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Spontaneous	Neural	Encoding	of	Social	Network	Position	
	
	

Humans	form	complex	social	networks	that	include	numerous	non‐reproductive	bonds	with	
non‐kin.	Navigating	these	networks	presents	a	considerable	cognitive	challenge	thought	to	
have	comprised	a	driving	force	in	human	brain	evolution.	Yet,	little	is	known	about	how	and	
to	what	extent	the	human	brain	encodes	the	structure	of	the	social	networks	in	which	it	is	
embedded.	 By	 combining	 social	 network	 analysis	 and	 multi‐voxel	 pattern	 analysis	 of	
functional	 magnetic	 resonance	 imaging	 (fMRI)	 data,	 we	 show	 that	 social	 network	
information	 about	 direct	 relationships,	 bonds	 between	 third	 parties,	 and	 aspects	 of	 the	
broader	network	topology	is	accurately	perceived	and	automatically	activated	upon	seeing	
a	familiar	other.	
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Unlike	many	other	species	that	enact	social	behavior	in	loose	aggregations	(e.g.,	

swarms,	herds),	humans	form	groups	comprised	of	many	long-term,	intense,	non-

reproductive	bonds	with	non-kin1.	The	cognitive	demands	of	navigating	such	groups	are	

thought	to	have	comprised	a	driving	force	in	human	brain	evolution2.	Yet,	little	is	known	

about	how	and	to	what	extent	the	human	brain	encodes	the	structure	of	the	social	

networks	in	which	it	is	embedded.	Here,	we	characterized	the	social	network	of	an	

academic	cohort	(N=277),	a	subset	of	whom	(N=21)	completed	a	functional	magnetic	

resonance	imaging	(fMRI)	study	involving	viewing	videos	of	individuals	who	varied	in	

terms	of	“degrees	of	separation”	from	themselves	(social	distance),	the	extent	to	which	

they	are	well-connected	to	well-connected	others	(eigenvector	centrality–EC),	and	the	

extent	to	which	they	connect	otherwise	unconnected	individuals	(brokerage).	

Understanding	these	aspects	of	others’	social	network	positions	requires	tracking	not	only	

direct	relationships,	but	also	bonds	between	third	parties	and	the	broader	network	

topology.	Pairing	network	data	with	multi-voxel	pattern	analysis,	we	show	that	social	

network	position	information	is	both	accurately	perceived	and	spontaneously	activated	

upon	encountering	familiar	individuals.	These	findings	elucidate	how	the	human	brain	

encodes	the	structure	of	its	social	world,	and	underscore	the	importance	of	integrating	an	

understanding	of	social	networks	into	the	study	of	social	perception.		

Relationships	are	intrinsic	to	human	behavior.	Everyday	interactions	are	shaped	not	

only	by	our	own	relationships,	but	also	by	knowledge	of	bonds	between	third	parties	and	

the	broader	social	networks	in	which	we	are	embedded.	Well-connected	individuals	can	

effectively	threaten	or	bolster	one’s	reputation3,	those	who	bridge	otherwise	disparate	

groups	can	efficiently	seek	and	spread	information4,	and	knowledge	of	mutual	ties	
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influences	information-sharing	and	trust5.	Human	social	intelligence	rests,	in	part,	on	a	

calculus	that	inheres	in	an	understanding	of	social	network	structure.	

Is	knowledge	about	others’	social	network	positions	activated	only	when	explicit	

goals	require	it,	or	spontaneously,	whenever	we	encounter	familiar	individuals?	It	may	be	

efficient	to	process	such	information	only	when	our	goals	require	it	(e.g.,	determining	how	

to	obtain	information;	forecasting	the	repercussions	of	a	social	misstep).	Alternatively,	it	

may	be	beneficial	to	activate	such	knowledge	spontaneously	when	encountering	others,	

given	the	importance	of	social	network	position	to	many	aspects	of	behavior	and	to	

impressions	of	status	and	competence3,6.	Humans	spontaneously	register	a	great	deal	of	

information	when	perceiving	other	people	(e.g.,	intentions,	traits,	emotions7,8),	presumably	

to	facilitate	appropriate,	beneficial	social	interactions.	Thus,	the	brain	may	run	several	

social	“daemons”–	efficient,	background	processes	that	spontaneously	register	information	

useful	for	predicting	the	social	repercussions	of	potential	actions,	and,	more	broadly,	to	

inform	cognition	and	behavior.		

To	test	whether	the	brain	spontaneously	encodes	the	social	network	positions	of	

familiar	others,	we	scanned	(fMRI)	members	of	a	real	world	social	network	(see	Fig.	1;	

Methods)	as	they	viewed	brief	videos	of	12	classmates	(Fig.	2).		The	only	task	was	to	

indicate	when	the	same	video	was	presented	twice	in	a	row	(see	Methods)	in	order	to	

ensure	attention	without	any	instructions	to	retrieve	social	relationship	knowledge,	or	

person	knowledge	more	generally.	Therefore,	we	consider	any	social	network	position	

information	encoded	while	participants	perform	this	task	to	be	retrieved	spontaneously	

(i.e.,	without	instruction).	
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	 Each	classmate	in	each	participant’s	stimulus	set	was	characterized	according	to	

three	metrics	derived	from	the	social	network	data:	geodesic	social	distance	from	the	

participant;	EC;	and	constraint,	an	inverse	measure	of	brokerage.	Geodesic	social	distance	

refers	to	the	minimum	number	of	intermediary	social	ties	required	to	connect	two	

individuals.	EC	is	a	prestige-based	centrality	metric	that	considers	not	only	how	many	

connections	a	given	individual	has,	but	also	the	centralities	characterizing	each	contact9.	

High	EC	implies	that	an	individual	is	well-connected	to	well-connected	others;	low	EC	

implies	that	an	individual	has	few	friends	who	tend	to	be	unpopular.	Prestige-based	

centrality	metrics	are	particularly	useful	for	characterizing	social	status,	given	that	being	

named	as	a	friend	by	a	popular	individual	should	increase	one’s	sociometric	status	(i.e.,	the	

extent	to	which	someone	is	liked	by	others)	more	than	being	named	by	someone	less	

popular9.	Individuals	who	connect	others	who	would	not	otherwise	be	connected	occupy	

network	positions	low	in	constraint,	and	have	the	capacity	to	serve	as	“brokers”	of	

resources	(e.g.,	information)	in	the	network.	Because	of	the	structure	of	their	local	social	

ties,	brokers	can	coordinate	behavior	and	translate	information	across	structural	holes	in	

networks4.		

To	probe	for	the	spontaneous	encoding	of	social	network	position	information,	we	

used	representational	similarity	analysis	(RSA),	which	distills	fMRI	response	patterns	into	

representational	dissimilarity	matrices	(RDMs)	that	indicate	the	degree	to	which	particular	

brain	regions	distinguish	between	sets	of	stimuli	or	mental	states10.	Because	RDMs	are	

abstracted	away	from	the	spatial	layout	of	neuroimaging	data	(i.e.,	they	are	indexed	by	

experimental	condition;	Fig.	3),	RSA	affords	the	evaluation	of	the	degree	to	which	similarity	

structures	contained	in	particular	brain	regions	reflect	those	of	data	acquired	using	other	
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modalities	of	measurement	or	computational	models10	(here,	the	social	network	data).		

Specifically,	in	the	current	study,	we	used	a	general	linear	model	(GLM)	decomposition	

searchlight	approach11.	Neural	RDMs	were	iteratively	extracted	within	9-mm	radius	

spheres	centered	at	each	point	in	each	participant’s	brain.	Within	each	participant,	each	

local	neural	RDM	was	modeled	as	a	weighted	combination	of	RDMs	based	on	properties	of	

the	social	network	positions	of	the	individuals	in	that	participant’s	stimulus	set	(Fig.	3).	

Using	this	technique,	participants’	brains	were	mapped	in	terms	of	the	degree	to	which	the	

representational	content	of	local	neural	responses	to	familiar	others	could	be	explained	by	

those	individuals’	positions	in	their	social	network,	and	in	terms	of	where	information	

about	specific	social	network	position	characteristic	was	carried	reliably	across	

participants	(Fig.	4).	

	 	We	hypothesized	that	geodesic	social	distance	would	be	spontaneously	encoded,	

given	the	importance	of	this	information	for	determining	self-relevance.	One’s	immediate	

social	ties	are	obviously	most	self-relevant.	Given	the	importance	of	reputation	

management	for	human	behavior12,	individuals	two	“degrees	away”	may	be	relatively	

important	to	identify	and	monitor:	Negative	interactions	with	such	individuals	could	

damage	relationships	with	one’s	direct	connections.	Similarly,	sharing	mutual	friends	may	

enhance	trust,	given	the	potential	reputation	costs	of	bad	behavior5.	As	social	distance	

between	people	increases,	their	relevance	to	each	other	decreases.	We	predicted	that	social	

distance-related	information	would	be	carried	in	the	lateral	superior	temporal	cortex	

(STC)	and	inferior	parietal	lobule	(IPL),	as	well	as	the	medial	prefrontal	cortex	(MPFC),	

given	past	research	implicating	these	regions	in	encoding	social	distance13	and	self-

relevance	more	generally14.		
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	 Social	distance	was	reliably	signaled	in	a	large	cluster	centered	in	the	lateral	

posterior	STC	and	extending	inferiorly	throughout	posterior	lateral	temporal	cortex	(LTC),	

and	superiorly	to	the	anterior	aspect	of	the	IPL	(see	Fig.	4;	Table	S1).	Past	research	

demonstrated	that	multi-voxel	response	patterns	in	this	region	encode	egocentric	spatial	

and	abstract	(e.g.,	social)	distances	when	explicitly	judging14	or	mentally	navigating15	such	

distances14;	the	current	findings	suggest	that	this	region	also	encodes	egocentric	distances	

spontaneously	(i.e.,	in	the	absence	of	any	explicit	distance	task).	Thus,	when	encountering	a	

familiar	individual,	knowledge	of	agent-to-agent	relationships	appear	to	be	spontaneously	

retrieved,	such	that	representations	of	other	people	in	this	region	are	organized	in	terms	of	

whether	someone	is	a	friend,	a	friend-of-a-friend,	or	farther	removed	from	oneself	in	social	

ties.	It	has	been	suggested	that	some	regions	within	posterior	parietal	cortex,	such	as	the	

anterior	IPL,	which	have	well-established	roles	in	representing	and	navigating	physical	

space,	analogously	represent	more	abstract	relationships	(e.g.,	social	ties	between	

agents)16,17.	The	current	results	suggest	that	when	encountering	familiar	individuals,	

humans	may	spontaneously	retrieve	knowledge	of	where	they	are	located,	relative	to	

oneself,	in	a	mental	map	of	“social	space”.		

	 Although	the	LTC	and	IPL	regions	that	carried	information	about	social	distance	

here	have	previously	implicated	in	encoding	social	distance13,14,	some	regions	previously	

implicated	in	signaling	social	distance	were	not	implicated	in	the	current	study.	For	

instance,	previous	research	has	implicated	MPFC	in	distinguishing	friends	from	strangers13,	

and	a	recent	study	implicated	the	hippocampus	and	posterior	cingulate	cortex	(PCC)	in	

tracking	social	distances	between	participants	and	characters	in	an	interactive	game18.	

Differences	between	the	current	results	and	those	observed	in	previous	investigations	
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likely	reflect	differences	in	data	analytic	approaches	and	in	how	social	distance	has	been	

operationalized.	In	the	current	study,	participants	only	saw	personally	familiar	individuals,	

and	social	distance	was	operationalized	in	terms	of	geodesic	distance	in	their	real-world	

social	network.	In	previous	neuroimaging	studies,	the	term	“social	distance”	has	been	

operationalized	in	widely	varying	ways,	such	as	the	presence	of	social	ties13,	the	strength	of	

social	ties14,	and	distance	from	oneself	in	a	two-dimensional	(affiliation	x		status)	

representational	space18.	Given	that	these	variables	likely	have	differential	consequences	

for	social	cognition	and	behavior,	it	is	not	surprising	that	they	are	encoded	by	at	least	

partially	distinct	neural	substrates.	

	 Whereas	social	distance	is	inherently	relative	to	the	perceiver,	other	aspects	of	

familiar	others’	social	network	positions,	such	as	the	degree	to	which	one	“bridges”	

different	areas	of	the	network	and	the	number	of	friends	someone	has,	are	increasingly	

thought	to	be	largely	stable,	possibly	heritable,	dispositional	tendencies	that	shape	social	

behavior19,20.	Therefore,	we	hypothesized	that	EC	and	constraint	would	be	encoded	in	

brain	regions	involved	in	encoding	others’	traits	and	behavioral	tendencies	more	generally,	

such	as	the	MPFC,	which	is	widely	implicated	in	inferring	and	encoding	person	

knowledge21	and	in	integrating	knowledge	of	personality	traits	in	order	to	signal	individual	

identity22.	

	 Information	about	EC	was	reliably	carried	in	brain	regions	that	encode	individual	

identity	when	imagining	others’	actions22	(i.e.,	MPFC)	and	viewing	faces23,24	(e.g.,	temporal	

pole;	fusiform	gyrus;	see	Fig.	4	and	Table	S2),	suggesting	that	sociometric	status	may	

comprise	a	dimension	of	meaning	for	organizing	mental	representations	of	others.		EC	was	

also	encoded	in	medial	parietal	cortex	(precuneus,	PCC),	a	region	previously	been	shown	to	
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encode	extraversion22,	which	is	modestly	correlated	with	EC25,	suggesting	that	this	region	

may	encode	dispositional	tendencies	common	to	both	extraversion	and	EC.	In	addition,	

recent	work	has	also	shown	that	the	medial	parietal	cortex,	as	well	as	other	regions	

involved	in	inferring	others’	mental	states,	intentions,	and	traits	(e.g.,	MPFC;	

temporoparietal	junction),	responds	preferentially	to	well-liked	individuals,	which	is	

thought	to	reflect	perceivers	being		preferentially	motivated	to	understand	the	internal	

states	of	popular	others26.	The	current	findings	are	consistent	with	the	notion	that	brain	

regions	that	represent	others’	internal	states	and	behavioral	tendencies	(e.g.,	PCC,	MPFC)	

track	sociometric	status,	and	suggest	that	like	other	facets	of	social	status	(e.g.,	

dominance27,	prestige28),	EC	may	modulate	attention	to	the	internal	states	of	others.	Future	

behavioral	studies	should	directly	test	the	impact	of	EC	on	social	attention.	

	 Information	about	EC	was	also	reliably	carried	in	unexpected	regions,	such	as	

extrastriate	visual	cortex	(EVC).	This	result	is	unlikely	to	be	due	to	low-level	visual	

characteristics	of	stimuli,	as	each	participant	had	a	unique	stimulus	set,	and	because	videos	

corresponding	to	each	individual	in	each	stimulus	set	were	horizontally	mirrored	on	half	of	

trials	(see	Methods).	However,	this	finding	may	nonetheless	reflect	the	effects	of	social	

status	in	terms	of	social	ties	on	visual	attention.	People	tend	to	preferentially	orient	toward	

high-status	individuals	and	to	the	loci	of	their	attention,	presumably	to	obtain	behaviorally	

relevant	information	about	our	surroundings28–30.	Given	that	EC	is	reliably	signaled	in	EVC	

response	patterns,	future	research	should	test	if	visual	attention	is	also	preferentially	

allocated	to	central	actors	in	one’s	social	network.		

	 EC-based	RDMs	were	also	significantly	related	to	neural	RDMs	in	brain	areas	

previously	implicated	in	evaluating	social	status	in	terms	of	dominance,	prestige,	and	
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morality,	such	as	the	ventral	MPFC	and	ventrolateral	prefrontal	cortex	(VLPFC)31–33.	The	

involvement	of	the	ventral	MPFC	in	social	status	encoding	has	been	suggested	to	reflect	a	

more	general	role	in	assessing	the	value	of	stimuli32,	whereas	the	VLPFC	has	been	

suggested	to	encode	social	status	in	order	to	appropriately	modulate	behavioral	

responding,	which	is	thought	to	be	a	primary	function	of	status	cues31.	We	suggest	that	

these	regions	likely	encode	EC	for	similar	reasons,	as	high	EC	individuals	have	high	

behavioral	relevance	and	value	as	social	partners.	For	example,	individuals	connected	to	

well-connected	others	may	be	protected	from	mistreatment	because	they	are	more	likely	

to	be	defended	by	others,	who	themselves	are	more	likely	to	be	defended.	Less	risk	is	

associated	with	wronging	a	low	EC	individual,	given	that	low	EC	individuals	have	little	

influence	on	the	spread	of	information	and	other	resources3.		

	 The	current	results	suggest	that	when	encountering	a	familiar	individual,	the	

degree	to	which	that	individual	is	well-connected	to	well-connected	others	shapes	

processes	related	to	valuation,	behavioral	modulation,	attention,	and	encoding	others’	

internal	states,	dispositional	characteristics,	and	identities.	Many	of	these	findings	echo	the	

known	effects	of	other	dimensions	of	social	status	(e.g.,	status	conferred	by	dominance).	

Although	a	great	deal	of	past	psychological	and	neuroimaging	research	on	social	status	has	

focused	on	physical	dominance,	we	note	that	overt	physical	violence	is	relatively	rare	in	

contemporary	human	groups34	and	that	social	support	and	reputation	management	are	

central	to	everyday	human	life12.	Social	power	in	such	groups	may	be	relatively	less	

contingent	on	individual	strength	and	physical	aggression,	and	more	dependent	on	group	

dynamics	and	affiliative	relationship	maintenance.	Thus,	sociometric	status	is	likely	
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especially	relevant	to	modern	humans,	and	merits	further	attention	in	social	perception	

and	neuroscience	research.	

	 In	addition	to	social	distance	and	EC,	diverse	aspects	of	social	cognition	and	

behavior	(e.g.,	deciding	how	to	effectively	seek	or	spread	information;	trust	decisions)	

would	benefit	from	encoding	network	constraint.	Low	constraint	individuals	can	broker	

the	flow	of	information	between	groups,	and	thus,	exert	a	disproportionate	influence	on	the	

flow	of	ideas	and	resources4.	Additionally,	individuals	in	relatively	“closed”	local	networks,	

characterized	by	high	constraint,	suffer	greater	reputation	costs	for	bad	behavior;	

correspondingly,	constraint	can	foster	trust	and	cooperation4.	Given	the	dearth	of	previous	

research	investigating	the	perception	of	constraint,	we	made	no	specific	predictions	about	

which	brain	regions	would	be	involved	in	encoding	this	facet	of	social	network	position.	

Large	clusters	spanning	both	right	and	left	lateral	STC	carried	information	about	

constraint	(Table	S3),	as	did	a	smaller	cluster	in	the	supplementary	motor	area	(SMA).	

Although	the	lateral	STC	and	SMA	are	implicated	in	biological	motion	processing35	and	

action	understanding36,	respectively,	this	finding	was	not	attributable	to	the	amount	of	

movement	in	videos	(see	SI).	A	perceiver’s	knowledge	of	the	network	constraint	of	an	

individual,	or	of	associated	dispositions,	may	impact	how	that	perceiver	attends	to	that	

individual’s	movements.	For	example,	because	brokers	may	be	perceived	as	exceptionally	

charismatic	or	interesting	(e.g.,	because	they	often	serve	as	sources	of	novel	information	or	

opportunities4),	they	may	command	differential	amounts	of	attention	to	their	expressions	

and	gestures.	Brokers	may	also	differ	in	the	amount	of	social	meaning	carried	in	their	facial	

and	bodily	movements	(e.g.,	fidgeting	aimlessly	vs.	using	movement	to	express	oneself	

coherently).	The	latter	explanation	would	be	consistent	with	evidence	that	the	STS	
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responds	to	the	social	meaning,	rather	than	amount,	of	movement	in	dynamic	displays37.	

Future	studies	could	arbitrate	between	these	hypotheses	by	testing	if	strangers	are	able	to	

differentiate	between	individuals	high	and	low	in	constraint	based	on	their	observed	

movements.	If	so,	this	would	suggest	that	network	constraint	is	encoded	in	lateral	STC	

because	this	aspect	of	social	network	position	is	apparent	in	how	individuals	carry	

themselves.	If	not,	this	would	be	consistent	with	the	interpretation	that	perceivers’	

knowledge	of	an	individual’s	network	constraint,	or	of	qualities	related	to	this	aspect	of	

social	network	position,	influences	how	perceivers	attend	to	that	individual’s	expressions,	

gestures,	and	bodily	movements.		

	 After	scanning,	participants	were	asked	about	their	perceptions	of	each	SNA-

derived	metric	of	interest	for	each	individual	in	their	stimulus	set	(see	SI).	This	allowed	us	

to	test	the	accuracy	of	participants’	perceptions	of	others’	social	network	positions,	and	to	

evaluate	how	well	participants’	perceptions	matched	the	data	used	to	construct	their	

stimulus	sets.	Post-scan	ratings	indicated	that	participants’	explicit	perceptions	of	the	

social	network	positions	of	the	individuals	in	their	stimulus	sets	closely	matched	reality.	

Veridical	constraint	had	a	significant	effect	on	perceived	constraint	(ß=19.44	SE=2.01,	p	<	

.0001),	and	veridical	EC	had	a	significant	effect	on	perceived	EC	(ß=14.95,	SE=0.93,	p	<	

.0001).	Further,	subjective	ratings	of	social	closeness	(ß=-31.00,	SE=1.62,	p	<	.0001),	

proportion	of	social	time	spent	together	(ß=-22.74,	SE=1.84,	p	<	.0001),	and	frequency	of	

discussions	(ß=-33.77,	SE=1.89,	p	<	.0001)	varied	as	a	function	of	geodesic	network	

distance	(see	Methods	and	Fig.	5).		

Although	participants	had	consciously	accessible	knowledge	of	the	social	network	

position	characteristics	studied	here	(Fig.	5),	the	task	used	in	the	fMRI	study	(a	one-back	
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memory	task)	did	not	require	participants	to	retrieve	social	relationship	knowledge,	and	

from	participants’	perspectives,	the	social	network	questionnaire	and	fMRI	study	were	

ostensibly	unrelated.	Nevertheless,	up	to	40%	of	the	variance	in	similarity	structures	of	

local	fMRI	responses	to	personally	familiar	others	could	be	explained	merely	by	

characteristics	of	those	individuals’	positions	in	the	perceiver’s	social	network	(Fig.	4b).	

These	findings	are	consistent	with	behavioral	evidence	that	humans	spontaneously	

activate	knowledge	about	other	people	upon	encountering	them	in	order	to	inform	

cognition	and	behavior7,8,	and	suggest	that	humans	spontaneously	activate	complex	

knowledge	about	other	people’s	positions	in	their	social	networks	when	viewing	them.	

These	findings	are	consistent	with	psychologists’	mounting	appreciation	for	the	

importance	of	both	direct	and	indirect	relationship	knowledge	to	everyday	cognition	and	

behavior.	Everyday	interactions	are	influenced	not	only	by	information	that	would	be	

available	to	any	observer,	but	also	by	patterns	of	personal	and	third-party	relationships.	By	

adopting	an	interdisciplinary	approach	combining	theory	and	methods	from	neuroscience,	

psychology,	and	SNA,	we	can	begin	to	uncover	a	deeper	understanding	of	how	the	human	

brain	negotiates	the	intricacies	of	everyday	social	life.	

	

Methods	

Part	1:	Social	network	characterization	

Participants.	Participants	in	Part	1	of	the	study	were	275	first-year	Masters	of	

Business	Administration	(MBA)	students	at	a	private	university	in	the	United	States	who	

participated	as	part	of	their	coursework	on	leadership	(91	females;	184	males).	The	total	

class	size	was	277	students;	two	students	failed	to	complete	the	questionnaire	(i.e.,	
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response	rate=99.3%).	All	procedures	were	completed	in	accordance	with	the	standards	of	

the	Dartmouth	Committee	for	the	Protection	of	Human	Subjects.	

Social	network	characterization.	To	characterize	the	social	network	of	all	first-year	

students,	an	online	social	network	survey	was	administered.	Participants	followed	an	e-

mailed	link	to	the	study	website	where	they	responded	to	a	survey	designed	to	assess	their	

position	in	the	social	network	of	first-year	students	in	their	academic	program	(see	SI).	The	

survey	question	was	adapted	from	Burt38	and	has	been	previously	used	in	the	modified	

form	used	here25,39.	It	read,	“Consider	the	people	with	whom	you	like	to	spend	your	free	

time.	Since	you	arrived	at	[institution	name],	who	are	the	classmates	you	have	been	with	

most	often	for	informal	social	activities,	such	as	going	out	to	lunch,	dinner,	drinks,	films,	

visiting	one	another’s	homes,	and	so	on?”		

A	roster-based	name	generator	was	used	to	avoid	inadequate	or	biased	recall.	

Classmates’	names	were	listed	in	four	columns,	with	one	column	corresponding	to	each	

section	of	students	in	the	MBA	program.	Names	were	listed	alphabetically	within	section.	

Participants	indicated	the	presence	of	a	social	tie	with	an	individual	by	placing	a	checkmark	

next	to	his	or	her	name.	Participants	could	indicate	any	number	of	social	ties,	and	had	no	

time	limit	for	responding.		

Social	network	analysis	was	performed	using	the	R	package	igraph40,41.	Three	social	

network-derived	metrics	were	extracted	for	each	node:	constraint,	EC	and	geodesic	

distance	from	each	classmate,	as	described	in	greater	detail	below.	

Constraint.	The	constraint	of	actor	i	is	given	by	the	following	equation,	where	Pij	

corresponds	to	the	proportion	of	i's	direct	social	ties	accounted	for	by	his/her	tie	to	actor	j.	
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The	inner	summation	approximates	the	indirect	constraint	imposed	on	i	by	other	actors,	q,	

who	are	socially	connected	to	both	i	and	j	(i.e.	mutual	friends	of	i	and	j):	

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒊 	= 	 (𝑷𝒊𝒋 + 𝑷𝒊𝒒
𝒏

𝒒~𝟏
𝑷𝒒𝒋)𝟐

𝒏

𝒋~𝟏
	

An	unweighted,	undirected	graph	was	used	to	estimate	constraint;	i.e.,	the	presence	

of	any	social	tie,	irrespective	of	its	direction,	was	used	to	compute	the	constraint	of	each	

node.	Constraint	is	an	inverse	measure	of	network	brokerage.	

EC.	A	graph	consisting	of	nodes	connected	by	edges	can	be	characterized	by	an	

adjacency	matrix	A,	populated	by	elements	such	that	aij	=	1	if	nodes	i	and	j	are	directly	

connected,	and	aij	=	0	if	these	nodes	are	not	connected.	The	EC	of	each	node	is	given	by	the	

eigenvector	of	A	in	which	all	elements	are	positive.	The	requirement	that	all	elements	of	

the	eigenvector	must	be	positive	yields	a	unique	eigenvector	solution	(i.e.,	that	

corresponding	to	the	greatest	eigenvalue).	Here,	when	computing	EC,	the	directionality	of	

the	graph	was	preserved;	in	the	event	of	asymmetric	relationships,	only	incoming,	rather	

than	outgoing,	ties	were	used	to	compute	EC.		

Social	distance.	Geodesic	social	distance	refers	to	the	smallest	number	of	

intermediary	social	ties	required	to	connect	two	individuals	in	a	network.	Individuals	who	

a	participant	named	as	friends	have	a	distance	of	one	from	him/her.	Individuals	whom	a	

participant’s	friends	named	as	friends	(but	who	were	not	named	as	friends	by	the	

participant)	have	a	distance	of	two	from	the	participant.	Individuals	who	were	named	as	

friends	by	classmates	at	a	distance	of	two	from	the	participant	(but	not	by	the	participant	

or	his/her	friends)	have	a	distance	of	three,	and	so	on.	
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Part	2:	Neuroimaging	study	

Participants.	A	subset	of	individuals	who	had	completed	Part	1	participated	in	a	

subsequent	neuroimaging	experiment.	Participants	were	informed	during	class	about	the	

opportunity	to	participate	in	an	fMRI	study	that	was	ostensibly	unrelated	to	the	online	

questionnaire	in	Part	1,	and	that	they	would	receive	$20/hour	as	compensation	and	images	

of	their	brains.	All	participants	were	right-handed,	fluent	in	English,	and	had	normal	or	

corrected-to-normal	vision.	Participants	provided	informed	consent	in	accordance	with	the	

policies	of	the	Dartmouth	College	Committee	for	the	Protection	of	Human	Subjects.	

Twenty-four	participants	(12	females)	completed	the	fMRI	study.	The	sample	size	was	

chosen	based	on	previous	fMRI	studies	using	similar	paradigms	and	RSA	methods11,42.	One	

participant	was	excluded	due	to	image	artifact,	and	two	were	excluded	because	they	scored	

less	than	65%	correct	on	the	one-back	memory	task	used	in	the	scanner	(this	threshold	

was	based	on	what	has	been	used	previously	in	similar	studies43).	Consequently,	we	

analyzed	data	from	21	participants	(10	females,	aged	25-33,	M=27.95,	SD=2.16).	As	a	

within-subjects	design	involving	no	group	allocation	was	used,	blinding	investigators	to	

between-subjects	conditions	and	random	assignment	of	participants	to	conditions	were	

not	applicable.	

Image	acquisition.	Participants	were	scanned	at	the	Dartmouth	Brain	Imaging	

Center	using	a	3T	Philips	Achieva	Intera	scanner	with	a	32-channel	head	coil.		An	echo-

planar	sequence	(35	ms	TE;	2000	ms	TR;	3.0	mm	x	3	.0	x	3.0	mm	resolution;	80	x	80	matrix	

size;	240	x	240	mm	FOV;	35	interleaved	transverse	slices	with	no	gap;	3.0	mm	slice	

thickness)	was	used	to	acquire	functional	images.	Functional	runs	consisted	of	180	

dynamic	scans,	for	a	total	acquisition	time	of	360	s	per	run.		A	high-resolution	T1-weighted	
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anatomical	scan	was	acquired	for	each	participant	(8.2	s	TR;	3.7	ms	TE;	240	x	187	FOV;	

0.938	mm	x	0.938	mm	x	1.0	mm	resolution)	at	the	end	of	the	scanning	session.	Foam	

padding	was	placed	around	subjects’	heads	to	minimize	motion.	

Stimuli.	Each	participant’s	customized	stimulus	set	consisted	of	short	videos	of	four	

individuals	at	each	of	three	geodesic	distances	(i.e.,	one,	two,	and	three)	from	the	

participant	in	the	social	network	of	first-year	MBA	students.	The	two	highest	and	lowest	EC	

individuals	at	each	social	distance	were	included	in	the	stimulus	set	(Fig.	2).	

The	videos	used	as	stimuli	consisted	of	individuals	introducing	themselves	(e.g.,	“Hi	

my	name	is	[first	name],	and	you	can	call	me	[first	name/nick	name]”).	A	video	of	this	kind	

was	made	involving	each	student	at	the	beginning	of	the	academic	year	as	a	resource	for	

other	students	and	faculty.	Videos	were	truncated	to	2	s,	beginning	when	the	subject	began	

to	say	the	word,	“Hi,”	and	were	presented	without	sound.	Prior	to	entering	the	fMRI	

scanner,	participants	were	shown	each	video	with	sound	to	familiarize	themselves	with	the	

stimuli.	

fMRI	paradigm.	The	fMRI	study	consisted	of	10	runs	and	followed	a	rapid	event-

related	design	with	an	inter-trial	interval	consisting	of	4	s	of	fixation	(Fig.	2c).	Four	null	

events,	each	consisting	of	an	additional	2	s	of	fixation,	were	randomly	inserted	into	each	

run.	In	each	run,	four	repetitions	of	14	event	categories	(12	identities;	1	null	event;	1	catch	

trial)	were	pseudo-randomized	such	that	there	were	no	consecutive	repeats	of	the	same	

category.	Horizontal	mirroring	was	randomly	applied	to	half	the	presentations	of	each	

stimulus	within	each	run	to	reduce	similarities	within	identities	due	to	local	low-level	

visual	features.	Catch	trials	involved	seeing	the	same	stimulus	at	the	same	mirroring	level	

as	the	immediately	previous	stimulus	(or	two	trials	back	if	a	catch	trial	followed	a	null	
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event).	Participants	were	instructed	to	press	a	button	when	an	identical	video	was	

presented	twice	in	a	row	(i.e.,	for	catch	trials).		

Post-scan	questionnaire.	After	scanning,	participants	were	asked	about	their	

subjective	perceptions	of	each	social	network	metric	of	interest	for	each	individual	in	their	

stimulus	set,	as	well	as	questions	assessing	tie	strength	(see	SI).	Because	the	constraint	

question	asked	about	brokerage	(i.e.,	which	individuals	were	low	in	network	constraint),	

responses	to	this	item	were	multiplied	by	-1.	To	alleviate	skew	in	the	network	data,	

eigenvector	centralities	and	network	constraint	values	were	log-transformed	prior	to	

analysis.		

	 The	correspondence	between	participants’	post-scan	ratings	and	the	social	

network	position	characteristics	of	the	individuals	in	their	stimulus	sets	was	assessed	

using	linear	mixed	models	using	the	R40	package	lme444.	For	each	of	the	five	questions	(see	

SI),	a	model	was	constructed	with	participants’	ratings	as	the	dependent	measure	and	the	

relevant	social	network	position	characteristic	as	a	fixed	effect,	as	well	as	random	

intercepts	and	slopes	for	each	participant.	To	test	the	significance	of	the	relationship	

between	participants’	ratings	and	social	network	data,	p-values	were	computed	using	

Satterthwaite’s	approximation	for	degrees	of	freedom45	as	implemented	in	lmerTest46.	

	 fMRI	data	preprocessing.	For	fMRI	data	analysis,	data	were	preprocessed	and	

average	voxel-wise	hemodynamic	responses	to	each	identity	were	estimated	using	AFNI47.	

Pre-processing	steps	included	applying	AFNI’s	3dDespike	function	to	remove	transient,	

extreme	values	in	the	signal	not	attributable	to	biological	phenomena,	slice-timing	

correction	to	correct	for	interleaved	slice	acquisition	order,	alignment	of	the	last	volume	of	

the	final	run	to	the	high-resolution	anatomical	scan,	registration	of	all	functional	volumes	
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to	the	anatomical-aligned	final	functional	volume	using	a	6-parameter	3-D	motion	

correction	algorithm,	spatial	smoothing	using	a	4-mm	full-width	at	half-maximum	Gaussian	

kernel,	and	scaling	each	voxel	time	series	to	have	a	mean	amplitude	of	100.	Prior	to	

regression,	consecutive	volumes	where	the	Euclidean	norm	of	the	derivatives	of	the	motion	

parameters	exceeded	0.3	mm	were	excluded	from	further	analysis,	as	were	volumes	in	

which	more	than	10%	of	brain	voxels	were	identified	as	outliers	by	the	AFNI	program	

3dToutcount.		

Parameter	estimates	were	extracted	for	each	voxel	using	a	GLM	that	consisted	of	

gamma-variate	convolved	regressors	for	each	of	13	predictors	(one	for	each	of	the	12	

identities	in	the	participant’s	stimulus	set;	one	for	catch	trials),	as	well	as	12	regressors	for	

each	of	the	six	demeaned	motion	parameters	extracted	during	volume	registration	and	

their	derivatives,	and	three	regressors	for	linear,	quadratic,	and	cubic	signal	drifts	within	

each	run.	This	procedure	removed	variance	caused	by	regressors	of	no	interest,	and	

resulted	in	an	estimate	of	the	response	of	each	voxel	to	each	trial	type.	

GLM	decomposition	searchlight.	Using	PyMVPA48	and	SciPy49,	a	GLM	decomposition	

searchlight11	was	performed	within	each	participant’s	data.		A	sphere	(radius=3	voxels)	

was	moved	throughout	each	participant’s	brain.	At	each	point	in	the	brain,	the	local	

distributed	patterns	of	neural	responses	to	each	person	in	the	stimulus	set	were	extracted	

within	a	sphere	centered	on	that	point,	and	the	pairwise	correlation	distances	between	

them	were	calculated	to	construct	a	local	neural	RDM	(Fig.	3a-c),	which	was	decomposed	

into	a	weighted	combination	of	predictor	RDMs	using	ordinary	least	squares	(OLS)	

regression	(Fig.	3d).	There	were	three	predictor	RDMs,	one	corresponding	to	each	social	

network	position	metric	of	interest.	Predictor	RDMs	were	constructed	by	taking	the	
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Euclidean	distance	(i.e.,	the	absolute	value	of	the	numerical	difference)	between	the	

relevant	social	network	position	metrics	for	each	possible	pair	of	identities	within	each	

participant’s	stimulus	set.	Each	predictor	RDM	for	each	participant	was	then	z-scored.	Next,	

for	each	RDM	(e.g.,	the	EC-based	RDM	for	a	given	participant),	the	variance	accounted	for	

by	the	remaining	two	predictor	RDMs	(e.g.,	the	social	distance	and	constraint-based	RDMs	

for	that	participant)	was	removed	using	OLS	regression.	Thus,	the	resultant	predictor	

RDMs	were	made	orthogonal	to	one	another	prior	to	performing	the	GLM	decomposition	

searchlight.	

At	each	searchlight	center	(i.e.,	at	each	voxel),	the	GLM	decomposition	procedure	

yielded	a	β	value	corresponding	to	each	social	network	derived	metric	of	interest,	as	well	

as	an	R2	value	corresponding	to	how	much	the	variance	in	the	similarity	structure	of	local	

neural	response	patterns	could	be	explained	by	the	social	network	positions	of	the	

individuals	comprising	a	given	participant’s	stimulus	set.	

Group	analysis.	Each	subject’s	maps	of	regression	coefficients	and	R2	values	were	

transformed	to	standard	(Talairach50)	space	using	AFNI:	Anatomical	scans	were	linearly	

aligned	to	the	Talairach50	template	using	the	@auto_tlrc	algorithm	in	AFNI,	and	the	same	

transform	was	used	to	align	each	participant’s	searchlight	results	to	standard	space	prior	

to	group	analysis.	To	identify	areas	that	reliably	contained	information	about	each	specific	

aspect	of	social	network	position	across	participants,	the	regression	coefficients	for	each	

social	network	position-derived	RDM	were	tested	against	0	across	participants	using	one-

tailed	one-sample	t-tests.	More	specifically,	FSL’s	randomise51,52	program	was	used	to	

perform	permutation	tests	and	to	generate	a	null	distribution	of	cluster	masses	for	multiple	

comparisons	correction	(cluster-forming	threshold:	p	<	.01,	two-tailed;	5,000	
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permutations;	10-mm	variance	smoothing).	All	reported	results	have	been	thresholded	at	a	

family-wise	error	rate	of	5%.	

	

Data	and	code	availability:	The	data	that	support	the	findings	of	this	study	are	available	

from	the	corresponding	author	upon	request.	The	code	used	for	the	analyses	also	is	

available	upon	request.	
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Figure	1.	Social	network	characterization.	The	social	network	of	a	first-year	cohort	of	MBA	

students	was	reconstructed	based	on	responses	to	online	questionnaires	administered	to	

all	members	of	 the	 class	 (N	=	275;	99.3%	response	 rate).	Nodes	 indicate	 students;	 lines	

indicate	 reported	 social	 ties	 between	 them.	 For	 ease	 of	 visualization,	 only	 mutually	

reported	social	ties	are	illustrated.	A	subset	of	these	students	participated	in	an	fMRI	study.	

Orange	nodes	 indicate	 fMRI	 study	participants;	 gray	nodes	denote	other	members	of	 the	

graduate	program.	Node	size	is	proportional	to	eigenvector	centrality.	
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Figure	2.	Stimulus	set	construction	and	paradigm	for	neuroimaging	study.	(A)	The	geodesic	

distance	between	each	fMRI	study	participant	and	every	other	student	in	the	network	was	

characterized.	 An	 alternative	 visualization	 of	 the	 network	 is	 shown	 in	 which	 nodes	 are	

organized	 into	horizontal	 layers	according	 to	distance	 from	a	particular	participant.	Each	

participant’s	stimulus	set	was	comprised	of	12	of	his	or	her	classmates:	the	two	lowest	and	

two	highest	eigenvector	centrality	individuals	at	distances	of	one,	two,	and	three	from	the	

participant	 in	 the	 network	 (e.g.,	 the	 classmates	 signified	 by	 the	 two	 smallest	 and	 two	

largest	 nodes	within	 each	 layer	 in	 (A)).	 (B)	 During	 the	 fMRI	 study,	 participants	 viewed	

brief	(2	s)	videos	of	the	12	individuals	in	their	stimulus	sets	separated	by	4-6	s	of	fixation.	

In	order	to	maintain	attention,	a	one-back	task	was	used	(i.e.,	participants	were	instructed	

to	use	a	button	press	 to	 indicate	when	an	 identical	video	was	presented	 twice	 in	a	row).	

Frames	 from	 this	 participant’s	 video	 clip	 are	 reproduced	 with	 permission	 from	 the	

individual.	
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Figure	 3.	 GLM	 decomposition	 searchlight.	 (A)	 A	 spherical	 searchlight	 was	 moved	

throughout	each	participant’s	brain.	(B)	At	each	point	in	the	brain,	distributed	patterns	of	

neural	responses	to	each	individual	in	the	participant’s	stimulus	were	extracted	within	a	9-

mm	radius	sphere	centered	on	that	point.	(C)	At	each	searchlight	center,	a	neural	RDM	was	

generated	based	on	pairwise	correlation	distances	between	local	neural	response	patterns	

to	each	classmate	in	the	participant’s	stimulus	set.	(D)	Each	local	neural	RDM	was	modeled	

as	a	weighted	combination	of	RDMs	constructed	based	on	the	pairwise	Euclidean	distances	

(i.e.,	the	absolute	value	of	numerical	differences)	between	individuals	in	each	participant’s	

stimulus	set	in	terms	of	social	distance,	eigenvector	centrality,	and	network	constraint.		
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Figure	4.	Neural	encoding	of	social	network	position.	(A)	Distinct	brain	regions	encode	
different	properties	of	peers’	social	network	positions	(social	distance	=	purple;	
eigenvector	centrality	=	orange;	constraint	=	green).	Beta	values	indicate	the	extent	to	
which	the	information	contained	in	local	multi-voxel	response	patterns	to	participants’	
classmates	could	be	predicted	based	on	properties	of	those	individuals’	social	network	
positions;	p	<	.05,	FWE-corrected.	(B)	The	R2	value	corresponding	to	the	GLM	
decomposition	performed	at	each	searchlight	center	indicates	the	extent	to	which	the	
information	contained	in	local	multi-voxel	response	patterns	can	be	explained	by	the	social	
network	positions	of	the	classmates	being	viewed.	Voxel-wise	R2	values	averaged	across	
subjects	are	depicted;	red	contours	indicate	clusters	of	voxels	that	reliably	signaled	one	or	
more	of	the	tested	aspects	of	social	network	position	across	participants.	Results	are	
projected	onto	a	cortical	surface	model	of	the	Talairach50	N27	brain	using	PySurfer	
(https://github.com/nipy/PySurfer).	
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Figure	5.	Associations	between	perceived	and	actual	social	network	characteristics.	Black	
dashed	lines	depict	the	relationships	between	perceived	and	actual	social	network	
characteristics	across	all	participants	(fit	using	an	ordinary	least	squares	linear	model).	
Solid	purple,	orange	and	green	lines	depict	these	relationships	for	each	subject	for	social	
distance,	eigenvector	centrality,	and	constraint,	respectively.	(A)	Neuroimaging	study	
participants’	subjective	ratings	of	social	closeness,	proportion	of	social	time	spent	together,	
and	frequency	of	discussions	with	the	individuals	in	their	stimulus	sets	varied	according	to	
geodesic	network	distance	from	them	in	the	network	(all	p’s	<	.0001,	see	main	text).	(B)	
Participants’	estimates	of	the	eigenvector	centrality	of	the	individuals	in	their	stimulus	sets	
were	closely	related	to	those	individuals’	actual	eigenvector	centralities	(p	<	.0001,	see	
main	text).	(C)	Participants’	estimates	of	the	network	constraint	of	individuals	in	their	
stimulus	sets	were	also	associated	with	the	actual	constraint	of	those	individuals’	positions	
in	the	social	network	(p	<	.0001,	see	main	text).	As	described	in	the	main	text,	self-report	
data	was	obtained	after	scanning;	network	constraint	and	eigenvector	centrality	were	log-
transformed	prior	to	plotting	and	analysis	to	alleviate	skew.	Perceived	network	constraint	
ratings	were	multiplied	by	-1	prior	to	plotting	because	the	relevant	question	asked	
participants	to	rate	perceived	brokerage	(which	is	inversely	related	to	network	constraint).	
Analyses	of	behavioral	ratings	were	conducted	using	linear	mixed	models	that	included	by-
subject	random	slopes	and	intercepts.	
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Supplementary	Information	

I.	Optical	flow	analysis	

To	quantify	the	amount	of	movement	within	each	video	clip	used	as	a	stimulus	in	

the	neuroimaging	experiment,	the	average	optical	flow	(i.e.,	the	pattern	of	apparent	motion	

between	consecutive	video	frames)	was	computed	for	each	video	that	was	shown	in	the	

fMRI	study.	Given	that	the	videos	used	as	stimuli	were	recorded	by	a	stable	camera	against	

a	plain,	static	background,	optical	flow	estimates	for	these	videos	capture	of	the	amount	

that	each	individual	moved	his	or	her	facial	features	and	head	in	the	video	clip.	Farneback’s	

algorithm	for	motion	estimation1	as	implemented	in	OpenCV2	was	used	to	estimate	the	

average	magnitude	of	optical	flow	in	each	video.	This	method	extracts	a	pixel-wise	motion	

vector	for	each	pair	of	sequential	frames	in	which	each	pixel	is	characterized	by	a	

magnitude	and	a	direction.	To	estimate	the	magnitude	of	motion	within	each	frame	pair,	

the	magnitude	values	(without	respect	to	direction)	were	summed	across	pixels.	To	

compute	the	mean	magnitude	of	optical	flow	for	a	given	video,	the	motion	magnitude	

estimates	were	averaged	across	frames	within	that	video.	

In	order	to	test	whether	or	not	individual	differences	in	network	constraint	are	

related	to	movement	in	the	videos	used	as	stimuli,	the	correlation	between	network	

constraint	and	average	motion	magnitude	was	assessed	among	the	88	individuals	whose	

videos	were	used	as	stimuli	in	the	fMRI	study.	Given	that	distributions	of	both	variables	

were	highly	skewed,	data	were	log-transformed	prior	to	analysis.	The	results	of	this	

procedure	suggest	that	in	the	stimuli	used	in	the	current	study,	network	constraint	and	

amount	of	movement	were	not	significantly	correlated,	r	=	-0.12,	p	=	0.28	(see	Fig.	S1).	
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II.	Post-scan	questionnaire	

	 Participants	performed	the	post-scan	questionnaire	on	a	13”	MacBook	laptop	using	

Psychopy3.	Participants	first	viewed	an	instruction	screen	that	read,	“Now	you	will	see	the	

same	people	who	you	saw	in	the	scanner.	You	will	be	asked	questions	about	each	person.	

These	questions	relate	only	to	this	person’s	interactions	within	the	[institution	name]	MBA	

cohort.	We	understand	that	people	have	many	social	circles	that	they	participate	in	(perhaps	

including	family,	friends	outside	of	[the	institution],	other	contacts,	etc.).	For	these	questions,	

please	just	consider	interactions	within	the	MBA	cohort.		You	will	be	presented	with	a	

continuous	rating	scale	for	each	question.	You	can	choose	any	point	along	the	continuum	to	

respond.	Press	any	key	to	continue.”	During	the	survey,	videos	of	the	12	individuals	from	the	

participant’s	stimulus	set	were	presented	in	a	random	order.	Participants	responded	to	all	

questions	about	a	given	individual	sequentially,	and	the	same	video	that	had	played	in	the	

scanner	repeated	on	a	loop	(without	sound)	above	the	question	text	and	response	scale	

(see	Fig.	S2).	

Participants	were	presented	with	questions	concerning	lay	definitions	of	

eigenvector	centrality	(“In	social	network	analysis,	scientists	assess	a	construct	that	

measures	how	many	friends	a	person	has,	and	how	many	friends	a	person’s	friends	have.	How	

would	you	rate	this	person	on	this	construct?”	Responses	ranged	from	“Low	(few	friends	who	

have	few	friends)”	to	“High	(many	friends	who	have	many	friends)”)	and	constraint	(“Social	

network	analysts	also	assess	a	construct	called	‘brokerage’	that	measures	how	much	a	person	

connects	groups	of	people	who	wouldn’t	otherwise	be	connected.	Using	this	definition,	how	

high	is	this	individual	in	‘brokerage’?”	Responses	ranged	from	“Low	(this	person	never	

connects	distinct	groups	of	people”	to	“High	(This	person	often	connects	distinct	groups	of	
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people)”).	Responses	to	the	item	assessing	brokerage	were	reverse	scored	in	order	to	

estimate	perceived	network	constraint.	

	Participants	were	also	presented	with	the	name	generator	that	had	originally	been	

used	to	construct	the	network	(“Consider	the	people	with	whom	you	like	to	spend	your	free	

time.	During	the	last	month,	is	this	one	of	the	classmates	who	you	have	been	with	most	often	

for	informal	friendship	activities,	such	as	going	out	to	lunch,	dinner,	drinks,	films,	visiting	one	

another’s	homes,	and	so	on?”	Responses	ranged	on	a	continuum	from	“None	of	my	social	

activities	in	the	past	month	have	included	this	person”	to	“All	of	my	social	activities	in	the	past	

month	have	included	this	person”),	as	well	as	questions	designed	to	assess	tie	strength	

(“How	close	are	you	with	this	person?”	Responses	ranged	from	“Distant”	to	“Less	than	close”	

to	“Close”	to	“Especially	Close”)	and	frequency	of	interactions	(“On	average,	how	often	do	you	

talk	to	this	person	(any	social	or	business	discussion)?”	Responses	ranged	from	“Less	often”	

to	“Monthly”	to	“Weekly”	to	“Daily”).		
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Figure	 S1.	Relationship	between	network	 constraint	 and	movement	during	 videos.	

The	amount	of	movement	of	the	88	individuals	whose	videos	were	used	as	stimuli	was	not	

significantly	 related	 to	 the	 constraint	 characterizing	 those	 individuals’	 positions	 in	 the	

social	network	of	first-year	MBA	students,	r	=	-0.12,	p	=	0.28.	
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Figure	 S2.	 Post-scan	 questionnaire.	 Following	 scanning,	 participants	 responded	 to	

questions	 about	 their	 subjective	 perception	 of	 each	 aspect	 of	 social	 network	 position	 of	

interest	 for	 each	 individual	 in	 their	 stimulus	 set.	 A	 screenshot	 of	 the	 question	

corresponding	to	network	constraint	(reverse-scored)	is	shown.	
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Table S1: Brain regions where local neural information content is associated with 
the social distance of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

R 4,397 49.6 -46.6 7.6 IPL (SMG), STG, STS, MTG  
Hemi = hemisphere; COG = center of gravity; L = left; R = right; IPL = inferior parietal lobule; 
SMG = supramarginal gyrus; STG= superior temporal gyrus; STS = superior temporal sulcus; 
MTG = middle temporal gyrus. All reported results are significant at a statistical threshold of p < 
.05, FWE-corrected. All coordinates are in Talairach space. 

Table S2: Brain regions where local neural information content is associated with 
the eigenvector centrality of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

L 24,483 -42.4 -18.5 33.6 IPL, IFG, Ins., pre-central gyrus 
R 8,768 21.7 26.8 -4.9 MPFC, IFG, aIns., ant. PHG, TP 
L 7,716 -32.7 12.9 -6.1 aIns., IFG 
L, R 7,552 -9.4 -41.8 40.4 PCC, precuneus 
R 6,802 20.4 -48.0 -2.8 PHG, LG, FG 
R 6,065 48.0 -29.4 38.4 IPL, precuneus, post-central gyrus 
L, R 5,233 -0.8 -44.4 65.4 Precuneus, post-central gyrus 
L, R 4,961 -0.6 -83.3 28.5 EVC 

Hemi = hemisphere; COG = center of gravity; L = left; R = right; a = anterior; IPL = inferior parietal 
lobule; IFG = inferior frontal gyrus; Ins. = insula; MPFC = medial prefrontal cortex; PHG = 
parahippocampal gyrus; TP = temporal pole; PCC = posterior cingulate cortex; LG = lingual 
gyrus; FG = fusiform gyrus; EVC = extrastriate visual cortex. All reported results are significant at 
a statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space. 

Table S3: Brain regions where local neural information content is associated with 
the constraint of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

R 11,872 51.5 -16.0 -3.0 STS, STG, MTG, ITS, pIns. 
L 7,739 -51.6 -38.5 7.1 STS, STG, MTG, pIns. 
R 4,363 11.5 -5.7 58.4 SMA, dorsal premotor cortex 
Hemi = hemisphere; COG=center of gravity; L = left; R = right; STS = superior temporal sulcus; 
STG = superior temporal gyrus; MTG = middle temporal gyrus; ITS = inferior temporal sulcus; 
pIns. = posterior insula; SMA = supplementary motor area. All reported results are significant at a 
statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space. 
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