–the reversal 

effect was absent (F1,39 = 0.31, p = 0.58; Figures 4A and 4B). The selectivity of the 

reversal effect to the overlapping portion of the overlapping routes was confirmed by a 

significant overlap x segment interaction (2nd half data only, F1,39 = 4.28, p = 0.045). 

Thus, once overlapping routes diverged–and visual and spatial similarity decreased–

hippocampal activity patterns became relatively more similar, indicating that the reversal 

effect was a reaction to overlap. 

Within PPA, there was no learning-related reduction in the similarity of 

overlapping compared to non-overlapping routes (Segment 1 data only; F1,39 = 2.42, p = 

0.13; Figure 3D). In fact, overlapping route similarity was greater than non-overlapping 

route similarity in the 1st half (F1,39 = 21.01, p = 0.00005) and 2nd half of learning (F1,39 = 

4.63, p = 0.038; Figure 3F; note: this effect differed across Experiments, see Figure 

S2). Thus, the inverted representational structure that was observed in the hippocampus 

by the end of learning was absent in PPA. The dissociation between the representational 

structure in PPA vs. hippocampus at the end of learning was reflected in a highly 

significant region x overlap interaction (F1,39 = 22.18, p = 0.00003). A similar dissociation 

was observed when comparing hippocampus to retrosplenial cortex, another region 

involved in scene-processing and navigation (see Figure S4).  

Although we primarily focus on the comparison of overlapping vs. non-

overlapping routes, the comparison of overlapping vs. same routes is also informative. 

To the extent that hippocampal representations of overlapping routes are distinct, 

overlapping route similarity should be lower than same route similarity (e.g, route 1 vs. 

route 2 similarity should be lower than route 1 vs. route 1 similarity). Indeed, within the 

hippocampus there was a learning-related change such that overlapping route similarity 

decreased relative to same route similarity (F1,39  = 7.59, p = 0.009). Overlapping route 

similarity was significantly lower than same route similarity in the 2nd half of learning 

(F1,39  = 5.61, p = 0.023), but not in the 1st half of learning (F1,39  = 0.85, p = 0.35). Within 

PPA, there was no learning-related change in overlapping vs. same route similarity (F1,39  

= 0.003, p = 0.96). In PPA, the difference between overlapping and same route similarity 
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was not significant in the 1st half (F1,39 = 0.89, p = 0.35) or 2nd half (F1,39 = 0.86, p = 

0.36). 

One way in which hippocampal route representations may diverge with learning 

is through the learned ability to predict the route destinations (Lee et al., 2006; 

Wikenheiser and Redish, 2015; Brown et al., 2016; Davachi and DuBrow, 2015; 

Ólafsdóttir et al., 2015; Hindy et al., 2016). To test this possibility we considered data 

from Experiment 2, which contained pairs of non-overlapping routes that terminated at 

distinct destinations as well as pairs of non-overlapping routes that terminated at the 

same destination. If hippocampal activity patterns reflected navigational goals, 

spatiotemporal pattern similarity from Segment 1 should be greater for non-overlapping 

routes that terminated at the same destination relative to non-overlapping routes that 

terminated at distinct destinations. However, we found no evidence for a difference 

between these conditions (Figure 4C). Specifically, there was no learning related 

increase in spatiotemporal similarity for same destination pairs relative to distinct 

destination pairs (F1,20  = 0.53, p= 0.47), nor was there a difference between same and 

distinct destination pairs when considering second-half data alone (t20 = 0.98, p = 0.34). 

Thus, the observed divergence of hippocampal activity patterns is not readily explained 

by destination coding. 
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Figure 4. Hippocampal spatiotemporal pattern similarity across route segments. (A) In the 2nd 
half of learning, the hippocampal reversal effect (overlapping route similarity < non-overlapping 
route similarity) was significant for Segment 1 (p = 0.0005), but not Segment 2 (p = 0.58) and the 
interaction between overlap and segment was significant (p = 0.045). (B) TR-by-TR comparison 
of spatial pattern similarity for overlapping vs. non-overlapping routes. Spatial patterns analyzed 
at each TR were computed as the average pattern of a sliding 3-TR window. Transition TRs 
reflect time points that included the end of Segment 1 and the beginning of Segment 2. (C) In 
Experiment 2, non-overlapping routes included pairs of routes that terminated at distinct 
destinations as well as pairs that terminated at the same destination. Within Segment 1, there 
was no evidence for a learning-related change in spatiotemporal pattern similarity in the same 
destination condition relative to the distinct destination condition (p = 0.47). When considering the 
2nd half data alone, there was also no difference in similarity between the same and distinct 
destination conditions (p = 0.34). Error bars reflect 95% confidence intervals. * p < 0.05.	

 

 

 

Voxel-Level changes in route similarity  

The preceding results indicate that hippocampal representations of overlapping 

events–as reflected by distributed patterns of activity–diverged with learning, and that 

this divergence was triggered by route overlap. But what factors determined the level of 

plasticity that individual voxels exhibited? On the one hand, the reversal effect potentially 

reflects a global form of plasticity, with all voxels showing a comparable degree of 

learning-related divergence. However, a theoretically important alternative that is 

motivated by our main findings above is that the amount of initial representational 

overlap (within a voxel) determines the degree to which divergence occurs over the 

course of learning (Norman et al., 2006; Norman et al., 2007).  

To test whether voxel-level divergence varied according to initial 

representational overlap, we characterized every voxel in terms of the similarity with 

which it responded to overlapping routes. However, because spatial pattern similarity 

cannot be computed at the level of individual voxels (i.e., a single voxel has no spatial 

pattern), we instead capitalized on the temporal dimension of our stimuli, computing the 
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similarity of each voxel’s timecourse across pairs of routes. We refer to this measure as 

‘timecourse similarity’ (Figure 5A).  Voxels were rank-ordered by 1st-half timecourse 

similarity and binned into groups corresponding to ‘weak,’ ‘moderate,’ or ‘strong’ 

similarity (i.e., the bottom 1/3, middle 1/3, and top 1/3 of similarity values). Importantly, 

this binning was independently repeated for every pair of routes, each voxel in each 

region of interest, and each subject. Performing the analysis in a route-specific manner 

is important because a given voxel may exhibit strong timecourse similarity across one 

pair of routes but weak timecourse similarity across a different pair of routes. 

Timecourse similarity values from the 2nd half of learning were then obtained from these 

voxel bins. This allowed for timecourse similarity values at the end of learning to be 

expressed as a function of timecourse similarity at the beginning of learning. It is 

important to note that we did not measure changes in timecourse similarity from the first 

to second half, as such measures would be distorted by regression to the mean. 

Within the hippocampus, an ANOVA with factors of overlap (overlapping/non-

overlapping) and bin (weak/moderate/strong) revealed a significant overlap x bin 

interaction (F2,78  = 3.19, p = 0.046). This interaction reflected a relatively greater 

difference between overlapping and non-overlapping routes (reversal effect) for voxels 

that exhibited ‘moderate’ timecourse similarity during the 1st-half of learning. Namely, 

the reversal effect was highly significant in the ‘moderate’ bin (F1,39 = 19.17, p = 

0.00009), marginally significant in the ‘weak’ bin (F1,39 = 3.62, p = 0.064), and not 

significant in the ‘strong’ bin (F1,39 = 1.53, p = 0.22). Thus, the reversal effect was not 

consistent across voxels; rather, it was most pronounced among voxels that exhibited 

moderate similarity across overlapping routes at the beginning of learning. Considering 

overlapping routes alone–as opposed to the difference between overlapping and non-

overlapping routes–2nd-half timecourse similarity also significantly varied according to 

1st-half similarity (F2,78  = 4.74, p = 0.012), with the function qualitatively characterized by 

a dip for voxels in the ‘moderate’ bin (Figure 5B). Indeed, adding a quadratic term to a 

mixed-effects regression model that included a linear term significantly improved the 

model fit  (𝜒!= 6.06, p = 0.014), indicating a non-monotonic relationship between 

timecourse similarity at the beginning vs. end of learning. For non-overlapping routes, 

2nd-half timecourse similarity did not vary according to 1st half similarity (F2,78  = 0.28, p 

= 0.76). See Figure S5 for the results of a complimentary Bayesian curve-fitting analysis 

that relates 1st-half timecourse similarity to 2nd-half timecourse similarity. 
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The relationship between 1st and 2nd half timecourse similarity for overlapping 

routes was markedly different in PPA, as reflected by a significant region 

(hippocampus/PPA) x bin interaction (F2,78  = 18.12, p = 0.0000003). A region x bin x 

overlap interaction was marginally significant (F2,78  = 2.95, p = 0.0584). Qualitatively, 

PPA voxels that were moderately shared across overlapping routes in the 1st half of 

learning remained moderately shared in the 2nd half of learning (Figure 5C). 

Collectively, these findings indicate that the hippocampal reversal effect 

preferentially occurred for voxels that were moderately shared at the beginning of 

learning. This suggests a ‘Goldilocks effect,’ wherein intermediate levels of overlap 

produced the strongest amount of learning-related divergence. At a more general level, 

this finding provides unique evidence that initial overlap among hippocampal 

representations is an important determinant of learning-related plasticity. 

 
 
 
 
 

 
 
Figure 5. Voxel-level plasticity. (A) Timecourse similarity was defined as the correlation of a 
single voxel’s temporal pattern of activity across two different routes. For each voxel, timecourse 
similarity was separately computed for the 1st half and 2nd half of learning.  (B,C) Second-half 
timecourse similarity plotted as a function of 1st-half timecourse similarity, separately for the 
hippocampus (B) and PPA (C) and for overlapping (blue) and non-overlapping (orange) routes. 
Within the hippocampus, 2nd-half timecourse similarity was markedly lower for overlapping than 
non-overlapping routes (reversal effect) for voxels that were moderately shared at the beginning 
of learning (p = 0.00009). ~ p < 0.1, *** p < 0.001.  
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DISCUSSION 

Here, across two fMRI studies, we found that hippocampal representations of 

overlapping spatial routes dramatically diverged with learning–to the point that 

overlapping routes were coded as less similar than non-overlapping routes. This 

‘reversal effect’ was clearly a result of learning as it was only evident after subjects 

gained considerable familiarity with the routes and it paralleled behavioral improvement 

in memory-based route discrimination. The result was also selective to the 

hippocampus, with no evidence of a reversal effect in PPA. Finally, using a novel 

analysis approach, we show that the learning-related divergence of hippocampal activity 

patterns was most pronounced for voxels that were moderately shared across 

overlapping routes at the beginning of learning. 

  

Measuring hippocampal disambiguation during human spatial learning 

Although there is substantial evidence of hippocampal disambiguation of 

overlapping events in both human and non-human animals (Favila et al., 2016; 

Chadwick et al., 2010; Ginther et al., 2011; Agster et al., 2002; McKenzie et al., 2014; 

Frank et al., 2000; Kumaran and Maguire, 2006; Gilbert et al., 2001; Schlichting et al., 

2015; Grieves et al., 2016; Kyle et al., 2015), there remains a gap between these two 

literatures as well as ambiguity concerning the underlying mechanisms. In rodent 

studies, hippocampal disambiguation has largely been measured in spatial navigation 

paradigms, with ‘T-maze’ paradigms being a common and elegant way to manipulate 

event overlap (Wood et al., 2000; Frank et al., 2000). In humans, however, most studies 

of hippocampal disambiguation involve static and usually arbitrary visual images with no 

spatial learning component (Favila et al., 2016; Kumaran and Maguire, 2006; Schlichting 

et al., 2015; Hsieh et al., 2014; Bakker et al., 2008; Hulbert and Norman, 2014). The 

present study represents an important step in bridging these literatures in that we 

adapted the canonical rodent T-maze paradigm to a rich and naturalistic human spatial 

learning paradigm. Thus, the present human fMRI study benefited from high ecological 

validity and much closer alignment with the paradigms that have traditionally been used 

to study hippocampal disambiguation in rodents. Because of the temporally dynamic 

nature of our route stimuli, we also measured hippocampal representations using a 

novel spatiotemporal pattern similarity analysis. This data-rich measure captures spatial 
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patterns of activity (population-level codes) while preserving information about the 

temporal order in which these spatial patterns unfolded. 

  Several subtle details of our paradigm—and the analyses we employed—are 

critical for the interpretation of our results. First, our analysis approach specifically 

compared representations of overlapping events to representations of non-overlapping 

events (Favila et al., 2016). This allowed for learning-related changes to be expressed 

relative to a meaningful baseline—a baseline that, to our knowledge, is absent in rodent 

T-maze paradigms. Indeed, the fact that hippocampal representations of visually- and 

spatially-overlapping routes became less similar than routes that contained no spatial 

overlap or visual similarity is not only striking, but it provides essential insight into the 

underlying mechanism (a point we detail below). Second, our design did not involve 

separate sets of routes for the overlapping and non-overlapping comparisons (Kumaran 

and Maguire, 2006; Brown et al., 2010; Hsieh et al., 2014); rather, each route was 

included in each comparison. For example, whereas routes 1 and 2 represent 

overlapping routes, routes 1 and 3 represent non-overlapping routes. As such, any 

observed differences between overlapping and non-overlapping routes cannot be 

attributed to differences between the actual stimuli or to differences in attention, 

familiarity, vigilance, etc. It is also of note that our findings generalized across entirely 

different sets of stimuli (Experiments 1 and 2). Lastly, for our critical comparison of 

overlapping vs. non-overlapping routes, we focused on spatiotemporal activity patterns 

during the overlapping segments of the routes (Segment 1 data)–that is, before the 

overlapping routes diverged. Indeed, once the overlapping routes diverged (Segment 2 

data), the hippocampal reversal effect ‘disappeared’ (Figures 4A and 4B). Thus, 

hippocampal representations of overlapping routes were most dissimilar when routes 

actually overlapped, clearly indicating that the reversal effect was triggered by event 

overlap. 

   

 

Mechanism underlying hippocampal reversal effect 

While there is general agreement that the hippocampus disambiguates 

overlapping event representations—a phenomenon that has been termed ‘pattern 

separation’—there remains considerable debate about how pattern separation is 

achieved, with an emerging perspective that hippocampal pattern separation includes 

multiple computationally distinct mechanisms (Leutgeb et al., 2007; GoodSmith et al., 
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2017). However, the most prominent account is that pattern separation is achieved by 

sparse coding in the hippocampus—particularly within the dentate gyrus (O’Reilly and 

McClelland, 1994; O’Reilly and Rudy, 2001; Marr, 1971; Leutgeb et al., 2007; McHugh et 

al., 2007; Bakker et al., 2008; Yassa and Stark, 2011; Treves and Rolls, 1994; 

McClelland and Goddard, 1996; GoodSmith et al., 2017). With sparse codes, the 

probability of individual neurons being shared across representations is reduced and 

resulting representations are orthogonalized. While our data do not argue against the 

idea that sparse coding allows for orthogonalization, this account fails to explain our 

central findings. In particular, the maximum amount of separation that can be achieved 

by sparse coding is perfect orthogonalization, but the reversal effect we observed 

indicates that ‘over-orthogonalization’ occurred. That is, if every route is orthogonally 

coded, the similarity among overlapping routes will be precisely equal to—but not 

below—the similarity among non-overlapping routes. Thus, the present findings reveal a 

degree of pattern separation that goes beyond the typically assumed theoretical 

maximum. 

An additional important consideration in understanding the observed reversal 

effect is that it emerged with learning. While there are several existing accounts of how 

learning contributes to the divergence of hippocampal activity patterns, most accounts 

again fail to explain the observed reversal effect.  For example, the hippocampus is 

thought to play a critical role in establishing unique contexts for overlapping events 

(Hsieh et al., 2014; McKenzie et al., 2014). However, associating each route with a 

unique context should only reduce global similarity among events and does not explain 

why overlapping routes (which inherently share some contextual elements, such as 

location) would be less similar than non-overlapping routes. Similarly, hippocampal 

activity patterns may reflect predictions about route destinations (Lee et al., 2006; 

Wikenheiser and Redish, 2015; Brown et al., 2016; Davachi and DuBrow, 2015; 

Ólafsdóttir et al., 2015; Hindy et al., 2016), which could explain why hippocampal activity 

patterns diverge with learning, but cannot explain why hippocampal representations of 

overlapping events would diverge to the point of being less similar than non-overlapping 

events. Moreover, we did not observe any evidence of destination coding in the present 

study (Figure 4C), suggesting that, at least in the present study, hippocampal 

representations of the routes reflected information other than predicted destinations. 

  Conceptually, an appealing way to account for the hippocampal reversal effect is 

that route overlap triggered a repulsion of event representations (Norman et al., 2006; 
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Norman et al., 2007; Hulbert and Norman, 2014). From this perspective, co-activation of 

similar memories triggered adaptive changes in hippocampal representations such that 

overlapping memories specifically ‘moved apart’ from one another. By analogy, this 

repulsion is similar to a teacher moving feuding children to opposite corners of a 

classroom in that the goal is to specifically increase the distance between the feuding 

children (as opposed to the distance between all children). Thus, in contrast to 

orthogonalization, where overlapping memories are represented as ‘unique,’ a repulsion 

account holds that overlapping memories are represented as ‘different from one 

another.’ A repulsion account is not only consistent with the observed reversal effect but 

also readily explains the striking and seemingly paradoxical finding that the hippocampal 

reversal effect ‘disappeared’ precisely once routes diverged (Segment 2; Figures 4A 

and 4B). The idea of repulsion among hippocampal representations has been elegantly 

described in biologically plausible computational models of the hippocampus, and the 

mechanism underlying this repulsion has been termed ‘differentiation’ (Hulbert and 

Norman, 2014; Kim et al, 2017). While a limited number of human fMRI studies have 

provided strong hints of differentiation in the hippocampus (Hulbert and Norman, 2014; 

Favila et al., 2016; Schlichting et al., 2015; Schapiro et al., 2012; Kim et al, 2017), the 

present findings provide the strongest and most unambiguous evidence to date that 

hippocampal representations of overlapping events diverge to the point that they are 

less similar than non-overlapping events. 

  Because we measured hippocampal similarly over the course of an extended 

learning paradigm, we were also able to provide insight into the timecourse of these 

representational changes. Importantly, we show that the reversal effect was remarkably 

slow to emerge—with evidence of the reversal effect only emerging after routes had 

been presented approximately 20 times (see Figure S3). However, this slow timecourse 

strongly paralleled the timecourse of behavioral improvements in memory-based 

discrimination of the overlapping routes, as identified in a separate behavioral study 

(Figure 2). The parallel between the timecourse of behavioral improvement and the 

hippocampal reversal effect is consistent with the idea that differentiation is a learning-

related phenomenon (Hulbert and Norman, 2014; Kim et al, 2017) and that 

differentiation is behaviorally relevant (Favila et al., 2016). 

One interesting and potentially surprising aspect of our findings is that during the 

initial stages of learning, hippocampal representations of overlapping routes were 

numerically but not significantly more similar than non-overlapping routes (Figure 3A). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2017. ; https://doi.org/10.1101/099226doi: bioRxiv preprint 

https://doi.org/10.1101/099226


	 19	

On the one hand, this may reflect insensitivity of our measurements to a small but real 

difference. On the other hand, the lack of initial difference between overlapping and non-

overlapping routes may reflect an immediate orthogonalization of route representations 

in the hippocampus (O’Reilly and McClelland, 1994; O’Reilly and Rudy, 2001; Marr, 

1971; Leutgeb et al., 2007; McHugh et al., 2007; Bakker et al., 2008; Yassa and Stark, 

2011; Treves and Rolls, 1994; McClelland and Goddard, 1996; GoodSmith et al., 2017; 

Treves and Rolls, 1994). From this perspective, the slow-acting reversal effect we 

observed may have been driven by any residual representational overlap that remained 

after initial orthogonalization. 

 

Voxel-level plasticity 

  Although several fMRI studies—including the present study—have shown that 

hippocampal activity patterns change with learning, a separate and under-explored 

question is whether there are specific factors that predict the degree to which individual 

voxels will change with learning. Here, motivated by our primary findings that route 

overlap triggered repulsion of hippocampal representations, we considered whether the 

degree of overlap in individual voxel representations predicted the reversal effect (a 

measure of plasticity) that a voxel experienced. In most fMRI studies, this question 

would be difficult to address, because representational overlap, as indexed by spatial 

pattern similarity, cannot be computed at the level of a single voxel. Here, however, 

because of the temporally-dynamic nature of our stimuli, we were able to use timecourse 

similarity to measure the similarity with which a single voxel responded to each pair of 

routes. In this manner, we quantified the strength of the reversal effect within individual 

voxels. Indeed, we observed that the reversal effect was not evenly distributed across 

voxels; rather, there was a ‘sweet spot,’ with the reversal effect disproportionately 

occurring in voxels that exhibited ‘moderate’ degrees of timecourse similarity at the 

beginning of learning. 

Why might the reversal effect disproportionately occur for voxels with moderate 

levels of initial timecourse similarity? To answer this, it is first important to consider what 

timecourse similarity reflects. When a voxel responds similarly to a pair of overlapping 

routes (i.e., high timecourse similarity), this suggests that the voxel–or ensembles of 

neurons within that voxel–are ‘shared’ across those routes’ representations. Critically, it 

is proposed that this form of representational ‘sharing’ is precisely what triggers 

hippocampal differentiation. Namely, if two overlapping events—A and A’—share 
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common representational units (voxels, neurons, or connections between neurons), then 

activation of one event (A) is likely to activate the overlapping event (A’), and vice versa. 

For example, when viewing route 1, it is likely that route 2 (the overlapping route) is 

partially activated, owing to shared representational units (Tanaka et al., 2014; Cai et al., 

2016; Kuhl et al., 2011). When this occurs, the co-activated representation is subject to 

plasticity. Interestingly, and central to interpreting the present findings, it is argued that 

the plasticity that these co-activated units experience is non-monotonically related to 

their level of activation, with moderately activated units subject to weakening, whereas 

strongly activated units are strengthened and weakly activated units do not experience 

plasticity (Norman et al., 2006; Norman et al., 2007; Newman and Norman, 2010; Detre 

et al., 2013; Poppenk and Norman, 2014; Lewis-Peacock and Norman, 2014; Hulbert 

and Norman, 2014). Putatively, this non-monotonic plasticity rule reflects a competition 

between excitation and inhibition, with moderate activation corresponding to inhibition 

‘overcoming’ excitation. From this perspective, the present finding of a non-monotonic 

relationship between initial timecourse similarity and the reversal effect potentially 

reflects the same putative non-monotonic relationship between activation and plasticity. 

That said, our analysis does not constitute a direct test of this model—mainly because 

timecourse similarity is not a direct measurement of co-activation. However, this 

perspective offers a theoretically grounded and biologically plausible interpretation of our 

findings. Regardless of the specific mechanistic account, the present findings provide 

novel evidence that the degree of representational divergence experienced by individual 

hippocampal voxels is determined, at least in part, by the degree of representational 

overlap during initial stages of learning. This finding further strengthens our argument 

that overlap itself triggers a repulsion of hippocampal representations. 

 

 Nature of hippocampal representations 

A final question concerns the nature of information coded for by the 

hippocampus. While the hippocampus is part of a broader network of regions involved in 

spatial navigation and memory (Spiers and Barry, 2015; Burgess et al., 2002; Ekstrom et 

al., 2003; Doeller et al., 2008), regions within this network may code for qualitatively 

different information. Indeed, we found that, by the end of learning, PPA–a cortical 

region adjacent to the hippocampus that has been implicated in coding spatial 

landmarks (Marchette et al., 2015)–exhibited a representational structure that was 

opposite to the representational structure in the hippocampus. Namely, in PPA 
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overlapping routes were more similar than non-overlapping routes, whereas in the 

hippocampus this representational structure was reversed. As far as specific kinds of 

information that the hippocampus may have encoded, our findings do not, as noted 

above, suggest that the hippocampus prospectively coded for route destinations 

(Grieves et al., 2016). Moreover, it is not clear whether hippocampal activity patterns in 

the current study reflected current spatial locations (Miller et al., 2013; Doeller et al., 

2008; Hassabis et al., 2009; Nielson et al., 2015; Ekstrom et al., 2003). Indeed, at first 

pass our findings appear to be at odds with a spatial coding account in that hippocampal 

activity patterns specifically diverged when routes were spatially overlapping. However, 

an intriguing, though speculative, possibility is that route overlap elicited the formation of 

separate spatial reference frames for each route (Kentros et al., 1998; Leutgeb et al., 

2005; Bostock et al., 1991). In other words, hippocampal activity patterns in the present 

study may have reflected spatial codes so long as overlapping routes were represented 

within distinct maps. Alternatively, the hippocampus may have coded for non-spatial 

information that differentiated the overlapping routes (e.g., pedestrians, cars, etc.). 

Although these questions are beyond the scope of the present study, a clear priority in 

future studies is to better characterize how the divergence of hippocampal activity 

patterns corresponds to changes in the information encoded in these patterns. 
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METHODS 

Subjects 

New York University (NYU) students and alumni who were familiar with the NYU 

campus participated in the study. Subjects were restricted to NYU alumni and students 

in order to facilitate route learning and to reduce potential between-subject variance. 

Subjects were between the ages of 18-35, right-handed, native English speakers, had 

normal or corrected-to-normal vision and had no history of neurological disorders. 

Twenty-two subjects participated in the behavioral experiment (15 female; mean age = 

20.77). Two additional subjects’ data were not collected due to technical errors. Twenty 

subjects (13 female; mean age = 22.15) participated in fMRI Experiment 1. Four 

additional subjects were excluded from data analysis - one for falling asleep in the 

scanner, two for technical errors during scanning, and one due to unreliable localizer 

data (see Regions of Interest). Twenty-one subjects (9 female; mean age = 23.17) 

participated in fMRI Experiment 2. One additional subject’s data was excluded from data 

analysis due to excessive head motion and another additional subject was excluded for 

technical errors during scanning. Sample sizes for the fMRI studies were based on a 

similar experiment from our lab (Favila et al., 2016) Informed consent was obtained 

according to procedures approved by the New York University Committee on Activities 

Involving Human Subjects. 

	

Stimuli and Design 

In the behavioral experiment and fMRI Experiment 1 the stimuli consisted of eight 

routes that traversed the NYU campus (Figure 1A). Each route was comprised of a 

series of 98 unique pictures. All pictures were taken at regular intervals (every 10 paces) 

from an egocentric perspective by a researcher walking along the route. All routes 
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started in the same location and made exactly three turns before ending at distinct 

destinations. Critically, the 8 routes consisted of 4 overlapping pairs. Overlapping pairs 

followed the same path for the majority of the route before diverging on the third turn to 

their respective destinations. The pictures for each route were taken at different times 

and therefore the pictures during the overlapping portion of routes were subtly different 

and could be distinguished from one another based on subtle differences in the 

pedestrians, vehicles, lighting, etc. For analysis purposes, routes were divided into pairs 

that shared an overlapping path (‘overlapping routes’; e.g. routes 1 and 2) or took 

distinct paths (‘non-overlapping routes’; e.g. routes 1 and 3). Furthermore, each route 

was divided into two segments: ‘Segment 1’ refers to the segment of each route that 

overlapped with another route and ‘Segment 2’ refers to the route-unique segment of 

each route. The third turn–which marked the boundary between Segments 1 and 2–

occurred at the exact same picture numbers within pairs of overlapping routes (e.g., for 

routes 1 and 2) and varied minimally (between picture numbers 74-77) across sets of 

overlapping pairs (e.g., for routes 1/2 vs. routes 3/4). Likewise, all turns within a pair of 

overlapping routes occurred at identical time points in order to maximize the similarity of 

overlapping routes. There was exactly one overlapping pair that left the starting point in 

each cardinal direction (north, south, east, west). The 8 routes were divided into 2 sets 

(north/south routes and east/west routes). Each subject was assigned one set of routes 

(4 routes total) to learn, with the assignment of route sets alternating subject-by-subject. 

We included 2 sets of routes in order to ensure our results could not be explained by the 

idiosyncrasies of any one route.  

A new set of 8 routes was used in fMRI Experiment 2 (Figure 1B). The routes 

were constructed using the same parameters as the routes used in the behavioral and 

first fMRI experiments, with one key difference. Instead of all routes terminating at 

distinct locations, fMRI Experiment 2 contained pairs of routes that took distinct paths 
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but ended at the same destination. As before, the 8 routes were divided into two sets of 

4 and each set of 4 contained two pairs of overlapping routes. The routes in each set 

could be divided into pairs that (a) shared an overlapping path but terminated at distinct 

destinations (‘overlapping routes’; e.g. routes 1 and 2), (b) had non-overlapping paths 

and terminated at distinct destinations (‘non-overlapping routes’; e.g. routes 1 and 4) or 

(c) had non-overlapping paths but terminated at the same destinations (‘same 

destination’; e.g. routes 1 and 3). Due to geographical constraints, the third turn (i.e. 

when overlapping routes diverged) in this set of routes occurred slightly later (between 

picture numbers 84-86) than in the set used in the behavioral and first fMRI experiments. 

Videos of the overlapping route pairs used in the experiments are available in 

Supplementary Videos 1-8.  

 

Procedure 

Behavioral Experiment 

Route Learning: Subjects completed 14 rounds of route learning, with each route 

presented twice per round in random order. During a route learning trial, pictures from a 

route were presented in rapid succession (220 ms per picture, 10 ms blank screen in 

between pictures). Importantly, subjects were not told the destination of the route prior to 

the trial. Rather, the destination was only revealed at the end of the route, with the final 

picture (the destination) presented for 1690 ms. The destination’s name was also 

displayed above the final picture. Each route learning trial lasted a total of 24s and was 

followed by a 1-s inter-trial interval (ITI) during which a fixation cross was presented. 

Each round also contained two ‘catch’ trials to ensure subjects’ vigilance but were 

excluded from all analyses. For each catch trial, a route began as with a normal trial but 

the presentation stopped at a pre-selected picture number. A cue then appeared above 

the picture either instructing participants to identify (1) the routes’ final destination 
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(destination test) or (2) the direction of the next turn (direction test). During the 3s 

response period the picture and test cue remained on screen with the four destination 

labels (destination test) or left/right labels (direction test) printed below the picture and 

participants selected their response using a keyboard. Catch trials stopped on pictures 

presented between 3-15s after the trial onset and at intervals of 1.5 s (to coincide with 

the TR length in the fMRI experiments; see fMRI Acquisition). The combined duration of 

the two test trials within each round were constrained to equal the duration of a full route 

learning trial (24 seconds). Although each subject completed an equal number of 

destination and direction catch trials throughout the experiment, and each route was 

tested an equal number of times, the assignment of catch trial type to both route number 

and round was randomized so as not to be predictable. That is, within a given round 

there could be 2 destination catch trials, 2 direction catch trials, or 1 of each, and a given 

route could be tested twice via a destination catch trial, twice as a direction catch trial, or 

once as each test. 

	

Inter-Round Picture Test: At the end of each of the 14 route learning rounds, subjects 

were shown 20 static pictures, one at a time, drawn from the routes (5 per route in 

random order) and for each picture subjects were asked to select the corresponding 

destination from a set of four label options. The inter-round picture test was self-paced 

and subjects responded via keyboard. To ensure that the five pictures tested from each 

route in each test round were evenly sampled across positions in the route, each route’s 

95 pictures (excluding the last 3 pictures that contained visuals of the destination) were 

divided into 5 time-bins of 19 pictures. For each inter-round picture test, one picture from 

each time-bin, from each route, was randomly selected to be tested with the constraint 

that a given picture was only tested once throughout the experiment. Responses on the 

test were divided into three groups: (1) ‘target’ if subjects selected the correct 
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destination, (2) ‘competitor’ if subjects selected the overlapping route’s destination, and 

(3) ‘other’ if subjects selected the destination from a non-overlapping route. 

 

Map Test: In order to assess each subject’s knowledge of the routes, subjects also 

completed a map test after finishing all rounds of route learning. For each trial on the 

map test, subjects were cued with a picture of a route’s destination for 4s. A map of the 

NYU campus then appeared on screen and subjects had 8s to click on the spatial 

location of the cued destination using a computer mouse. They were then prompted to 

draw with a pen the route taken to that destination on a paper print out of the campus 

map. Finally, participants completed both the Santa Barbara Sense of Direction Scale 

(SBSOD) and the Questionnaire on Spatial Representation (QSR) to assess their spatial 

acuity and reasoning. Results from the map test and questionnaires are not reported in 

the current study. 

 

fMRI Experiments 1 and 2 

Route Learning: The procedures from the behavioral experiment were slightly modified 

to be suitable for fMRI scanning. In both fMRI experiments, subjects first completed 2 

practice route learning rounds (2 repetitions of each route per round) to familiarize them 

with the routes and task structure. Subjects then entered the scanner and completed an 

additional 14 rounds of route learning. The practice rounds were identical to the scanner 

rounds except that the first practice round did not contain any catch trials. During the 

scanned route learning rounds, the ITI was 6s (fixation cross) to allow for better 

separation of the hemodynamic response. 
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Inter-Round Picture Test: The inter-round picture test used in the fMRI experiments was 

shorter than in the behavioral experiment. In the fMRI version, there were a total of only 

4 trials which contained pictures randomly sampled from the 4 routes. The sampled 

pictures were not constrained to be from different routes. The only constraint was that 

the pictures used in the inter-round picture test were not used in the post-scan memory 

test (described below). Additionally, in the fMRI version of the inter-round picture test 

subjects were shown each picture for a fixed amount of time (2.5 s) and could only 

respond during that time, using an MRI-compatible button box. Because the inter-round 

picture tests in the fMRI experiments only sparsely assessed route learning, these data 

are not reported. These test trials were only included to motivate subjects to learn the 

routes. 

 

Functional Localizer: Following the 14 rounds of route learning subjects completed one 

localizer scan that was used to functionally define regions of interest for the fMRI 

analyses. The localizer scan contained 36 alternating blocks of three image types (12 

blocks per category): faces, scenes (hallways or houses), and objects (cars or guitars). 

Each block lasted a total of 6s and contained 12 greyscale images presented for 500ms 

each. Subjects pressed a button whenever they detected a scrambled image, which 

occurred on half of all blocks (counterbalanced across category). An additional 12 

baseline ‘blocks’ showing a blank grey screen (also 6s each) were randomly 

interspersed with the other blocks. 

 

Post Tests: After exiting the scanner subjects first completed a map test (identical to the 

behavioral experiment). Next, subjects completed an extended picture test which 

included ten pictures drawn from each route (every 10th picture from picture 4 to 94), 

tested in random order. On each trial, the route picture was presented above the set of 
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destination names (4 destination names in Experiment 1 and 2 destination names in 

Experiment 2). Subjects used a computer mouse to click on the destination name 

associated with each picture. This test was self-paced. Finally, subjects completed the 

Santa Barbara Sense of Direction Scale (SBSOD) and the Questionnaire on Spatial 

Representation (QSR). 

 

fMRI Data Analysis 

MRI Acquisition: Scanning was performed on a 3T Siemens Allegra head-only scanner 

at the Center for Brain Imaging at New York University using a Siemens head coil. 

Structural images were collected using a T1-weighted protocol (256 × 256 matrix, 176 1-

mm sagittal slices). Functional images were acquired using a T2* weighted EPI single 

shot sequence containing 26 contiguous axial slices oriented parallel to the long-axis of 

the hippocampus (repetition time = 1.5 s, echo time = 23 ms, flip angle = 77 degrees, 

voxel size = 2 x 2 x 2 mm). The functional images did not cover the entire brain; rather, a 

limited field of view centered on the hippocampus was chosen in order to improve spatial 

resolution of data from the hippocampus. For the route learning scans, the first 6 

volumes (during which time a “Get Ready” screen was presented, followed by a fixation 

cross) were discarded to account for T1 stabilization. For the localizer scan, the first 8 

volumes and last 8 volumes (during which time a fixation cross was presented) were 

discarded. Field map and calibration scans were collected to improve functional-to-

anatomical coregistration. 

	

fMRI Preprocessing: Images were preprocessed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, United Kingdom), FSL (FMRIB’s Software Library, 

Oxford,United Kingdom) and custom Matlab (The MathWorks, Natick, MA) routines. The 

preprocessing procedures included correction for head motion, coregistration of 
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functional to anatomical images (using a registration procedure that aligned both 

functional and anatomical images to a calibration scan), and an unwarping procedure. 

Images from the functional localizer scan were spatially smoothed using a 4-mm full-

width/half-maximum Gaussian kernel. Images from the route learning phase, which were 

used for pattern analyses, were smoothed using a moderate 2-mm full-width/half-

maximum Gaussian kernel in order to improve signal-to-noise ratio. Prior research 

suggests that smoothing does not reduce sensitivity of pattern-based fMRI analyses (Op 

de Beeck, 2010). All analyses were performed in subjects’ native space. 

 

fMRI univariate analysis: To analyze the localizer data, SPM was used to construct a 

general linear model with three regressors of interest corresponding to the three visual 

categories (scenes, faces, objects). These regressors were constructed as boxcar 

functions that onset at the first image of a category block and lasted for the duration of 

the block. Motion, block, and linear drift were modeled as regressors of no interest. All 

regressors were convolved with a canonical double-gamma hemodynamic response 

function. A linear contrast of scenes vs. faces and objects was used to obtain voxelwise 

estimates of scene sensitivity and a linear contrast of faces, scenes, and objects vs. 

baseline was used to obtain voxelwise estimates of visual sensitivity. 

 

Regions of interest: Anlyses were performed using a region of interest (ROI) approach 

targeting the hippocampus, parahippocampal place area (PPA), and retrosplenial cortex 

(RSC). Anatomical hippocompal ROIs were defined using freesurfer’s automated sub-

cortical segmentation procedure. The resultant hippocampal ROIs were then visually 

inspected and manually edited for any inaccuracies before registering them to each 

subject’s functional space. In order to identify voxels with high signal-to-noise ratios and 

to create ROI masks the same size as the PPA and RSC masks (see below), the 
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hippocampal ROI consisted of the top 300 visually-responsive voxels within bilateral 

hippocampus, as determined from the category localizer (contrast of faces, scenes, and 

objects vs. baseline). Although this voxel selection procedure was implemented to 

increase our sensitivity to detect small differences in hippocampal patterns, it is 

important to note that our main findings were not dependent on such selection methods. 

Indeed when no voxel selection was applied within the hippocampus the interaction 

between overlap (overlap/non-overlap) and learning (1st half/2nd half) remained 

significant (F1,39 = 4.75,  p = 0.0354), as did the reversal effect in the 2nd half of learning 

(F1,39 = 7.30, p = 0.0102). 

PPA and RSC were identified using a combination of the category localizer and 

group-based probabilistic scene-selective ROIs identified from previous studies (Julien 

et al., 2012); http://web.mit.edu/bcs/nklab/GSS.shtml). First, the group-based 

probabilistic PPA and RSC masks were registered to each subject’s native space and 

voxels overlapping with the anatomically defined hippocampal masks were removed 

from the PPA/RSC masks to ensure independent ROIs. Then, the top 300 scene-

selective voxels (contrast of scenes vs. faces and objects from the category localizer) 

within PPA and, separately, within RSC, were selected. This method ensured that the 

PPA and RSC ROIs were subject-specific but equal in size (number of voxels) and 

general location across all subjects (Marchette et al., 2015). Note: we chose 300 voxels 

as an a priori threshold for all our ROIs. This number corresponded to roughly the top 

20% of the hippocampal voxels, 30% of the voxels within the group-based PPA mask, 

and 15% of the voxels in the group-based RSC mask. One subject from Experiment 1 

was excluded because the average t value within their PPA ROI was more than two 

standard deviations below the mean PPA response in Experiment 1 (this was the only 

subject with a mean PPA or RSC response that was more than 2 standard deviations 

below the experiment mean); subjective assessment of data from this subject confirmed 
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that there was no well-defined cluster within the group-based PPA mask that selectively 

responded to scenes. 

 

Spatiotemporal pattern similarity: Pattern similarity analyses were performed on ‘raw’ 

(unmodeled) fMRI data. Several additional preprocessing steps were performed prior to 

performing pattern analyses. Functional images were detrended, high-pass filtered (0.01 

Hz), and then z-scored within run. For route learning trials, volumes 3-19 (corresponding 

to 3-27s after stimulus onset) were divided into volumes corresponding to Segment 1 

(i.e. the portion of each route that shared a path with another route) and Segment 2 (i.e. 

the unique portion of each route after overlapping paths diverged). The volume in each 

route corresponding to the transition between Segments 1 and 2 (i.e., the third turn in 

the routes) was discarded from analyses in order to keep Segments 1 and 2 distinct. In 

Experiment 1, Segment 1 occurred within the first 11 volumes and Segment 2 occurred 

within the last 4 volumes. In Experiment 2 the overlapping routes diverged slightly later; 

thus, Segment 1 corresponded to the first 12 volumes Segment 2 corresponded to the 

last 3 volumes. To perform pattern analyses, spatial activity patterns were concatenated 

across volumes of interest so that each route Segment was represented by a 

spatiotemporal pattern of activity whose vector length was equal to the number of voxels 

within an ROI x the number of TRs included in the Segment. 

For each subject and each ROI, we computed pattern similarity scores (Pearson 

correlations) reflecting the representational similarity across each pair of routes. 

Correlations were always performed using data from independent fMRI runs (odd and 

even runs) in order to ensure independence. Thus, for analysis of data from the first half 

of learning, each route’s average spatiotemporal activity pattern was obtained from runs 

1, 3, and 5 (odd runs) and, separately, from runs 2, 4, and 6 (even runs); average ‘odd 

run patterns’ were then correlated with average ‘even run patterns.’ Likewise, for 
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analysis of data from the second half of learning, each route’s average spatiotemporal 

activity pattern was obtained from runs 9, 11, and 13 (odd runs) and, separately, from 

runs 10, 12, and 14 (even runs), and odd and even patterns were correlated. Data from 

runs 7 and 8 were excluded in order to ensure an equal number of odd and even runs 

within each half. Because each subject studied 4 routes, a 4 x 4 correlation matrix was 

generated for each subject (Figure 3A). Before any correlation values were averaged 

within conditions (e.g., overlapping routes), correlation coefficients were z-transformed 

(Fisher’s z). 

 

Timecourse similarity: Timecourse similarity indexed the degree to which individual 

voxels were ‘shared’ across a given pair of routes. To compute timecourse similarity, we 

first obtained route-specific vectors of activation (using Segment 1 data only) for each 

voxel. The length of each timecourse vector was equal to the number of Segment 1 TRs 

(11 in Experiment 1; 12 in Experiment 2). Timecourse vectors were separately averaged 

across odd and even runs within each half (as with the spatiotemporal pattern analyses). 

Average timecourse vectors were then correlated (Pearson correlation) for every pair of 

routes, separately for each learning half (Figure 4B). Resulting correlation coefficients 

were z-transformed (Fisher’s z). 

 

Statistics 

For all behavioral and fMRI analyses we used standard random-effects statistics 

(paired sample t-tests and repeated measures ANOVA). Two-tailed tests were used 

throughout at an alpha threshold of 0.05. Unless otherwise noted, analyses combined 

data across Experiments 1 and 2. For all ANOVAs run on these combined data, 

experiment number was included as a factor. For all of the hippocampal ANOVA effects 

described in the main text, interactions with experiment number were not significant (Ps 
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> 0.2). See Figure S2 for hippocampal and PPA data separated by experiment. Mixed-

effects regression models were used to assess the shape of the function relating 

timecourse similarity measures across experimental halves and were implemented in the 

lme4 package for R (http://lme4.r-forge.r-project.org). All models were constructed with 

random intercepts for each subject. 

 

Data and Code Availability 

Raw data from the experiment is available on OpenFMRI 

(https://openfmri.org/dataset/ds000217) and code to run the analyses are available upon 

request from the first author (avi.chanales@nyu.edu). 
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SUPPLEMENT 

	

 

 

 

 

 

 

 

 

 

Figure S1. Related to Figure 2. Behavioral results from the post-scan picture test in each 
fMRI Experiment. After finishing all 14 learning rounds and the localizer scan subjects exited the 
scanner and completed the picture test. On each trial, subjects were shown a static picture drawn 
from one of the route stimuli (see Methods). Directly below each picture was a set of destination 
names. Subjects were instructed to select the destination name corresponding to the route 
picture. In Experiment 1, each trial had 4 destination options corresponding to: the target 
destination; the overlapping route destination (‘competitor’); and the two non-overlapping route 
destinations (‘other’). In Experiment 2 all of the routes studied by each subject ended in one of 
two possible destinations. Therefore, on each trial, the two destination options corresponded to 
either the target destination or the overlapping route destination (‘competitor’). Analyses were 
restricted to pictures drawn from Segment 1 of each route (i.e., the segments that contained 
overlap) in order to test discrimination of the overlapping routes. In both experiments subjects 
successfully learned to discriminate between the overlapping routes as evidenced by a higher 
percentage of target responses than competitor responses (Experiment 1: t19 = 8.59, p = 
0.00000006; Experiment 2: t20 = 6.44, p= 0.000003). In Experiment 1, subjects were more likely 
to select the competitor destination than one of the ‘other’ destinations (t19 = 11.52, p < 
0.00000001), indicating that route overlap contributed to memory interference. Error bars reflect 
+/- SEM. *** p < 0.001 
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Figure S2. Related to Figure 3. Learning-related changes in spatiotemporal pattern 
similarity (Segment 1 only) for each fMRI Experiment.  (A) In each fMRI Experiment, there 
was a significant learning-related decrease in the similarity of hippocampal representations of 
overlapping routes relative to non-overlapping routes (Experiment 1: F1,19 = 5.99, p = 0.024; 
Experiment 2: F1,20 = 8.02, p = 0.010). Furthermore, the reversal effect (overlapping route 
similarity < non-overlapping route similarity) was significant in the 2nd half of learning for each 
Experiment (Experiment 1: t19 = 3.03, p = 0.007; Experiment 2: t20 = 2.28, p = 0.034). (B) Within 
PPA, the interaction between learning half (1st vs. 2nd) and overlap (overlapping vs. non-
overlapping routes) was not significant in Experiment 1 (F1,19 = 0.45, p = 0.51). In both the 1st and 
2nd halves of learning, overlapping route similarity was significantly greater than non-overlapping 
route similarity (1st-half: t19 = 4.56, p = 0.0002; 2nd-half: t19 = 4.76, p = 0.0001). In Experiment 2, 
however, the interaction between learning half (1st vs. 2nd) and overlap (overlapping vs. non-
overlapping routes) was significant (F1,20 = 5.19, p = 0.034), reflecting a relative decrease in 
overlapping route similarity across learning. Whereas overlapping route similarity was greater 
than non-overlapping route similarity in the 1st half of learning (t20 = 2.27, p = 0.034), there was no 
difference between overlapping and non-overlapping route similarity in the 2nd half of learning 
(t20 = 0.55, p = 0.59). Error bars reflect +/- SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure S3. Related to Figure 3. Hippocampal spatiotemporal pattern similarity (Segment 1 
only) computed every two runs.  Qualitatively, there was no evidence for a reversal effect 
(overlapping route similarity < non-overlapping route similarity) until run 9. However, because 
each run contained only two repetitions of each route, this analysis was under-powered relative to 
the main analyses split by learning half.  
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Figure S4. Related to Figure 3. Comparison of learning-related changes in spatiotemporal 
pattern similarity (Segment 1 only) for hippocampus vs. retrosplenial cortex (RSC). In 
addition to PPA (our primary control region), retrosplenial cortex (RSC) has also been implicated 
in scene processing, spatial navigation, and episodic memory retrieval (Vann et al., 2009; 
Epstein, 2008; Marchette et al., 2014). Within RSC, overlapping route similarity decreased across 
learning, relative to non-overlapping route similarity (F1,39 = 4.45, p = 0.041). In the 1st half of 
learning, overlapping route similarly was significantly greater than non-overlapping route similarity 
(F1,39 = 16.10, p = 0.00026). In the 2nd half, however, there was no difference between 
overlapping and non-overlapping route similarity (F1,39 = 0.11, p = 0.74). Thus, although 
overlapping route similarity decreased relative to non-overlapping route similarity, there was no 
evidence of the reversal effect (overlapping route similarity < non-overlapping route similarity) that 
was observed in the hippocampus. There was also no learning-related changes in overlapping 
route similarity relative to same route similarity (F1,39 = 0.18 , p = 0.67). Overlapping route 
similarity did not differ from same route similarity in either the 1st half (F1,39 = 1.41 , p = 0.24) or 
2nd half of learning (F1,39 = 1.91, p = 0.18). For comparison, data from the hippocampus are 
shown here (identical to Figure 3C). The difference in representational structure across 
hippocampus and RSC was confirmed by a significant interaction between overlap (overlapping 
vs. non-overlapping) and region (hippocampus vs. RSC) within the 2nd half of learning (F1,39 = 
10.23, p = 0.0027). Thus, although RSC patterns did change with learning, the representational 
end-states of learning were qualitatively different across hippocampus and RSC. Error bars 
reflect +/- SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 	
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Figure S5. Related to Figure 5. Bayesian curve-fitting analysis.   To more formally assess the 
non-monotonic relationship between 1st-half and 2nd-half timecourse similarity, we used a 
Bayesian curve-fitting algorithm–the Probablistic Curve Induction and Testing Tooblbox (P-CIT) 
(Detre et al., 2013) that was specifically developed to test for non-monotonic plasticity. Relative to 
quadratic trend analyses, the P-CIT algorithm allows for a more detailed specification of a 
predicted curve shape, by explicitly including a set of curve parameters. In our case, the 
parameters describe the relationship between first-half timecourse similarity (x-axis) and second-
half timecourse similarity (y-axis). We parameterized the predicted curve shape using previously 
described parameters that reflect the prediction of non-monotonic plasticity (Kim et al., 2014). 
Specifically, the predicted curve was defined as one in which the function, when moving from left 
to right, drops below the initial start value and then rises above the start value. The first step of 
the P-CIT algorithm is to estimate a curve shape given the data. To accomplish this, the algorithm 
estimates a probability distribution over possible curves, conditional on the observed data, by 
randomly sampling curve shapes and then assigning each sampled curve an importance weight 
indicating how well the curve’s shape fit the observed data. It then estimates a curve by 
averaging the sampled curves together, weighted by their importance values. The next goal of the 
algorithm is to evaluate the level of evidence in favor of the predicted curve shape. It does so by 
labeling each sample curve as theory consistent (in our case, if it drops below the starting value 
and then rises above the starting value) or inconsistent, and then computes a log Bayes factor 
value that represents the log ratio of evidence in favor of or against the predicted shape (Lewis-
Peacock et al., 2014). Positive log Bayes factor values indicate greater evidence in favor of the 
theory. For this analysis, we re-binned all of the 1st-half timecourse similarity values into 60 bins 
(5 voxels per bin) in order to allow for greater variability in the observed curve shape. This 
analysis used data aggregated across all subjects. (A) The estimated curve was consistent with 
the predicted curve shape (log Bayes factor = 1.51) and explained a significant amount of 
variance in the actual (X2 = 11.13, p = 0.0008). Shaded area reflects the 90% credible interval. 
(B) We next ran a permutation test to estimate the null distribution of log Bayes Factor values. 
Out of 500 permutations, only 2.6% yielded log Bayes factor values that matched or exceeded 
the value obtained from the un-permuted data, indicating that it was unlikely to obtain this level of 
support for the predicted curve shape by chance. Finally, to assess the population-level reliability 
of the non-monotonic curve we ran a bootstrap resampling test in which we iteratively resampled 
data from subjects with replacement and then computed the log Bayes factor value for each 
iteration. Four-hundred and eighty-eight of the 500 bootstrap iterations (97.6%) yielded positive 
log Bayes factor values. Thus, the curve-fitting analyses provided additional evidence for a non-
monotonic relationship between voxel overlap at the beginning vs. end of learning: that is, 
hippocampal voxels that were ‘moderately shared’ across overlapping routes at the beginning of 
learning were the ‘least shared’ by the end of learning. 
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