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 2

Abstract 41 

 Humans perform saccadic eye movements two to three times per second. When doing so, the 42 

nervous system strongly suppresses sensory feedback for extended periods of time in comparison with 43 

the movement time. Why does the brain discard so much visual information? Here we suggest that 44 

perceptual suppression may arise from efficient sensorimotor computations, assuming that perception 45 

and control are fundamentally linked. More precisely, we show that a Bayesian estimator should reduce 46 

the weight of sensory information around the time of saccades, as a result of signal dependent noise and 47 

of sensorimotor delays. Such reduction parallels the behavioral suppression occurring prior to and during 48 

saccades, and the reduction in neural responses to visual stimuli observed across the visual hierarchy. 49 

We suggest that saccadic suppression originates from efficient sensorimotor processing, indicating that 50 

the brain shares neural resources for perception and control.   51 
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Introduction 52 

 People skillfully combine acquired knowledge, and sensory feedback, a combination that is 53 

typically modeled using Bayesian statistics 
1,2

. This framework effectively captures behavior in numerous 54 

tasks broadly corresponding to perceptual decision-making 
3-7

, or online movement control 
8-11

. Although 55 

perceptual decision-making and sensorimotor control are often considered different phenomena, they 56 

cannot really be dissociated in the real world – we need to use the same brain for movement and 57 

perception 
12,13

. Perceptual decision-making and sensorimotor behaviors may thus be linked. 58 

A salient case of crosstalk between perception and sensorimotor behavior is saccadic 59 

suppression: visual acuity is reduced around the time of a saccade. It is often assumed that this 60 

mechanism maintains stable perception of our surroundings 
14

. However, the behavioral and neural 61 

dynamics of saccadic suppression are difficult to explain if it were purely related to compensating for 62 

movement-related effects.  63 

Indeed, previous work has shown that saccadic suppression is controlled centrally, and typically 64 

lasts for >100ms even for saccadic movements of ~50ms 
15

. Furthermore, simulating the displacement of 65 

the retinal image without a saccade does not elicit similar suppression as during real saccades 
16,17

. As 66 

well, the reduction of visual acuity was reported to selectively impact the neural pathways contributing 67 

to motion perception (i.e., the magnocellular stream), without complete suppression 
18

, while leaving 68 

information with high frequency contents or color unaffected 
19,20

. It is unclear why maintaining 69 

perceptual stability would require such a long, powerful, and selective suppression of sensory feedback, 70 

if it were purely related to perception, and independent of motor control (Fig. 1, separate resources 71 

hypothesis, H1). After all, there is a price to be paid to discard so much sensory information for some 72 

100ms. Thus, saccadic suppression is a complex phenomenon, for which a meaningful function has not 73 

been clearly identified.  74 
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Here we phrase this problem as a problem of shared resources – the same neural hardware is 75 

used for sensorimotor tasks and perceptual decision-making (Fig. 1, shared resources, H2). Formulating 76 

this problem in the framework of Bayesian estimation, we show theoretically that several features of 77 

saccadic suppression are expected if the brain uses the same posterior beliefs about the state of the eye 78 

for perception and control. Our model shows that uncertainty about the instantaneous state of the eye 79 

should increase with motor commands as a result of signal-dependent noise and of sensorimotor delays, 80 

making delayed sensory information less reliable around the time of movement. In an optimal 81 

estimation framework, this gives lower weights to sensory inputs when we move. Our study thus shows 82 

how sensorimotor control can give rise to sensory suppression in an efficient brain, provided that neural 83 

resources are shared between perception and control.  84 
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Results 85 

An optimal control model of eye movements 86 

 If we want to explore the relationship between saccadic suppression and control we need to 87 

model the underlying system. First, the nature of the representation matters: although saccades are 88 

often simplistically viewed as ballistic (or open-loop) movements, these movements are monitored 89 

online through the corollary discharge 
21-25

. Second, sensory feedback matters: we are not “blind” during 90 

saccades. There is no peripheral interruption of sensory inflow, and information about specific 91 

spatiotemporal frequency or color is still good 
19,26

. Moreover, target jumps during long saccades can 92 

influence movement 
27,28

. We should thus model saccades as driven by closed-loop control (Fig. 2a).  93 

To describe saccades in the context of closed loop control, we model a controller that takes the 94 

sensory feedback and the corollary discharge as input, and outputs motor commands. We employ a 95 

Linear-Quadratic-Gaussian (LQG) controller, which can deal with noise both in sensory feedback and 96 

control signals. As model for the oculomotor plant we use a second order model (see Methods). This 97 

explicit model of saccadic control allows us to derive predictions of eye movement behaviors and gives 98 

us a control process that we can relate to saccadic suppression.  99 

 The important feature of this control design in the context of this paper is its state estimator. The 100 

control of saccadic eye movements relies on the corollary discharges as well as on sensory feedback, 101 

which jointly allow state estimation. This state estimator has two main components. The first is a 102 

forward model that dynamically updates the current estimate based on the corollary discharge (Fig. 2a, 103 

bottom: Forward Model). The output is a prior estimate of the next state at the next step. The second 104 

component is the sensory extrapolation, which combines the delayed sensory feedback with the 105 

corollary discharge to estimate the current state (Fig. 2a: Sensory Extrapolation, red). This sensory 106 

extrapolation is critical for the behavior of the model.  107 
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The presence of sensory extrapolation is supported by previous studies showing that error 108 

signals used to generate saccades depend on an estimate of the current state of the eye or of the target 109 

29-33
, which clearly requires extrapolation of sensory feedback. Indeed, because the system only has 110 

access to the delayed feedback, this feedback must be extrapolated prior to compare it with the one-111 

step prediction, or prior. This operation does not appear explicitly in standard control models in which 112 

sensorimotor delays were considered
10,11,34,35

, because these previous studies used system 113 

augmentation, and the sensory extrapolation in this case falls out of the block-structure of the model. 114 

However, this component is necessary, and ignoring it can lead to instability 
35

. In the present model, this 115 

sensory extrapolation is performed explicitly (Eqn. 5), which also allows incorporating the impact of 116 

signal-dependent noise in the extrapolation (see also Methods). The model can then correct the one step 117 

prediction, weighting the difference between feedback and expected feedback optimally (Fig. 2a, ���� is 118 

the Kalman gain). 119 

 120 

Saccades and smooth pursuit 121 

The first behavior that our model must describe is a saccade. The model reproduces stereotyped, 122 

step-like trajectory (Fig. 2b, top), like those found during real saccades. Moreover, the associated 123 

commands presents with a typical wide agonist burst, followed by short and sharper antagonist activity 124 

that stabilizes the eye at the goal target (Fig. 2b, bottom). This pattern of control, shaped by the fast time 125 

constants of the oculomotor plant, is compatible with the pattern of burst neurons that generate 126 

saccades 
21

. Thus the model replicates both behavioral and physiological aspects of saccadic eye 127 

movements. 128 

A second behavior that our model can capture is smooth pursuit. We do not imply that these two 129 

behaviors are supported by the same neural hardware, and the model does not make any prediction 130 

about their neural implementation. Instead, we simply assume that optimal state estimation underlies 131 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


 7

both saccades and pursuit, which is in agreement with the hypothesis that these movements are distinct 132 

outputs of shared sensorimotor computations 
36,37

. The model reproduces typical responses to changes 133 

in target velocity, occurring with or without initial target jump (Fig 2c). When the target starts moving 134 

(velocity jump), position error accumulates over the delay interval, which in turn requires a rapid 135 

compensatory movement to catch up with the target (Fig. 2b, light blue). Although the controller was 136 

not explicitly designed to model the interaction between saccades and pursuit, the catch-up saccade in 137 

Fig. 2b naturally falls out of the simultaneous correction for errors both in position and velocity. In 138 

contrast, when the target jumps backwards at the onset of the velocity jump (Fig. 2c, dark blue), the eye 139 

starts moving smoothly and there is no catch-up saccade 
38

. The model also reproduces corrections 140 

following perturbations applied during movement through internal monitoring of the corollary discharge, 141 

as well as online corrections for target jumps occurring during long saccades (simulations not shown). In 142 

all, the model generates typical trajectories and control commands associated with eye movements, and 143 

reproduces the dynamic estimation of the target resulting from the sensory extrapolation.  144 

 145 

Saccadic Suppression as a Consequence of Optimal Estimation 146 

 Our muscles produce signal dependent noise; the stronger the muscles pull, the more noisy the 147 

state. The phasic activity associated with the agonist burst induces a peak in the variance of the control 148 

signal (Fig. 3a, solid). Thus motor commands produce instantaneous noise, and because of the delay, 149 

there is no way for the nervous system to directly subtract or filter out this noise. As a consequence, the 150 

extrapolation error computed over an interval that includes even a fraction of the control burst has 151 

higher variance. In other words, moving the eye effectively induces visual uncertainty, which can only go 152 

back to baseline after the end of muscle activation. 153 

The time-varying variance induced by control-dependent noise has a direct impact on the 154 

importance of visual inputs, through the Kalman gains (Fig. 3b). As the Kalman gain is inversely 155 
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proportional to the extrapolation variance (see Methods, Eqn. 8), the transient increase in the variance 156 

of sensory extrapolation generates a reduction in the weight of sensory feedback about the eye position. 157 

And indeed, sensory suppression is seen around the time of simulated saccades (Fig. 3b). The period of 158 

suppression is long because high variance period includes the movement time, but also the delay (gray 159 

rectangle in Fig. 3c). The model thus predicts that feedback about stimuli from this time window should 160 

be given less weight in order to optimally estimate the state of the eye. 161 

We can also see related effects in the simulated pursuit task. The presence of a catch up saccade, 162 

even a small one (4deg), is sufficient to evoke a transient increase in extrapolation variance (Fig. 3d-f). 163 

This results in a reduction in the weight of sensory feedback. In contrast, when the eye starts moving 164 

smoothly (Fig. 3f), there is no catch-up saccade needed and the model predicts no visible change in the 165 

weight of sensory feedback. The behavioral finding
39

 that saccades but not smooth pursuit elicit 166 

suppression of sensory feedback, and that the suppression scales with the amplitude of the catch-up 167 

saccade, directly results from this model.  168 

Thus far, we have described how an efficient state estimator should reduce the weight of 169 

sensory feedback around the time of saccade. However, saccadic suppression clearly impacts perception, 170 

and it is not obvious how this phenomenon relates to our model. In the introduction we set up two 171 

hypotheses. Perception and action could be separate, and in this case the Kalman filter for movement 172 

should not affect perception (Fig 1, H1). Alternatively they could share resources, such that a lower 173 

Kalman gain for movement should carry through to a lower weight of vision for any estimate, including 174 

perceptual ones (Fig 1, H2). If H1 is true, then we should find that both neural and behavioral variables 175 

that relate to perception are unaffected by saccades, beyond the limited effect induced by the rapid 176 

change of the retinal image 
16

. If H2 is true, on the other hand, we should find suppression not only of 177 

behavioral variables but also directly in the neural activities associated with sensorimotor control. 178 
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Behaviorally, we can analyze data from perception experiments. Suppression should occur prior 179 

to movement onset, reach a maximum close to movement onset (Fig. 4b), and scale with the movement 180 

amplitude with relatively invariant timing across amplitudes. Interestingly, this goes even down to the 181 

level of microsaccades, inducing partial suppression despite being very small in amplitude 
40

. These 182 

known properties of saccadic suppression are in line with the model prediction (Fig. 4b, black): contrasts 183 

sensitivity is reduced and visual stimuli such as flashes, gratings, or small displacements are less likely to 184 

be accurately perceived 
16,19,20,41-43

. This even happens when the stimuli are chosen so that the eye 185 

movement does not change the retinal image, which is compatible with the model (see the simulated 186 

contrast reduction of a white stripe, Fig. 4a). Finally, although timing is preserved across amplitudes 
15

, 187 

the model predicts that the magnitude of suppression scales with the saccade amplitude as observed 188 

experimentally 
44

. This is a direct consequence of signal-dependent noise. Hence, the behavioral data is 189 

consistent with Hypothesis 2 where sensorimotor behavior and perception share a common neural 190 

resource. 191 

There is an indirect but interesting parallel between the model’s behavior and the selective 192 

suppression of stimuli with low frequency contents 
19,20

. The model predicts that sensory feedback about 193 

the eye position, but not necessarily velocity, should be reduced. The reason is that the expected signal-194 

dependent noise directly impacts the prediction of the forward model about velocity (which is not the 195 

case for position given the current estimates of velocity). Because the predicted and extrapolated 196 

velocities are both uncertain, the best strategy is to give them similar weights. This is interesting because 197 

changes in velocity typically have higher frequency contents than changes in position, thus a selective 198 

suppression of stimuli with low frequency contents may be directly related to the reduction in the weight 199 

of feedback about position, but not velocity.  200 

Neurally, we may also expect changes. One obvious way how changes in Kalman gains could be 201 

implemented is that neurons could just be driven less strongly when there is more uncertainty. This 202 
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should predict reduced firing rates around the time of the saccade. Indeed, a large number of 203 

experimental studies have found such a neural suppression across the hierarchy of visual areas 
45

. It 204 

starts with the lateral geniculate nucleus (LGN) 
46

 and the superior colliculus (SC) 
40

, via V1 
47

, MT, MST, 205 

MSTd 
45,48

, all the way up to area VIP 
48

 (Fig 4b, colored). Interestingly, the timing is very similar across 206 

brain regions, which emerges naturally from the fact that the loop through the outside world with its 207 

delays is the dominating timescale. As predicted by the shared resources model, there is suppression 208 

across the entire visual hierarchy. 209 
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Discussion 210 

We have presented a feedback control model that assumes movement dependent-noise and 211 

delays, and uses state estimation to optimally control eye movements. It is built on the insight that 212 

motor noise is unavoidable and produces sensorimotor uncertainty. It assumes that perception and 213 

movement share common resources and hence a common gain on visual input. Behaviorally, it describes 214 

the dynamics of both smooth pursuit and saccades. Perceptually, it describes the suppression of 215 

sensation around the time of saccades. Neurally, it captures the reduction of neural responses to visual 216 

stimuli presented before or during saccades.  217 

A clear limitation of our model is that it is difficult to test experimentally. However the important 218 

motivation behind this study was that maintaining a stable visual scene, as commonly assumed, does not 219 

explain the phenomenon of saccadic suppression. Indeed, suppression in this case should only occur 220 

when the eye moves, and should not be stronger than the moderate loss in performance associated with 221 

simulated saccades 
16

. All discarded information beyond movement-related effects would otherwise 222 

represent a net loss (up to ~100ms for some brain areas, Fig. 4b). Thus it is clear that saccadic 223 

suppression is either very inefficient, or that maintaining a stable visual scene is just not its only purpose. 224 

We provide an alternative explanation that captures suppression qualitatively in the context of 225 

sensorimotor control. Rather than providing a definite answer to why suppression occurs, we highlight a 226 

plausible explanation and expect that it provide an insightful framework for interpreting data about 227 

visual processing.  228 

In addition to capturing the major aspects of behavioral and neural suppression, our model 229 

explains the previous findings of Watson and colleagues 
41

, who investigated the detection of noisy 230 

gratings in human, and found that the best explanation for saccadic suppression was a stimulus-231 

independent reduction in the response gain. This result is a key aspect of saccadic suppression: the 232 

retinal images do not become intrinsically noisier; instead it is the visual system that responds less to a 233 
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given stimulus. Our model also accounts for this result: by reducing the sensory weight in the Kalman 234 

gain, the controller becomes less sensitive to sensory information. This is due to the uncertainty induced 235 

by the motor commands, which in this case it is clearly independent of the retinal image. The 236 

contribution of our model is to show that this stimulus-independent reduction in response gain may be 237 

rooted in efficient computations about the state of the eye.  238 

 We propose such a mechanism as plausible origin of saccadic suppression, but cannot indicate 239 

how the visual system performs this operation at the level of neural circuits. We draw a qualitative link 240 

between Kalman filtering and the reduction in sensory weight or neural excitability, and thus this link 241 

remains speculative. However, the model does provide hints about what to look for. First, the increase in 242 

extrapolation variance clearly results from convolving the motor-dependent noise with the expected eye 243 

dynamics over the delay interval. Second, this increase is directly proportional to the integrated motor 244 

command. Thus, convolutional networks in the visual system receiving the corollary discharge as input 245 

may easily implement a reduction in the gain of neural responses that achieves statistically optimal 246 

sensory weighting. Any anatomical or functional similarity between these putative neural operations and 247 

neural data may thus provide insight into the circuitry underlying state estimation.  248 

 Besides these limitations, we believe that the model is compelling because it is simple. The 249 

insight behind our model was to consider both sensory delays and noisy commands together, which are 250 

known to play an important role in sensorimotor control 
49,50

. Our approach combines predictive control 251 

(based in this case on finite-spectrum assignment 
51

) and optimal filtering 
52

, to derive a closed-loop 252 

controller that handles delays and noise efficiently. In this framework, the weight of feedback must be 253 

adjusted not due to movement on its own, but to the uncertainty that results from motor noise and 254 

sensory delays. This result, and the diversity of behaviors that the model reproduces, simply fell out of 255 

the simplest instance of stochastic optimal control (LQG).  256 
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In addition to reproducing saccadic suppression, our model succeeded at the difficult task of 257 

controlling fast movements with comparatively long delays, without artificially interrupting the sensory 258 

inflow. Indeed, previous models of saccadic control tend to only consider open-loop controllers 
49

, or 259 

closed-loop control with internal feedback only 
25,53,54

, while it is clear that sensory information remains 260 

available and may influence online control 
27,28

. Here our model predicts that sensory feedback must be 261 

strongly reduced, but not completely suppressed, as observed experimentally 
18

. This is because the 262 

Kalman filter achieves an optimal projection in the probabilistic sense, by making the estimation error 263 

orthogonal to (or statistically uncorrelated with) the estimated state. Thus, the decrease in the Kalman 264 

gain during movement indicates that state information prior to the saccade still carries some information 265 

about the current state, and thus can be exploited to derive optimal estimates. The resulting control law 266 

(see Methods, Eqn. 10) plays the role of a burst generator, and can be easily inserted as such in more 267 

complex models of gaze control.  268 

 Perception and control may thus share a common neural substrate in the visual system. The 269 

question of why the nervous system shares resources remains open. If perceptual and sensorimotor 270 

processes were completely decoupled, we could perform better (Fig. 1, H1). Thus the hypothesis of 271 

shared resources must find a good reason to live (Fig. 1, H2). First it is clear that the corollary discharge is 272 

critical to monitor the consequences of motor commands. Thus, perception is already conditional upon 273 

the ability to integrate extra-retinal signals accurately, both during saccade and pursuit 
24,32,40,55

. Second, 274 

although perception on its own is suboptimal during saccades (we discard a lot of meaningful 275 

information), the shared resources model is clearly cheaper in terms of neural resources. It may thus be 276 

globally optimal if the perceptual loss is not more penalizing than the cost of dedicating more neural 277 

resources to visual processing in general, considering perceptual and control systems together. Using the 278 

same posterior belief for perception and action also ensures self-consistency, in the sense that the same 279 

stimulus is not deemed more or less reliable dependent on how we use it. Self-consistency is known to 280 
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characterize perceptual judgment tasks, where participants make a continuous use of the hypothesis 281 

that they previously committed to 
56

. Our model suggests that similar principles may governs the use of 282 

posterior beliefs about the state of the eye for perception and control, indicating that these functions 283 

emerge from a shared neural substrate. We expect that future work investigate whether this theory is 284 

generally applicable to other examples of active sensory suppression associated with voluntary actions 285 

such as force generation or reaching
57-59

.  286 

  287 
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Methods 288 

Biomechanical model  289 

We consider a second-order, low-pass filter as a biomechanical model of the oculomotor plant. 290 

Based on previous modeling work 
60

 we set the time constants to �� � 224	
 and �� � 13	
. In the 291 

sequel, scalars are represented with lower-case characters, vectors with bold lower-case and matrices 292 

with capitals. Thus the state-space representation of the continuous-time differential equation 293 

representing the eye dynamics was: 294 

(1)   
������� �  
 0 1
�1/������ ���� � ��� ������⁄ � ������+
 0

1/������� �, 295 

where �� is the eye angle, �� is the eye velocity, � is the command input and the dot operator is the time 296 

derivative. The explicit dependency on time was omitted for clarity. This representation takes the form: 297 

(2)   �� � �� � ��, 298 

with � �� ���   ����  representing the state of the system. 299 

The plant model was then augmented with the target position and target velocity, and 300 

transformed into discrete time model to include sensorimotor noise. The discrete-time stochastic 301 

dynamics and the measurement equations are as follows: 302 

(3)   ��� �  �� � ������ � ������ � !"������� � #� , 303 

(4)   %��� � ��� � &�� � '� . 304 

The matrices ��  and ��  form the discrete-time state space representation of the continuous-time 305 

system defined in Eqn. 1, which for a discretization step of  �  corresponds to: �� � (��� , and 306 

�� � )* (�� 
��

�
+ � . The constant ! , 0  is a scaling parameter; "� , #�  and '�  are Gaussian noise 307 

disturbances. The multiplicative noise ("�) is a scalar with zero mean and unit variance, whereas the 308 

additive sources of noise are 4-dimensional random disturbances with zero mean and variance set to 309 

Σ	,�, which will be defined below (recall that the state vector includes that target position and velocity). 310 
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The measurement delay was &� � 100	
 in a agreement with measured and modeled latencies of rapid 311 

saccadic responses to visual stimuli 
61,62

. The subscript � for the random noise disturbances was used to 312 

remind that these series do not have finite instantaneous variation; but they have finite variance over 313 

the discretization interval of  �.  314 

 315 

Closed-loop controller 316 

 Optimal estimation and control of the stochastic system defined in Eqns. 3 and 4 can be derived 317 

in the framework of extended Linear-Quadratic-Gaussian control (LQG), including the effect of control 318 

and state-dependent noise 
63

. However this approach is not necessarily well suited for handling 319 

sensorimotor delays because it requires system augmentation 
35

, and as a consequence the estimator 320 

achieves optimal (probabilistic) projection of the prior estimate onto the delayed state measurement 
52

. 321 

Since we know that the visual system extrapolates sensory information to compute the present state of 322 

the eye or of a moving target 
29-31,64

, we were interested to derive an optimal estimator that explicitly 323 

extrapolates sensory signals, captured in %���, over the interval &� (see also Fig. 2). The key aspect of this 324 

estimator design is that, by taking into account the control function ��
�, � � &� . 
 . �, the variance of 325 

the extrapolated sensory signal is dynamically adjusted as a function of the control-dependent noise (3
rd

 326 

term of Eqn. 3).  327 

 More precisely, we assume that neural processing of sensory signals consists in computing an 328 

estimate of the present state of the eye given the delayed sensory signals as follows:   329 

���|0� � (���%��� � 1 (
��������
� 

�

����

. 

(5) 330 

Using the notation 3��� 4 (��, it is easy to observe that the extrapolation error (Δ�) follows a Gaussian 331 

distribution defined as follows: 332 

(6)  ���|%� � ���� � 6� , 333 
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(7)  6� 7 8�0, 9��, 334 

9� � 3�&��Σ�3�&��� � 1 !��3�� � 
����
���
����3�� � 
�� 

�

����

, 

(8) 335 

where !� 4 !� ���� �⁄  was defined in agreement with the unit-variance Brownian noise disturbance 336 

considered for the stochastic differential equation.  337 

 With these definitions, we can derive an adaptive estimator based on standard Kalman filtering 338 

using the extrapolated state (Eqn. 8) instead of the available state measurement (Eqn. 4). The state 339 

estimate is computed in two steps as follows: 340 

(9)  �:��� �  �� � ���:��� � ������, 341 

(10)  �:�� �  �� �  �:��� �  �� � ����;���|%� � �:���<, 342 

and the Kalman gain, ����, as well as the covariance of the estimated state are updated iteratively 343 

following standard procedures 
52

. 344 

 Observe that the separation principle does not hold because the variances of the one-step 345 

prediction and of 6�  both depend on ��. Thus our approach is valid under the assumption that the 346 

control must not be jointly optimized with the state estimator. Instead of optimizing iteratively the 347 

controller and the state estimator as in the extended LQG framework 
63,65

, we computed the controller 348 

independently based on the heuristic assumption that the separation principle applied, and then 349 

optimized the state estimator defined in Eqns. 9-10 by taking into account the effect of control-350 

dependent noise explicitly (Eqns. 6-8). The controller was thus obtained by solving the LQG control 351 

problem while ignoring the multiplicative noise in Equation 3 as follows: 352 

(10)  ���� �  ;= � ��
�>�����<����

�>�����:���. 353 

 In Eqn. 10, = represents the cost of motor commands, and the matrices >�  are computed offline 354 

following standard procedures 
63,66

.  355 
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We developed this approach to include the extrapolation of sensory data while considering the 356 

control over the delay interval explicitly. Using feedback control based on a predicted state is known as 357 

finite spectrum assignment (FSA), which is germane to a Smith predictor in that it aims at removing the 358 

delay from the feedback loop 
51

. Here, FSA was chosen to reconstruct the predicted state (instead of the 359 

system output as for the Smith predictor), allowing the use of position and velocity estimates in the 360 

control law (Eqn. 10).  361 

 362 

Numerical Simulations 363 

 The only free parameters are ! (the scaling of the signal dependent noise), the covariance 364 

matrices of #�  and '�  (respectively Σ	 and Σ�), and the cost-function used for control. We used the 365 

following values: the constant !  was set to 0.08, Σ	  was 10�� @ ����
�  and Σ�  was 10�� times the 366 

identity matrix of appropriate dimension. These parameters were manually adjusted so that when 367 

adding the signal-dependent term to the variance of the extrapolation error (Eqn. 8), the Kalman gains 368 

converged to steady-state values and the variances of the extrapolated state and of the motor noise 369 

were comparable during fixation. It is clear that changing the noise parameters may influence the results 370 

qualitatively. However the key feature of the adaptive estimator is that the extrapolation variance 371 

increases monotonically with the square of the motor command, which is why the extrapolated 372 

measurement is dynamically reduced during movement. This aspect does not depend on the different 373 

noise parameters. 374 

The cost parameters were adjusted to generate simulated saccades compatible with typical 375 

recordings of eye movements in humans, and these parameters do not impact the results qualitatively. 376 

For saccadic movements, we simulated two fixation periods at the initial (���) and final (���) targets during 377 

which the cost of position error was A��������,� � ��� � �����. The two fixation periods were separated 378 

by the movement time, which was a 50ms window during which the eye was free to move without any 379 
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penalty on the state vector. For the smooth movements in response to velocity jumps, we simulated a 380 

fixation to the target and changed the target state during a simulation run. The cost of motor commands 381 

in all cases was =�����, with = �� 0.01. Finally we used a discretization step of 5ms.  382 

One difficulty is that the extrapolation requires that all state variables, including the target, be 383 

observed independently (Eqn. 4). This is not fully compatible with the visual system, because there is no 384 

measurement of the target state independent of the state of the eye. This limitation could be overcome 385 

by considering another observer that reconstructs the state vector prior to extrapolating the sensory 386 

feedback. Here, instead of considering such additional observer, we injected similar amounts of signal-387 

dependent noise in the sensory feedback about the state of the eye as about the state of the target. This 388 

procedure was chosen for simplicity and captures the intuitive idea that if the eye position is very noisy, 389 

then information about the target location logically shares the same uncertainty.  390 
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Figure Legends 391 

Figure 1. Schematic illustration of two hypotehses. The sensory input, 0�. � is a function of the variable of 392 

interest, �. The posterior distribution of � is represented by B���. The estimate of � is designated by �C, 393 

which can be any statistics related to B��� such as the posterior mean or mode. Finally the control 394 

command is a function of the estimate, represented by ���C�. In the hypothesis of separated resources 395 

(H1), computations of the posterior belief are carried out independently for perception and control. In 396 

this scenario, the uncertainty induced by the control commands does not impact the perceptual 397 

estimate. This possible architecture is optimal in the sense that it would minimize loss of sensory 398 

information. In the hypothesis of shared resource (H2), the computation of the posterior belief about the 399 

state of a variable is shared for perception and control, thus both processes are similarly influenced by 400 

control-dependent noise. Although the first hypothesis is optimal, the second hypothesis is more 401 

efficient in terms of neural resources, and is also self-consistent (see Discussion). 402 

 403 

Figure 2. a. Schematic representation of the control and estimation architectures. We consider a closed 404 

loop controller based on optimal feedback control and state estimation. The dynamics of the eye plant 405 

corresponded to a second order system with time constants taken from the literature (13ms and 224ms). 406 

Bottom: Optimal state estimator based on usual Kalman filtering, and augmented with the extrapolation 407 

of sensory feedback to compensate for sensorimotor delays (Sensory Extrapolation, red box). The 408 

symbolic representation of the signals in blue follows the same notations as in the Methods: %��� is the 409 

sensory feedback, �:��|%� is the extrapolation of sensory feedback, ��. � is the sequence of previous and 410 

current control commands, �:��. � and �:�. � are the prior and posterior estimates at the corresponding 411 

time steps. b. Top: Modeled saccadic eye movement from the first (���) to the second fixation target (���). 412 

Bottom: Associated control function. Time zero corresponds to the end of the fixation period to the first 413 

target. c. Illustration of the sensory extrapolation performed in the state estimator. The simulated task is 414 
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to track the target, which suddenly starts moving (velocity jump) with or without position jump in the 415 

opposite direction. The simulated eye trajectory shows how the extrapolation of target motion over the 416 

delay interval generates a catch up saccade (black arrow). This compensatory movement is also 417 

illustrated in the velocity trace.  418 

 419 

Figure 3. a. Variance of the control signal (solid) and of the extrapolation of sensory feedback (dashed). 420 

Four times are represented to illustrate how signal-dependent noise impacts the extrapolation of 421 

sensory feedback is  (�� = -100ms, �� � -50ms, �� � 0ms, and �� � 50ms). The dots with similar color 422 

represent the moment when the information at the corresponding time is available (�� � 100	
). 423 

Observe the increase in extrapolation variance associated with stimuli between �� and ��. b. Weight of 424 

the position feedback for correcting the estimate of the position. This weight is directly taken from the 425 

Kalman gain matrix. The reduction in Kalman gain at each selected time point is directly linked to the 426 

increase in variance. c. Representation of a modeled saccadic eye movement, with the gray area 427 

corresponding to the interval of time during which sensory input is given less weight as a result of the 428 

extrapolation variance. d. Control and extrapolation variance normalized to the maximum values 429 

obtained for saccades of 20deg (top traces). e. Weight of sensory feedback for the two simulations. 430 

Observe that although the catch-up saccade is very small (~2deg), the transient increase in extrapolation 431 

variance gives rise to a reduction in weight. f. Illustration of the smooth pursuit task with (dark blue) or 432 

without (light blue) initial target jump occurring simultaneously with the velocity jump. The absence of 433 

target jump evokes a catch-up saccade, which is associated with ta reduction in sensory weight. There is 434 

no reduction with the initiation of smooth pursuit. 435 

 436 

Figure 4. Representation of a simulated 20deg saccade ad dynamic weight of sensory feedback, with the 437 

perisaccadic suppression highlighted in gray. These traces are similar as Figure 3a and 3c. The images 438 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


 22

represent the convolution of a horizontal stripe with a Gaussian kernel with variance proportional to the 439 

extrapolation variance to highlight that assigning higher variance may lead to reduced contrast, even 440 

when the movement is aligned with the stimulus orientation. Times correspond to the Fig. 3. The 441 

decrease in Kalman gain occurs from 0 to 150ms relative to saccade onset (solid trace: time locked), thus 442 

the window during which stimuli are suppressed corresponds to -100 to 50ms (dashed trace: stimulus-443 

locked). b. Illustration of how the predicted saccadic suppression compares with previously reported 444 

suppression from behavioral and neural data. The duration of the perisaccadic suppression in the model 445 

is the sum of the temporal delay and of the movement time as represented above with the gray 446 

rectangle. Comparisons are approximate as movement time was not the same across all studies. The 447 

solid and dashed traces for saccadic suppression in SC indicates the range of onset and offset as given by 448 

Hafed and Krauzlis
40

. Other intervals of saccadic suppression were drawn following the authors’ 449 

summary or based on visual inspection of the corresponding references. 450 

 451 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


 23

References 452 

1 Kording, K. Decision theory: What "should" the nervous system do? Science 318, 606-610 (2007). 453 

2 Angelaki, D. E., Gu, Y. & DeAngelis, G. C. Multisensory integration: psychophysics, 454 

neurophysiology, and computation. Current Opinion in Neurobiology 19, 252-258 (2009). 455 

3 Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically 456 

optimal fashion. Nature 415, 429-433 (2002). 457 

4 van Beers, R. J., Sittig, A. C. & van der Gon, J. J. D. Integration of proprioceptive and visual 458 

position-information: An experimentally supported model. Journal of Neurophysiology 81, 1355-459 

1364 (1999). 460 

5 Fetsch, C. R., Pouget, A., DeAngelis, G. C. & Angelaki, D. E. Neural correlates of reliability-based 461 

cue weighting during multisensory integration. Nat Neurosci 15, 146-154 (2012). 462 

6 Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E. & Pouget, A. Optimal multisensory 463 

decision-making in a reaction-time task. Elife 3 (2014). 464 

7 Acuna, D. E., Berniker, M., Fernandes, H. L. & Kording, K. P. Using psychophysics to ask if the 465 

brain samples or maximizes. J Vis 15 (2015). 466 

8 Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. 467 

Science 269, 1880-1882 (1995). 468 

9 Kording, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244-469 

247 (2004). 470 

10 Izawa, J. & Shadmehr, R. On-Line Processing of Uncertain Information in Visuomotor Control. 471 

Journal of Neuroscience 28, 11360-11368 (2008). 472 

11 Crevecoeur, F., Munoz, D. P. & Scott, S. H. Dynamic Multisensory Integration: Somatosensory 473 

Speed Trumps Visual Accuracy during Feedback Control. J Neurosci 36, 8598-8611 (2016). 474 

12 Cisek, P. Making decisions through a distributed consensus. Current Opinion in Neurobiology 22 475 

(2012). 476 

13 Wolpert, D. M. & Landy, M. S. Motor control is decision making. Current Opinion in Neurobiology 477 

(2012). 478 

14 Wurtz, R. H. Neuronal mechanisms of visual stability. Vision Res 48, 2070-2089 (2008). 479 

15 Ibbotson, M. & Krekelberg, B. Visual perception and saccadic eye movements. Curr Opin 480 

Neurobiol 21 (2011). 481 

16 Diamond, M. R., Ross, J. & Morrone, M. C. Extraretinal control of saccadic suppression. J Neurosci 482 

20, 3449-3455 (2000). 483 

17 Thiele, A., Henning, P., Kubischik, M. & Hoffmann, K. P. Neural mechanisms of saccadic 484 

suppression. Science 295, 2460-2462 (2002). 485 

18 Castet, E. & Masson, G. S. Motion perception during saccadic eye movements. Nat Neurosci 3, 486 

177-183 (2000). 487 

19 Burr, D. C., Morrone, M. C. & Ross, J. Selective suppression of the magnocellular visual pathway 488 

during saccadic eye movements. Nature 371, 511-513 (1994). 489 

20 Burr, D. C., Morgan, M. J. & Morrone, M. C. Saccadic suppression precedes visual motion 490 

analysis. Curr Biol 9, 1207-1209 (1999). 491 

21 Van Gisbergen, J. A., Robinson, D. A. & Gielen, S. A quantitative analysis of generation of saccadic 492 

eye movements by burst neurons. J Neurophysiol 45, 417-442 (1981). 493 

22 Goossens, H. H. & Van Opstal, A. J. Blink-perturbed saccades in monkey. I. Behavioral analysis. J 494 

Neurophysiol 83, 3411-3429 (2000). 495 

23 Xu-Wilson, M., Tian, J., Shadmehr, R. & Zee, D. S. TMS perturbs saccade trajectories and unmasks 496 

an internal feedback controller for saccades. J Neurosci 31, 11537-11546 (2011). 497 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


 24

24 Sommer, M. A. & Wurtz, R. H. Visual perception and corollary discharge. Perception 37, 408-418 498 

(2008). 499 

25 Optican, L. M. in Encyclopedia of Neuroscience Vol. 7  (ed L R Squire)  25-34 (Oxford: Academic 500 

Press, 2009). 501 

26 Burr, D. C. & Morrone, M. C. Temporal impulse response functions for luminance and colour 502 

during saccades. Vision Res 36, 2069-2078 (1996). 503 

27 Gaveau, V. et al. On-line modification of saccadic eye movements by retinal signals. Neuroreport 504 

14, 875-878 (2003). 505 

28 West, G. L., Welsh, T. N. & Pratt, J. Saccadic trajectories receive online correction: evidence for a 506 

feedback-based system of oculomotor control. J Mot Behav 41, 117-127 (2009). 507 

29 Bennett, S. J., de Xivry, J.-J. O., Barnes, G. R. & Lefevre, P. Target acceleration can be extracted 508 

and represented within the predictive drive to ocular pursuit. Journal of Neurophysiology 98, 509 

1405-1414 (2007). 510 

30 Ferrera, V. P. & Barborica, A. Internally generated error signals in monkey frontal eye field during 511 

an inferred motion task. J Neurosci 30, 11612-11623 (2010). 512 

31 Diaz, G., Cooper, J., Rothkopf, C. & Hayhoe, M. Saccades to future ball location reveal memory-513 

based prediction in a virtual-reality interception task. J Vis 13 (2013). 514 

32 Blohm, G., Missal, M. & Lefevre, P. Processing of retinal and extraretinal signals for memory-515 

guided saccades during smooth pursuit. Journal of Neurophysiology 93, 1510-1522 (2005). 516 

33 de Brouwer, S., Yuksel, D., Blohm, G., Missal, M. & Lefevre, P. What triggers catch-up saccades 517 

during visual tracking? J Neurophysiol 87, 1646-1650 (2002). 518 

34 Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature 519 

Neuroscience 5, 1226-1235 (2002). 520 

35 Crevecoeur, F. & Scott, S. H. Priors Engaged in Long-Latency Responses to Mechanical 521 

Perturbations Suggest a Rapid Update in State Estimation. Plos Computational Biology 9 (2013). 522 

36 Orban de Xivry, J. J. & Lefevre, P. Saccades and pursuit: two outcomes of a single sensorimotor 523 

process. J Physiol 584, 11-23 (2007). 524 

37 Krauzlis, R. J. Recasting the smooth pursuit eye movement system. J Neurophysiol 91, 591-603  525 

(2004). 526 

38 Rashbass, C. The relationship between saccadic and smooth tracking eye movements. J Physiol 527 

159, 326-338 (1961). 528 

39 Schutz, A. C., Braun, D. I. & Gegenfurtner, K. R. Contrast sensitivity during the initiation of 529 

smooth pursuit eye movements. Vision Res 47, 2767-2777 (2007). 530 

40 Hafed, Z. M. & Krauzlis, J. in Dynamics of Visual Motion Processing: Neural Behavioral, and 531 

Computatiional Approaches   (eds U J Ilg & G S Masson)  189-211 (Springer, 2010). 532 

41 Watson, T. & Krekelberg, B. An equivalent noise investigation of saccadic suppression. J Neurosci 533 

31, 6535-6541 (2011). 534 

42 Bridgeman, B., Hendry, D. & Stark, L. Failure to detect displacement of the visual world during 535 

saccadic eye movements. Vision Res 15, 719-722 (1975). 536 

43 Beeler, G. W., Jr. Visual threshold changes resulting from spontaneous saccadic eye movements. 537 

Vision Res 7, 769-775 (1967). 538 

44 Ridder, W. H. & Tomlinson, A. A comparison of saccadic and blink suppression in normal 539 

observers. Vision Research 37, 3171-3179 (1997). 540 

45 Ibbotson, M. R., Crowder, N. A., Cloherty, S. L., Price, N. S. & Mustari, M. J. Saccadic modulation 541 

of neural responses: possible roles in saccadic suppression, enhancement, and time 542 

compression. J Neurosci 28, 10952-10960 (2008). 543 

46 Reppas, J. B., Usrey, W. M. & Reid, R. C. Saccadic eye movements modulate visual responses in 544 

the lateral geniculate nucleus. Neuron 35, 961-974 (2002). 545 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


 25

47 Kagan, I., Gur, M. & Snodderly, D. M. Saccades and drifts differentially modulate neuronal 546 

activity in V1: effects of retinal image motion, position, and extraretinal influences. J Vis 8, 19 11-547 

25 (2008). 548 

48 Bremmer, F., Kubischik, M., Hoffmann, K. P. & Krekelberg, B. Neural dynamics of saccadic 549 

suppression. J Neurosci 29, 12374-12383 (2009). 550 

49 Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 551 

780-784 (1998). 552 

50 Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the Cerebellum a Smith Predictor ? Journal 553 

of Motor Behavior 25, 203-216 (1993). 554 

51 Zhong, Q. C. Robust Control of Time-delay Systems.  (Spinger-Verlag, 2010). 555 

52 Anderson, B. D. O. & Moore, J. D. Optimal Filtering.  (Prentice-Hall, 1979). 556 

53 Jurgens, R., Becker, W. & Kornhuber, H. H. Natural and drug-induced variations of velocity and 557 

duration of human saccadic eye movements: evidence for a control of the neural pulse generator 558 

by local feedback. Biol Cybern 39, 87-96 (1981). 559 

54 Chen-Harris, H., Joiner, W. M., Ethier, V., Zee, D. S. & Shadmehr, R. Adaptive control of saccades 560 

via internal feedback. J Neurosci 28, 2804-2813 (2008). 561 

55 Bedell, H. E. & Lott, L. A. Suppression of motion-produced smear during smooth pursuit eye 562 

movements. Curr Biol 6, 1032-1034 (1996). 563 

56 Stocker, A. A. & Simoncelli, E. P. A Bayesian Model of Conditioned Perception. Adv Neural Inf 564 

Process Syst 2007, 1409-1416 (2007). 565 

57 Chapman, C. E., Bushnell, M. C., Miron, D., Duncan, G. H. & Lund, J. P. Sensory perception during 566 

movement in man. Exp Brain Res 68, 516-524 (1987). 567 

58 Blakemore, S. J., Frith, C. D. & Wolpert, D. M. Spatio-temporal prediction modulates the 568 

perception of self-produced stimuli. J Cogn Neurosci 11, 551-559 (1999). 569 

59 Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically 570 

inhibited during voluntary movement. Nature Neuroscience 6, 1309-1316 (2003). 571 

60 Robinson, D. A., Gordon, J. L. & Gordon, S. E. A model of the smooth pursuit eye movement 572 

system. Biol Cybern 55, 43-57 (1986). 573 

61 Munoz, D. P. & Everling, S. Look away: The anti-saccade task and the voluntary control of eye 574 

movement. Nature Reviews Neuroscience 5, 218-228 (2004). 575 

62 Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G. & Salinas, E. Perceptual decision 576 

making in less than 30 milliseconds. Nature Neuroscience 13, 379-U326 (2010). 577 

63 Todorov, E. Stochastic optimal control and estimation methods adapted to the noise 578 

characteristics of the sensorimotor system. Neural Computation 17, 1084-1108 (2005). 579 

64 Blohm, G., Missal, M. & Lefevre, P. Processing of retinal and extraretinal signals for memory-580 

guided saccades during smooth pursuit. J Neurophysiol 93, 1510-1522 (2005). 581 

65 Phillis, Y. A. Controller Design of Systems with Multiplicative Noise. Ieee Transactions on 582 

Automatic Control AC-30, 1017-1019 (1985). 583 

66 Astrom, K. J. Introduction to stochastic control theory.  (Academic Press, 1970). 584 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


Sensory Input Belief Decision / Policy

H1: Separated
Resources

H2: Shared
Resources 

Optimal
Behaviour

Efficient and
Self-Consistent

Perception

Control

Figure 1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


Figure 2

C
lo

se
d-

Lo
op

 
  C

on
tr

ol
le

r
   

 S
ta

te
 

Es
tim

at
or

Controller

   State 
Estimator

Target 
Location Motor 

Commands

Sensory Feedback

Eye Plant

Estimated State

Delay

Next
Estimate

Current 
Estimate

+ +

Sensory 
Feedback    Sensory

Extrapolation
Forward
  Model

-
K

+

Prior
Estimate

Motor 
Commands

a b

0

10

-10

0 100

E
ye

 A
ng

le
 [d

eg
]

Time [ms]
0 100

C
on

tro
l I

np
ut

0

0.1

Movement
    Time

 Saccades

4 
de

g
200ms

20
 d

eg
/s

Eye

Velocity

Catch-Up 
Saccade

Target

Smooth Pursuitc
Angle

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


Figure 3

Sa
cc
ad
e

Pu
rs
ui
t

c

f

0 200

E
ye

 A
ng

le
 [d

eg
]

0

10

Peri-Saccadic
 Suppression

-10

Time [ms]

4 
de

g

200ms

Eye
Target

b

e

0 200

W
ei

gh
t o

f P
os

iti
on

 
Fe

ed
ba

ck

0

0.6

Time [ms]

0.3

0 200

W
ei

gh
t o

f P
os

iti
on

 
Fe

ed
ba

ck

0

0.6

Time [ms]

0.3

a

d

t2 t3 t4t1

0 200

1

0   
   

  V
ar

ia
nc

e 
N

or
m

al
iz

ed
 to

 M
ax

.

Time [ms]

Control
Sensory
Extrapolation

0 200

0.5

0   
   

  V
ar

ia
nc

e 
N

or
m

al
iz

ed
 to

 M
ax

.

Time [ms]

 Target Jump
No Target Jump

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051


a

b

-200 0 200

VIP

MT
MST

Behavior

Bremmer et al., 2009

Diamond et al., 2000

MSTd

Ibbotson et al., 2008

Beeler, 1976SC

Hafed & Krauzlis, 2010

Reppas et al., 2002

LGN

Delay Mvt.

Time re: saccad onset [ms]

Bridgeman et al., 1975

V1

Kagan et al., 2008

E
ye

 A
n
g
le

 [
d
e
g
]

0

10

Peri-Saccadic
 Suppression

-10

W
e
ig

h
t 
o
f 
P

o
si

tio
n
 

F
e
e
d
b
a
ck

0

0.6

-200 0 200
Time re: saccad onset [ms]

Time Locked
Stimulus Locked

Figure 4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2017. ; https://doi.org/10.1101/099051doi: bioRxiv preprint 

https://doi.org/10.1101/099051

