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Abstract:	
 
 The nature of capacity limits for visual working memory has been the 
subject of an intense debate that has relied on models that assume items are 
encoded independently. Here we propose that instead, similar features are jointly 
encoded through a “chunking” process to optimize performance on visual working 
memory tasks. We show that such chunking can: 1) facilitate performance 
improvements for abstract capacity-limited systems, 2) be optimized through 
reinforcement, 3) be implemented by center-surround dynamics, and 4) increase 
effective storage capacity at the expense of recall precision. Human performance 
on a variant of a canonical working memory task demonstrated performance 
advantages, precision detriments, inter-item dependencies, and trial-to-trial 
behavioral adjustments diagnostic of performance optimization through center-
surround chunking. Models incorporating center-surround chunking provided a 
better quantitative description of human performance in our study as well as in a 
meta-analytic dataset, and apparent differences in working memory capacity 
across individuals were attributable to individual differences in the 
implementation of chunking. Our results reveal a normative rationale for center-
surround connectivity in working memory circuitry, call for re-evaluation of 
memory performance differences that have previously been attributed to 
differences in capacity, and support a more nuanced view of visual working 
memory capacity limitations: strategic tradeoff between storage capacity and 
memory precision through chunking contribute to flexible capacity limitations that 
include both discrete and continuous aspects. 
	
Introduction:	
	
	 People	are	limited	in	their	capacity	to	retain	visual	information	in	short-term	
memory;	however,	the	exact	nature	of	this	limitation	is	hotly	debated	(Luck	&	Vogel,	
2013;	Ma,	Husain,	&	Bays,	2014;	Wei,	Wang,	&	Wang,	2012).	Competing	theories	
have	stipulated	that	capacity	is	constrained	by	either	a	discrete	item	limit	(e.g.,	a	
fixed	number	of	“slots”)	or	by	the	distribution	of	a	flexible	“resource”	across	
relevant	visual	information	(Bays	&	Husain,	2008;	Wei	et	al.,	2012;	Zhang	&	Luck,	
2008).	In	their	simplest	form,	these	competing	theories	are	both	philosophically	
distinct	and	statistically	identifiable,	but	experimental	evidence	has	been	mixed,	
with	some	studies	favoring	each	theory	and	the	best	fitting	computational	models	
incorporating	elements	of	each	(Almeida,	Barbosa,	&	Compte,	2015;	Bays	&	Husain,	
2008;	Bays,	Catalao,	&	Husain,	2009;	Cowan	&	Rouder,	2009;	Chris	Donkin,	Tran,	&	
Nosofsky,	2013a;	Christopher	Donkin,	Nosofsky,	Gold,	&	Shiffrin,	2013b;	Rouder	et	
al.,	2008;	van	den	Berg,	Awh,	&	Ma,	2014;	van	den	Berg,	Shin,	Chou,	George,	&	Ma,	
2012;	Zhang	&	Luck,	2008;	2009;	2011).	Experimental	support	for	both	theories	has	
emerged	from	delayed	report	working	memory	tasks,	in	which	subjects	are	asked	to	
make	a	delayed	report	about	a	feature	(e.g.	color)	of	a	single	item	that	was	briefly	
presented	as	part	of	a	multi-item	stimulus	display	(Bays	&	Husain,	2008;	Wilken	&	
Ma,	2004;	Zhang	&	Luck,	2011).	In	particular,	as	the	number	of	items	to	be	retained	
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increases,	visual	working	memory	reports	tend	to	become	less	precise,	as	predicted	
by	resource	models,	and	more	likely	to	reflect	guessing,	as	predicted	by	slots	models	
(Fougnie,	Suchow,	&	Alvarez,	2012;	Luck	&	Vogel,	2013;	Ma	et	al.,	2014;	van	den	
Berg	et	al.,	2012;	2014).		

While	the	competing	classes	of	visual	working	memory	models	have	evolved	
substantially	over	the	past	decade,	the	mathematical	formalizations	of	each	have	
relied	on	assumptions	about	what	is,	and	should	be,	stored	in	working	memory.	
Thus,	an	open	question	with	potentially	broad	implications	is	what	should	and	do	
people	store	in	memory	during	performance	of	the	standard	delayed	recall	tasks,	
and	how	do	deviations	from	the	standard	assumptions	affect	our	understanding	of	
memory	capacity?	To	this	end,	recent	work	has	highlighted	the	ability	of	people	to	
optimize	memory	encoding	and	decoding	processes	by	pooling	information	across	
memoranda	to	enhance	performance	under	different	regimes	(Brady	&	Alvarez,	
2011;	2015;	Brady,	Konkle,	&	Alvarez,	2009;	Lew	&	Vul,	2015;	Orhan	&	Jacobs,	
2013;	Sims,	Jacobs,	&	Knill,	2012;	Wei	et	al.,	2012).	Specifically,	people	can	integrate	
prior	information	to	improve	memory	report	precision	(Bays	et	al.,	2009;	Brady	&	
Alvarez,	2011)	and,	when	stimuli	are	redundant,	lossless	compression	strategies	can	
be	used	to	efficiently	encode	them	(Bays	et	al.,	2009;	Brady	et	al.,	2009;	Zhang	&	
Luck,	2008).	These	strategies	can	improve	memory	performance,	but	only	to	the	
extent	to	which	features	of	upcoming	memoranda	are	predicted	by	previously	
observed	stimulus	statistics.	Since	memoranda	in	standard	working	memory	tasks	
are	unpredictable	and	randomly	distributed	by	design,	such	strategies	cannot	
improve	and	may	actually	impede	performance	in	standard	tasks	(Bays	et	al.,	2009;	
Orhan	&	Jacobs,	2014;	Zhang	&	Luck,	2008).	However,	while	memoranda	in	these	
tasks	are	not	compressible	in	the	“lossless”	sense,	it	is	still	possible	that	people	
might	employ	more	fast	and	frugal	techniques	to	reduce	memory	storage	
requirements	at	a	small	but	acceptable	cost	to	task	performance.		
	 Here	we	explore	this	possibility	and	show	that	people	should,	could,	and	do	
implement	a	lossy	form	of	data	compression	that	sacrifices	information	about	subtle	
differences	in	the	feature	values	of	memoranda	in	order	to	improve	overall	task	
performance.	We	do	so	using	an	inter-related	set	of	computational	models	across	
different	levels	of	analysis,	such	that	we	can	constrain	our	understanding	of	the	
compression	algorithm	using	both	computational	notions	of	how	information	
should	be	compressed	and	mechanistic	notions	of	how	biological	circuits	could	
implement	this	compression.	We	probe	our	own	and	published	empirical	data	to	
test	key	predictions	of	these	models.	This	study	thus	involves	four	related	
components:	
	

1. Normative	and	behavioral	analysis.	We	begin	with	an	information-theoretic	
analysis	of	how	features	of	memoranda	should	be	stored	to	maximize	task	
performance	in	an	abstract	memory-limited	system.	We	show	that	that	under	
high	memory	load	conditions,	it	is	advantageous	to	jointly	encode	(chunk)	a	
blended	representation	of	similar	features	and	only	separately	encode	
(partition)	features	if	they	are	sufficiently	dissimilar.	This	strategy	can	be	
effectively	implemented	by	setting	a	criterion	for	partitioning	features	based	
on	dissimilarity,	where	the	appropriate	criterion	can	be	learned	based	on	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/098939doi: bioRxiv preprint 

https://doi.org/10.1101/098939
http://creativecommons.org/licenses/by-nc-nd/4.0/


trial	feedback	(binary	reward)	and	increases	with	memory	load.	We	show	
that	human	subject	behavior	in	a	delayed	report	working	memory	task	
conforms	to	predictions	from	this	form	of	adaptive	chunking	and	
optimization	thereof	via	reward	feedback.	

	
2.				Mechanistic	implementations	of	chunking	in	a	biophysical	network	model.	

Given	that	behavioral	data	accorded	with	predictions	from	the	normative	
model,	we	next	examined	how	such	selective	chunking	could	be	implemented	
in	a	biophysical	memory	system.	Established	recurrent	neural	network	
models	have	shown	that	perceptually	similar	memoranda	can	be	merged	
together	via	attractor	“bump	collisions”	(Wei	et	al.,	2012).	However,	these	
simulations	showed	that	such	an	architecture	leads	to	indiscriminate	
chunking	and	–	due	to	lateral	inhibition	–	increased	forgetting	of	non-
chunked	items,	leading	to	poor	performance	(Wei	et	al.,	2012).	We	show	that	
this	issue	can	be	remedied	by	adopting	a	more	biologically	motivated	center-
surround	inhibition	connectivity	that	effectively	partitions	dissimilar	color	
representations;	however,	it	does	so	at	the	cost	of	inter-item	repulsions,	
which	reduce	the	effective	precision	of	memory	reports	(Almeida	et	al.,	
2015).	

	
3.			Algorithmic	model	of	center-surround	dynamics.		To	systematically	explore	the	

impact	of	center-surround	mediated	chunking	at	the	behavioral	level,	we	
created	a	parsimonious	(i.e.,	minimal	parameter)	model	that	incorporates	the	
key	features	necessary	for	effective	chunking	afforded	by	the	biophysical	
model	without	explicitly	modeling	the	temporal	dynamics	or	biophysical	
properties.	We	show	that	center-surround	dynamics	facilitate	improved	
memory	recall	at	the	expense	of	precision,	and	capture	previously	
unexplained	qualitative	patterns	of	bias	and	precision	in	human	memory	
reports	across	stimulus	arrays.		

	
4.			Quantitative	model	fitting.	Finally,	we	fit	behavioral	data	from	individual	

subjects	to	show	that	chunking	and	center-surround	dynamics	improve	fit	
relative	to	state-of-the-art	models,	and	can	account	for	considerable	
performance	differences	across	subjects,	with	better-performing	subjects	
best	fit	by	models	with	more	inclusive	chunking	policies.	We	validate	these	
findings	in	a	meta-analytic	dataset	to	show	that	chunking	improves	
quantitative	model	fits	across	tasks,	offers	an	alternative	explanation	to	
changes	in	precision	with	set	size,	and	accounts	for	individual	differences	in	
working	memory	task	performance	under	conditions	of	high	memory	load.		

	
	
	
	
Results:	
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Visual	working	memory	capacity	is	typically	measured	using	either	delayed	report	
or	change	detection	tasks	(Bays	&	Husain,	2008;	Wilken	&	Ma,	2004;	Zhang	&	Luck,	
2011).	Here	we	focus	on	the	former,	as	they	have	provided	nuanced	information	
about	the	shape	of	memory	distributions	and	have	formed	the	basis	for	competing	
models	of	capacity	limitation	(Fougnie	et	al.,	2012;	Luck	&	Vogel,	2013;	Ma	et	al.,	
2014;	van	den	Berg	et	al.,	2012).		
	
Specifically,	we	consider	a	delayed	report	color	reproduction	task	that	requires	
storage	of	color	and	orientation	information	(figure	1).	Each	trial	consists	of	three	
core	stages:	stimulus	presentation,	delay,	and	probe.	During	stimulus	presentation,	
five	oriented	colored	bars	are	displayed	simultaneously.	During	the	subsequent	
delay,	the	screen	is	blanked,	requiring	short-term	storage	of	color	and	orientation	
information.	During	the	probe	stage,	a	single	oriented	bar	is	displayed	(in	gray)	and	
the	participant	is	required	to	reproduce	the	color	that	had	been	associated	with	that	
orientation	in	the	preceding	stimulus	array.	
	

	
	
Figure	1:	Delayed	report	color	reproduction	task.	Each	trial	begins	with	central	fixation	for	500	
ms,	followed	by	stimulus	presentation	for	200	ms.	Stimuli	consist	of	five	colored	and	oriented	bars	
evenly	distributed	around	a	circle	subtending	4	degrees	of	visual	angle	and	centered	on	the	point	of	
fixation.	Stimulus	presentation	is	followed	by	a	900	ms	delay,	after	which	a	single	oriented	bar	is	
displayed	centrally.	The	subject	is	required	to	report	the	color	associated	with	the	bar	with	the	
probed	orientation	in	the	previous	stimulus	array.	After	confirming	the	report,	the	subject	receives	
feedback	dependent	on	whether	the	absolute	magnitude	of	the	reproduction	error	was	greater	or	
less	than	a	fixed	threshold.	Stimulus	colors	on	any	given	trial	are	selected	either:	1)	randomly	and	
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independently	as	is	standard	in	such	tasks	(random	spacing;	upper	left)	or	2)	ensuring	uniform	
spacing	on	the	color	wheel	so	as	to	minimize	within-array	color	similarity	(fixed	spacing).		
	
Information	theoretic	analysis	of	what	should	be	stored	in	working	memory.		
	
To	first	understand	whether,	in	principle,	information	encoding	could	be	optimized	
in	this	task,	we	developed	a	limited-capacity	system	for	memory	storage	in	which	
colors	and	orientations	are	represented	with	binary	words	(figure	2).	The	precision	
with	which	a	color	is	stored	depends	on	the	number	of	binary	digits	(bits)	used	to	
represent	that	color:	a	single	bit	can	be	used	to	specify	a	half	of	the	color	wheel,	a	
second	bit	can	be	added	to	specify	a	quarter	of	the	color	wheel,	and	so	on	(figure	
2A,).	Capacity	limitations	within	such	a	system	can	be	easily	implemented	as	a	fixed	
limit	on	the	number	of	bits	stored	during	the	delay	period.	These	bits	can	be	used	to	
represent	the	individual	colors	in	the	target	array,	by,	for	example,	dividing	them	
evenly	among	the	available	targets	(figure	2B).	Alternatively,	multiple	similar	colors	
could	be	jointly	represented	with	a	single	binary	word	that	is	then	linked	to	multiple	
orientations	(figure	2C).	An	intuitive	advantage	of	the	second	encoding	strategy	is	
that	reducing	the	number	of	binary	color	words	increases	the	number	of	bits	
available	to	represent	each	word,	potentially	offsetting	the	biased	encoding	of	the	
chunked	items	by	better	representing	each	encoded	color.	
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Figure	2:	Binary	encoding	model	of	visual	working	memory.	In	order	to	formalize	capacity	
limitations,	it	is	useful	to	consider	an	abstract	model	of	working	memory	that	stores	features	in	
binary	words.	A:	Each	color	can	be	described	by	a	binary	word	of	fixed	length,	where	the	number	of	
digits	in	the	word	determines	the	storage	precision.	B	&	C:	Stimulus	arrays	can	be	stored	by	linking	
ordered	pairs	of	color	and	orientation	words.	Capacity	limitations	are	modeled	by	a	fixed	limit	on	the	
length	of	the	resulting	“sentence”	comprised	of	color	and	orientation	words	separated	by	word	
termination	symbols	(2/3	for	color/orientation	words,	respectively).	B:	One	strategy	for	storing	
ordered	pairs	involves	alternating	sequences	of	color	and	orientation	words,	such	that	each	color	is	
“partitioned”	from	all	other	colors	(dotted	lines	separating	color	representations)	and	linked	to	a	
single	orientation.	C:	Another	strategy	for	storage	would	be	to	link	two	or	more	orientations	to	a	
single	color	by	removing	a	partition	(chunking).	This	reduces	the	number	of	colors	that	need	to	be	
stored,	and	thus	increases	the	number	of	bits	allotted	to	each	color.	D:	Full	partitioning	(top)	involves	
placing	a	partition	between	each	set	of	colors	such	that	each	color	is	represented	independently.	
Criterion-based	partitioning	sets	a	partition	between	each	set	of	colors	that	are	separated	by	a	
greater	distance	than	the	partitioning	criterion.	Optimal	partitioning	examines	all	partitioning	
patterns	for	a	given	stimulus	array	and	selects	the	partitioning	pattern	that	would	achieve	the	lowest	
theoretical	error	magnitude.		
	
To	test	this	potential	advantage	quantitatively,	we	examined	task	performance	of	
three	models	that	differ	in	how	they	“chunk”	feature	information.	The	standard	
model	employs	independent	item	encoding,	through	which	each	color	is	partitioned,	
or	represented	separately,	from	all	other	stored	colors	(full	partitioning;	figure	
2B&D).	We	also	consider	a	fully	optimal	model	that	considers	all	possible	
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partitioning	patterns	and	stores	information	using	the	combination	of	partitioning	
and	chunking	(figure	2C&D)	that	would	lead	to	the	best	theoretical	performance	for	
each	specific	stimulus	array,	given	the	possibility	that	any	item	could	be	probed	
(optimal	partitioning).	Although	determining	the	optimal	partitioning	pattern	for	
each	array	is	computationally	expensive,	it	is	well	approximated	by	a	simple	and	
efficient	heuristic,	using	a	single	criterion	for	partitioning,		according	to	the	
separation	of	two	targets	in	color	space	(criterion-based	partitioning;	fig	2D).	For	
this	model,	chunking	was	parameterized	by	a	“partitioning	criterion”	that	defines	
the	minimum	distance	between	two	colors	required	for	independent	
representation.	If	the	distance	between	two	colors	is	smaller	than	the	partitioning	
criterion,	the	colors	are	represented	as	a	single	“chunk”.	Thus,	a	partitioning	
criterion	of	zero	indicates	that	all	items	are	represented	independently,	whereas	a	
partitioning	criterion	of	π	indicates	that	all	item	colors	will	be	chunked	together	(i.e.	
represented	by	a	single	binary	word).	Performance	of	all	models	was	assessed	for	
delayed	recall	tasks	ranging	from	easy	(2	items)	to	difficult	(8	items)	and	using	both	
continuous	and	discrete	assumptions	regarding	the	distribution	of	item	information.		
	
Performance	of	the	criterion-based	model	depended	on	partitioning	criterion	as	a	
function	of	task	difficulty	(figure	3).	For	easier	tasks	with	few	items	to	encode,	the	
model’s	memory	buffer	was	large	enough	to	store	each	item	independently	with	a	
reasonable	number	of	bits,	such	that	increasing	the	partitioning	criterion	beyond	
zero	was	detrimental	to	task	performance	(two	targets;	figure	3a	[dark	line]).	
However,	for	harder	tasks,	in	which	storing	each	item	with	high	precision	was	not	
possible	due	to	limited	buffer	size,	performance	was	best	for	moderate	partitioning	
criterions	that	allow	for	joint	representation	of	similar,	but	not	dissimilar,	colors	
(eight	targets;	figure	3a	[light	line]).	To	better	understand	how	chunking	interacts	
with	set	size	to	affect	performance,	we	compared	the	performance	of	the	best	
criterion-based	partitioning	model	to	that	of	a	full	partitioning	model	across	
different	task	difficulties.	Across	task	difficulties,	there	was	a	monotonic	
relationship	between	the	number	of	targets	and	the	performance	advantage	of	both	
fully	optimal	and	criterion-based	chunking	models	over	full	partitioning	(figure	3B;	
compare	orange	and	green	lines).	Furthermore,	the	performance	of	the	best	
criterion-based	partitioning	was	nearly	identical	to	that	of	the	optimal	partitioning	
model	(figure	3B;	compare	green	and	yellow	lines).	Notably,	the	number	of	colors	
stored	by	criterion-based	and	optimal	partitioning	models	saturated	around	four	
with	increasing	set	size,	highlighting	that	the	improved	performance	of	these	
models	comes	from	chunking	similar	colors	into	a	single	representation	that	is	
linked	to	multiple	orientations.		Moreover,	this	result	suggests	that	even	though	it	is	
possible	in	these	models	to	store	more	items	independently	with	less	precision,	it	is	
more	advantageous	to	restrict	the	number	of	stored	representations	during	
standard	delayed	recall	tasks	(figure	3C).		
	
Set-size	dependent	performance	advantages	of	chunking	were	also	relatively	
insensitive	to	modeling	assumptions	regarding	the	nature	of	storage	constraints.	
While	the	results	described	above	were	generated	under	the	assumption	of	a	
divisible	resource	framework	(figure	3A-C),	comparable	results	were	attained	when	
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model	behavior	was	simulated	using	binary	words	that	roughly	correspond	to	the	
slots	+	averaging	framework	(figure	3D-F).	Thus,	the	performance	advantages	
offered	by	criterion-based	chunking	are	robust	to	the	nature	of	the	actual	capacity	
limitation.			
	
Adaptation	of	partitioning	criterion	via	reinforcement	learning	
	
The	advantages	of	chunking	discussed	above	were	presented	for	the	best	
partitioning	criterion,	which	differed	as	a	function	of	task	demands,	begging	the	
question	of	how	a	human	subject	would	know	to	use	this	criterion.		We	thus	
examined	whether	the	partitioning	criterion	could	be	optimized	on	a	trial-to-trial	
basis	via	reinforcement	learning	to	improve	performance	by	allowing	the	
partitioning	criterion	to	be	adjusted	on	each	trial	according	to	the	chunking	(total	
number	of	chunks)	and	reward	feedback	(thresholded	binary	feedback)	from	the	
previous	trial	(see	Methods).	The	resulting	model	increased	the	partitioning	
criterion,	and	thus	chunking,	after	a	trial	in	which	it	chunked	colors	and	achieved	
better-than-average	performance.	This	led	partitioning	criterions	to	increase	
rapidly	towards	a	load-dependent	asymptote	(figure	3G).	Trial-to-trial	increases	in	
the	partitioning	criterion	corresponded	to	rapid	improvements	in	overall	task	
performance,	as	measured	by	average	absolute	error	(figure	3H).	These	
improvements	in	task	performance	were	concomitant	with	reductions	in	the	total	
number	of	color	chunks	that	the	model	attempted	to	store	(figure	3I).	Thus,	
chunking	can	be	optimized	across	conditions	through	reinforcement	learning	to	
improve	performance	and	reduce	effective	storage	requirements	in	higher	memory	
load	contexts.		
	
Given	the	performance	advantages	offered	by	criterion-based	chunking	and	the	
efficiency	with	which	it	could	be	learned	and	implemented,	we	next	sought	to	
identify	diagnostic	predictions	made	by	the	model.	One	key	difference	between	the	
criterion-based	and	full	partitioning	models	is	that	the	performance	of	the	former	
depended	heavily	on	the	specific	distribution	of	the	colors	within	each	stimulus	
array.	If	the	colors	were	randomly	and	independently	sampled,	which	is	the	
standard	method	in	such	tasks,	chunking	offered	large	advantages.	In	contrast,	the	
advantages	of	chunking	were	considerably	smaller	when	colors	were	uniformly	
distributed	in	color	space	to	maximize	color	separation	(fixed	spacing;	figure	1	
inset;	compare	the	solid	and	dashed	lines	in	figure	3E-F).	It	is	noteworthy	that	the	
prediction	of	performance	decrements	under	fixed	spacing	conditions	is	completely	
opposite	to	that	made	by	a	prominent	active	maintenance	model	of	working	
memory,	a	point	that	we	address	in	detail	with	a	biologically	motivated	model	of	
chunking	in	a	later	section	(Wei	et	al.,	2012).		
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Figure	3:	Chunking	improves	memory	performance	and	can	be	achieved	through	trial-to-trial	
adjustments	of	partitioning	criterion.	A-C:	Criterion-based	chunking	confers	memory	
performance	advantages	and	reduces	feature	storage	requirements	under	resource	assumptions.	A:	
Mean	absolute	error	(ordinate)	for	theoretical	performance	of	a	binary	encoding	model	on	delayed	
report	tasks	of	varying	set	size	(grayscale)	across	all	possible	partitioning	criterions	(abscissa;	0	=	all	
colors	stored	independently).		B:	Model	error	(ordinate)	increases	as	a	function	of	set	size	(abscissa)	
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for	three	partitioning	strategies:	1)	fully	partitioned	(model	always	stores	all	targets	independently),	
2)	optimal	partitioning	(model	considers	all	possible	partitions	for	each	stimulus	array	and	uses	the	
best),	3)	criterion-based	partitioning	(chunking	and	partitioning	is	determined	by	best	criterion	from	
A).	Error	increases	more	shallowly	for	optimal	and	criterion-based	partitioning	strategies	that	
employ	strategic	chunking.	C:	Total	number	of	chunks	requiring	storage	(ordinate)	increases	as	a	
function	of	set	size	(abscissa)	for	all	three	models,	but	saturates	near	4	items	for	optimal	and	
criterion-based	chunking	models.	D-F:	Performance	advantages	of	criterion-based	chunking	hold	for	
binary	word	storage,	analogous	to	“slots	+	averaging.”	D-F	are	analogous	to	A-C	except	that	panels	E	
and	F	show	model	performance	separately	for	randomly	spaced	and	fixed	spaced	stimulus	arrays	
(solid	and	dotted	lines,	respectively)	and	do	not	include	an	“optimal	partitioning”	model,	as	
computing	it	would	be	computationally	inefficient	under	this	framework.	G-I:	Appropriate	
partitioning	criterions	can	be	learned	through	reinforcement.	G:	Adjusting	the	partitioning	criterion	
through	reinforcement	learning	(see	Methods)	leads	simulated	criterions	(ordinate)	to	increase	over	
trials	(abscissa)	in	a	manner	that	scales	with	set	size	(grayscale;	2	=	darkest,	8	=	lightest).	
Adjustments	in	criterion	lead	to	reduced	errors	(H)	and	decrease	the	“chunks”	that	require	storage	
(I).	J-L:	Chunking	selectively	benefits	performance	on	trials	in	which	colors	are	most	tightly	
clustered.	Within-cluster	variance	provides	a	measure	of	feature	clustering	within	a	stimulus	array,	
with	low	values	indicating	more	clustering	(J)	and	high	values	indicating	less	clustering	(K).	
Performance	of	the	best	chunking	model,	but	not	the	non-chunking	model,	depends	on	the	clustering	
of	individual	stimulus	arrays,	as	assessed	through	within-cluster	variance.	Mean	absolute	error	is	
plotted	for	stimulus	arrays	grouped	in	bins	of	within-cluster	variance	for	criterion-based	chunking	
(green)	and	fully	partitioned	(orange)	models.	Triangles	reflect	the	same	values	computed	for	fixed	
spacing	trials,	in	which	stimulus	features	were	minimally	clustered	(as	depicted	in	K).	
	
	
To	better	characterize	the	statistical	properties	of	the	specific	arrays	that	enabled	
better	performance	in	the	chunking	models,	we	computed	the	within-cluster	
variance	(WCV)	as	a	metric	of	how	efficiently	each	stimulus	array	could	be	chunked	
(see	Methods).	Target	arrays	with	tightly	clustered	colors	have	low	WCV,	whereas	
target	arrays	with	distantly	spaced	colors	have	high	WCV	(figure	3J&K).	The	
performance	of	chunking	models	depended	monotonically	on	WCV,	with	the	
smallest	errors	achieved	on	low	WCV	target	arrays	(figure	3L),	supporting	the	
notion	that	chunking	advantages	are	achieved	by	more	efficient	representation	of	
similar	colors	through	joint	encoding.		
	
Taken	together,	the	results	from	the	binary	encoding	model	suggest	that	1)	
selectively	chunking	similar	feature	values	can	improve	performance	in	working	
memory	tasks,	2)	performance	improvements	from	selective	chunking	increase	with	
target	number	and	are	mitigated	by	uniformly	spacing	feature	values,	3)	
performance	of	chunking	models	depends	monotonically	on	WCV,	and	4)	chunking	
behavior	can	be	learned	through	reinforcement	of	successful	chunking	behaviors.	In	
summary,	the	binary	encoding	model	clarifies	why,	and	under	what	conditions,	
chunking	could	benefit	working	memory	performance	in	standard	tasks.	In	the	next	
section,	we	test	whether	performance	of	human	subjects	in	a	delayed	recall	task	
conforms	to	the	predictions	of	the	criterion-based	chunking	model.		
	 	
People	are	more	accurate	and	confident	when	remembering	clustered	stimulus	arrays.		
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To	directly	test	key	predictions	made	by	the	binary	encoding	model,	we	collected	
behavioral	data	from	human	participants	in	the	task	described	in	figure	2.	The	
critical	manipulation	in	the	task	is	that	the	colors	in	some	trials	were	uniformly	
spaced	on	the	color	wheel	(fixed	spacing)	whereas	the	colors	in	interleaved	trials	
were	randomly	and	independently	sampled	from	the	color	wheel	(random	spacing).	
This	manipulation	allowed	us	to	test	the	prediction	of	the	binary	coding	model	that	
more	clustered	stimulus	arrays	lead	to	better	performance	(figures	3E&I).	To	
examine	the	potential	for	adaptive	learning	of	chunking,	we	provided	reward	
feedback	to	subjects	on	each	trial	(by	comparing	error	magnitude	to	a	fixed	
threshold,	either	π/3	or	π/8	in	separate	groups).	The	task	also	required	subjects	to	
wager	about	the	accuracy	of	their	choices	(post-decision)	on	one	third	of	trials.	
These	task	features	allowed	us	to	test	the	prediction	that	chunking	behaviors	are	
adjusted	from	trial-by-trial	through	reinforcement	learning	(see	figure	3G&H)	and	
to	determine	whether	participants	were	aware	of	any	performance	bonuses	
attributable	to	chunking.		
	
In	accordance	with	behavioral	optimization	through	selective	chunking,	participants	
were	more	accurate	and	confident	when	presented	with	randomly	spaced	stimuli.	
Subject	accuracy,	as	assessed	using	the	same	error	threshold	procedure	used	to	
determine	feedback,	was	greater	on	random	spacing	trials	than	on	fixed	spacing	
trials	(figure	S1A;	t	=	4.4,	p	<	10e-4).	This	accuracy	improvement	was	more	
prevalent	for	subjects	that	experienced	a	liberal	accuracy	criterion	(low	precision,	
absolute	error	<	π/3)	than	for	those	that	experienced	a	conservative	accuracy	
criterion	(high	precision,	absolute	error	<	π/8;	two	sample	t-test	for	group	
difference:	t	=	-2.5,	p	=	0.02).	Participants	also	wagered	more	frequently	on	random	
spacing	than	fixed	spacing	trials,	suggesting	that	they	were	cognizant	of	the	
conferred	performance	advantage	(figure	S1B;	t	=	3.1,	p	=	0.003).	Subjects	tended	to	
gauge	their	wagering	behavior	reasonably	well,	with	subjects	who	achieved	higher	
levels	of	accuracy	also	betting	more	frequently	(figure	S1C;	Pearson’s	rho	=0.68,	p	
<10e-6).	Furthermore,	individual	differences	in	the	adjustment	of	wagering	as	a	
function	of	color	spacing	configuration	correlated	with	the	change	in	accuracy	that	
subjects	experienced	across	the	configurations	(figure	S1D;	Pearson’s	rho	=044,	p	=	
0.002).	Taken	together,	these	data	suggest	that	subjects	experienced	and	were	
aware	of	performance	advantages	for	randomly	spaced	stimuli,	but	that	the	extent	
of	these	advantages	differed	across	individuals.		
	
To	better	understand	these	performance	advantages,	we	tested	the	extent	to	which	
trial-to-trial	accuracy	and	confidence	scores	depended	on	stimulus	clustering	within	
the	randomly	spaced	stimulus	arrays.	Specifically,	we	computed	within-cluster	
variance	(WCV)	for	each	color	array	(as	for	the	binary	model)	to	evaluate	whether	
this	clustering	statistic	could	be	used	to	predict	subjects’	accuracy	of,	and	confidence	
in,	color	reports.	As	predicted	by	chunking	models	(figure	3I),	subjects	were	more	
accurate	for	low	WCV	trials;	performance	on	high	WCV	trials	was	similar	to	that	in	
the	fixed	spacing	configuration	(figure	4A).	Furthermore,	subject	wagering	also	
decreased	monotonically	with	WCV,	such	that	betting	behavior	on	the	highest	WCV	
(least	clustered)	color	arrays	was	similar	to	that	on	fixed	spacing	trials	(figure	4B).		
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Performance	advantages	are	not	due	to	binding	errors.	
	
An	alternative	explanation	of	these	effects	is	that	subjects	exhibited	higher	
performance	in	low	WCV	trials	simply	because	they	committed	binding	errors	(Bays	
et	al.,	2009),	mistaking	one	color	for	a	nearby	related	color.		To	address	this	issue,	
we	applied	a	generalized	linear	model	(GLM)	to	the	binary	accuracy	and	confidence	
data.	In	particular,	we	included	the	distances	between	the	target	color	and	each	non-
probed	color	as	nuisance	variables	to	determine	whether	the	apparent	WCV	effects	
could	be	better	explained	by	a	tendency	to	report	non-probed	colors,	which	are	
often	closer	to	the	target	color	for	more	clustered	stimulus	arrays.	When	this	model	
was	applied	separately	to	subject	accuracy	and	accuracy	of	reports	simulated	from	a	
mixture	model	that	included	binding	errors,	coefficients	for	WCV	were	negative	in	
fits	to	subject	data	but	negligible	when	fit	to	simulated	data,	suggesting	that	
performance	improvements	mediated	by	WCV	were	not	simply	a	reflection	of	
binding	errors	(figure	S2;	subject	accuracy	β	=	0.028,	t	=	5.3,	p	<	10e-6).	
Furthermore,	when	the	same	model	was	fit	to	post-decision	wagers,	coefficients	for	
WCV	took	similarly	negative	values,	suggesting	that	subjects	were	aware	of	the	
performance	advantages	that	they	gained	from	the	clustered	stimulus	arrays	(β	=	-
0.049,	t	=	-5.7,	p	<	10e-7).		
	
Trial-by-trial	adjustment	in	accordance	with	reinforcement	learning		
The	GLM	also	included	terms	to	account	for	other	factors	that	could	potentially	
affect	task	performance,	including	feedback	from	previous	trials.	Positive	feedback	
on	the	previous	trial	was	predictive	of	higher	accuracy	and	confidence	for	the	
current	trial,	in	a	manner	consistent	with	trial-by-trial	behavioral	adjustment	
(figure	S2,	“correct	(t-1)”	coefficient;	accuracy	β	=	0.017,	t	=	5.0,	p	<	10e-6;	
confidence	β	=	0.026,	t	=	4.9,	p	<	10e-5).	This	predictive	relationship	was	unlikely	to	
be	driven	by	autocorrelation	in	performance,	as	such	an	explanation	should	also	
predict	that	confidence	measurements	relate	to	accuracy	on	future	trials,	and	this	
relationship	was	not	evident	in	the	data	(figure	S2,	“correct	(t+1)”	coefficient;	
confidence	β	=	0.0017,	t	=	0.3,	p	=	0.75).	Despite	seemingly	robust	feedback-driven	
effects,	overall	performance	improvements	across	the	session	were	somewhat	
modest,	as	evidenced	by	a	relatively	small	positive	coefficient	for	a	term	in	the	GLM	
relating	block	number	to	accuracy	(figure	S2,	“block”	coefficient;	accuracy	β	=	0.007,	
t	=	2.3,	p	=	0.02).	Thus,	the	GLM	results	suggest	that	subjects	gained	a	performance	
advantage	for	clustered	target	arrays,	modulated	behavior	in	response	to	previous	
feedback,	and	improved	slightly	over	the	course	of	task	sessions.	Below	we	provide	
a	more	specific	test	of	whether	subjects	were	adjusting	chunking	strategies	in	
accordance	with	the	RL	strategy	employed	in	the	binary	encoding	model.	
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Figure	4:	Memory	recall	and	confidence	are	enhanced	for	clustered	stimulus	arrays	and	
adjusted	according	to	trial	feedback	in	accordance	with	model	predictions.		A&B:	Memory	
performance	and	confidence	increase	with	stimulus	clustering.	Mean	absolute	error	magnitude	(A)	
and	high	wager	frequency	(B)	were	computed	per	subject	in	sliding	bins	of	within-cluster	variance	
(larger	values	=	decreased	stimulus	clustering)	for	random	(lines)	and	fixed	spacing	conditions	
(points).	Lines	and	shading	reflect	mean	and	SEM	across	subjects.	C-F:	Mixture	model	fits	reveal	
recall	benefit	of	stimulus	clustering	and	hallmark	of	feedback-driven	criterion	adjustments.	C:	
Subject	data	were	fit	with	a	mixture	model	that	considered	reports	to	come	from	a	mixture	of	
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processes	including	1)	a	uniform	“guess”	distribution,	2)	a	“memory+binding”	distribution	centered	
on	the	color	of	the	probed	target,	and	3)	a	“binding	error”	distribution	including	peaks	at	each	non-
probed	target	[not	shown].	Additional	terms	were	included	in	the	model	to	allow	the	recall	
probability	to	vary	as	a	logistic	function	of	stimulus	clustering,	recent	feedback,	and	their	interaction.	
D-F:	Recall	probability	was	modulated	by	feedback	and	stimulus	clustering	in	a	manner	suggestive	of	
trial-to-trial	adjustments	of	chunking.	Mean/SEM	coefficients	across	subjects	for	each	modulator	of	
recall	(log	within-cluster	variance	(WCV),	previous	trial	feedback	(pCorr),	previous	trial	log	within-
cluster	variance	(pWCV),	pCorr*WCV	and	pCorr*WCV*pWCV)	are	represented	from	left	to	right	as	
points/lines.	Multiplicative	interaction	terms	were	included	to	capture	the	form	of	criterion	
adjustments	that	were	used	to	facilitate	criterion	learning	in	the	binary	encoding	model	(Fig	4G-I).		
E&F:	Recall	probability	of	best	fitting	descriptive	models	plotted	as	a	function	of	the	log	within-
cluster	variance	for	the	current	trial	and	divided	according	to	previous	feedback	(color)	and	the	log	
within-cluster	variance	from	the	previous	trial	[E:	pWCV	=-1,	F:	pWCV=-5].	Lines/shading	reflect	
mean/SEM	across	subjects.	Feedback	effects	are	consistent	with	reinforcement-learning	as	
implemented	in	the	binary	encoding	model:	when	chunking	clustered	stimulus	arrays	is	rewarded	
with	positive	feedback,	it	is	reinforced,	leading	to	selective	performance	improvements	for	clustered	
stimulus	arrays	on	the	subsequent	trial.		
	
To	better	understand	how	working	memory	fidelity	depends	on	stimulus	clustering	
and	feedback	history,	we	extended	a	basic	mixture	model	of	subject	memory	reports	
(figure	4C;	(Bays	et	al.,	2009;	Zhang	&	Luck,	2008)).	The	model	considers	memory	
reports	to	come	from	a	mixture	distribution	that	includes	a	“memory”	component	
centered	on	the	probed	color,	a	“guessing”	component	uniformly	distributed	across	
color	space	and	a	“binding	error”	component	that	assumes	reports	are	centered	on	
non-probed	target	colors	(not	shown	in	figure;	(Bays	et	al.,	2009;	Zhang	&	Luck,	
2008)).	We	allowed	the	proportion	of	recall	(1-guessing)	to	vary	as	a	function	of	the	
key	factors	that	should	affect	performance	if	subjects	are	optimizing	chunking.	
Across	subjects,	the	probability	of	recall	increased	with	stimulus	clustering,	as	
assessed	by	within-cluster	variance	(figure	4D;	t	=	-5.7,	p	<	10e-6).	Notably,	
performance	improvements	due	to	stimulus	clustering	were	observed	even	for	
stimulus	arrays	in	which	the	probed	target	color	was	dissimilar	to	the	cluster	of	
non-probed	target	colors	(figure	S3),	as	predicted	by	the	binary	encoding	model	
(i.e.,	where	chunking	increases	resources	and	probability	of	encoding	of	other	
items).	Together	with	the	GLM	results	above,	these	findings	rule	out	alternative	
explanations	in	which	WCV	effects	would	arise	simply	by	mistaking	one	color	for	
another	one	nearby,	and	instead	support	our	thesis	that	clusters	of	stimuli	can	be	
stored	jointly	to	conserve	representational	space.	
	
Furthermore,	additional	coefficients	provided	evidence	that	people	adjusted	
chunking	strategies	online	as	a	function	of	reward	feedback	in	a	manner	similar	to	
that	used	to	optimize	performance	in	the	binary	encoding	model	(figure	3G).	In	
particular,	in	our	reinforcement	learning	implementation,	the	partitioning	criterion	
was	adapted	based	on	the	amount	of	chunking	in	the	previous	trial	and	the	
concomitant	reward	feedback,	and	it	selectively	contributed	to	performance	
improvements	for	the	most	clustered	stimulus	arrays	(figure	3H-F).	To	explore	the	
possibility	that	people	adjust	chunking	in	a	similar	way,	we	included	additional	
terms	in	the	mixture	model	to	allow	recall	probability	to	vary	as	a	function	of	
previous	trial	feedback	(pCorr),	proxies	for	previous	and	current	trial	clustering	
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(pWCV,	WCV),	and	their	predicted	interactions	(see	Methods).	The	best	fitting	
coefficients	revealed	an	overall	recall	bonus	on	trials	following	correct	feedback	
(pCorrect:	t	=	5.4,	p	<	10e-5),	but	also	that	the	magnitude	of	this	bonus	was	greater	
for	trials	in	which	stimuli	were	more	clustered	(pCorrect	*	WCV:	t	=	-2.1,	p	=	0.04)	
and	for	trials	in	which	the	level	of	stimulus	clustering	matched	that	of	the	previous	
trial	(pCorrect	*	WCV	*	pWCV:	t	=	2.1,	p	=	0.04;	figure	4D).	Consistent	with	
optimization	of	chunking	via	reinforcement	learning,	these	interactions	capture	a	
tendency	toward	larger	feedback-driven	changes	in	task	performance	when	both	
the	current	and	previous	trial	color	arrays	were	highly	clustered	(figure	4E&F).	
Taken	in	the	context	of	our	model,	this	suggests	that	when	subjects	are	rewarded	for	
successfully	chunking	a	stimulus	array,	they	are	more	apt	to	repeat	this	chunking	on	
the	subsequent	trial.	Moreover,	these	strategic	adjustments	rule	out	an	obligatory	
alternative	mechanism	in	which	chunking	occurs	regardless	of	task	demands.		
	
In	sum,	our	abstract	model	of	a	memory-limited	system	predicted	performance	
advantages	and	trial-to-trial	adjustments	associated	with	selective	chunking	that	
were	subsequently	validated	in	empirical	data	from	human	subjects	performing	a	
working	memory	task.	Nonetheless,	the	abstract	system	that	we	explored	does	not	
mimic	the	processing	architecture	that	is	used	by	the	brain,	leaving	open	the	
question	of	how	selective	chunking	might	be	achieved	using	biological	hardware.	In	
the	next	section	we	consider	this	question	in	depth,	by	attempting	to	endow	a	
biologically	inspired	active	maintenance	model	of	working	memory	with	the	
computational	elements	necessary	to	achieve	the	chunking-based	performance	
bonus	predicted	by	the	abstract	model	and	observed	in	data	from	human	subjects.		
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Figure	5:	Center-surround	connectivity	as	a	mechanism	to	support	chunking	and	partitioning	
operations	needed	to	optimize	working	memory	storage.		A&B)	Local	recurrent	excitation	and	
lateral	inhibition	are	critical	for	active	working	memory	maintenance	in	biologically	plausible	neural	
networks	(Almeida	et	al.,	2015;	Wei	et	al.,	2012).	However,	the	exact	form	of	lateral	inhibition	has	
been	varied	across	studies,	with	the	most	common	version	employing	uniform	inhibition	across	the	
entire	population	of	tuned	excitatory	neurons	(A,	(Wei	et	al.,	2012))	whereas	others	employ	broadly	
tuned	inhibition	such	that	similarly	tuned	excitatory	neurons	indirectly	exert	stronger	inhibitory	
forces	on	one	another	(B,	(Almeida	et	al.,	2015)).	C)	Simulated	firing	rates	(redder	colors	indicate	
greater	firing)	of	a	population	of	color	tuned	neurons	using	the	connectivity	architecture	described	in	
panel	A	performing	a	working	memory	task	(ordinate	reflects	neural	tuning	preference;	abscissa	
reflects	time	in	milliseconds;	yellow	bars	indicate	200	ms	color	inputs	delivered	in	a	fixed	pattern	
across	network	architectures).	As	described	by	Wei	and	colleagues,	bumps	of	neural	activity	
sometimes	collide,	producing	“merged”	representations	(e.g.,	top	activity	bump	in	panel	C),	a	possible	
mechanism	for	chunking.	However,	also	as	described	by	Wei	and	colleagues,	collisions	are	somewhat	
indiscriminate	and	can	increase	overall	population	firing,	which	in	turn	can	lead	to	collapse	of	other	
activity	bumps	(e.g.,	bottom	activity	bump)	and	hence	forgetting.	D)	Simulated	firing	rates	from	the	
same	population	of	neurons	for	the	same	task,	but	using	center-surround	connectivity	(i.e.,	broadly	
tuned	inhibition).	Note	that	the	closest	bumps	of	activity	are	selectively	chunked	(e.g.,	second	and	
third	bump	from	top),	but	the	tuned	inhibition	effectively	partitions	more	distantly	separated	
representations	(e.g.,	the	top	from	the	second	and	third)	and	prevents	forgetting	of	unrelated	items.	
A	related	consequence	of	the	tuned	inhibition	is	that	partitioned	representations	exert	repulsive	
forces	on	one	another	during	the	delay	period	(see	differences	in	separation	of	activity	bumps	at	pink	
arrows).	Thus,	tuned	inhibition	affords	selective	partitioning	of	representations,	but	changes	
representations	through	inter-item	repulsion.			
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Center-surround	dynamics	as	a	mechanism	for	chunking	and	partitioning		
	
The	brain	is	thought	to	implement	visual	working	memory	in	neural	networks	that	
include	individual	neurons	tuned	to	specific	visual	features	and	capable	of	
maintaining	representations	in	the	absence	of	input	(Curtis	&	D'Esposito,	2003;	
Fuster	&	Jervey,	1981;	Goldman-Rakic,	1995;	E.	K.	Miller	&	Cohen,	2001;	Warden	&	
Miller,	2007).	In	computational	models,	the	ability	of	a	neural	network	to	maintain	
feature	representations	in	the	absence	of	inputs	depends	critically	on	the	recurrent	
connections	between	neurons	(Barak,	Sussillo,	Romo,	Tsodyks,	&	Abbott,	2013;	
Durstewitz	&	Seamans,	2002;	Kilpatrick,	Ermentrout,	&	Doiron,	2013;	Murray	et	al.,	
2014;	X.	J.	Wang,	1999).	In	particular,	persisting	feature	representations,	like	those	
of	the	colors	in	our	task,	are	facilitated	by	local	excitatory	connections	between	
similarly	tuned	neurons	and	by	broad	inhibition	between	neurons	(X.	J.	Wang,	
1999).	Importantly,	for	simplicity,	the	most	common	variant	of	such	models	
includes	uniformly	weighted	connections	for	inhibitory	neurons	(figure	5A).	While	
this	model	exhibits	merging	of	color	representations	and	hence	provides	a	
promising	mechanism	for	chunking,	it	produces	promiscuous	merging	of	individual	
color	representations	(bumps),	large	and	unwieldy	bumps	of	population	activity,	
and	due	to	uniform	lateral	inhibition,	forgetting	of	further	colors	(figure	5C;	(Wei	et	
al.,	2012)).	Thus	in	a	sense,	such	bump	collisions	are	analogous	to	the	chunking	
implemented	in	our	more	abstract	binary	encoding	model,	yet	they	lack	the	
selectivity	necessary	to	mediate	performance	optimization,	and	indeed,	predict	the	
opposite	pattern	of	performance	than	seen	empirically,	with	worse	performance	for	
randomly	spaced	arrays	and	improved	performance	for	fixed	arrays	(Wei	et	al.,	
2012)		
	
We	considered	whether	other	patterns	of	connectivity	would	remedy	this	issue.	
Notably,	physiological	data	suggest	that	neural	responses	within	such	networks	
obey	center-surround	receptive	field	architectures	that	are	present	throughout	the	
visual	system	(Hubel	&	Wiesel,	1959;	1965),	are	supported	by	lateral	connectivity	
(Ben-Yishai,	Bar-Or,	&	Sompolinsky,	1995;	Kohonen,	1982;	Somers,	Nelson,	&	Sur,	
1995),	and	predict	biases	previously	observed	in	visual	working	memory	reports	
(Almeida	et	al.,	2015;	Kiyonaga	&	Egner,	2016).	We	thus	altered	the	Wei	et	al.	model	
to	include	broadly	tuned	inhibition	in	accordance	with	center-surround	recurrence,	
whereby		Feedback	inhibition	is	stronger	for	neurons	with	similar	color	tuning	
(figure	5B).	In	this	case,	recurrent	excitation	promotes	merging	of	nearby	color	
representations,	but	tuned	inhibition	prevents	the	merged	representation	from	
expanding	in	width,	thereby	preventing	it	from	1)	suppressing	other	activity	bumps	
through	an	overpowering	lateral	inhibition	leading	to	forgetting,	and	2)	
indiscriminately	merging	with	other	activity	bumps	(figure	5D).	Indiscriminate	
merging	is	prevented	through	repulsive	forces	exerted	by	each	activity	bump	on	
neighboring	representations,	which	enable	separation	of	dissimilar	representations	
(see	widening	gap	noted	by	pink	arrows).	Thus,	center-surround	recurrence	
provides	a	dynamic	analog	to	the	selective	chunking	necessary	for	optimization	in	
the	binary	encoding	model;	nearby	representations	that	share	excitatory	recurrent	
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connections	are	merged	into	a	single	representation	(chunking)	whereas	more	
distantly	separated	representations	are	repulsed	by	tuned	inhibition	to	effectively	
partition	moderately	dissimilar	color	representations	(partitioning).		
	
This	center-surround	connectivity	profile	promotes	complex	item	interactions	that	
can	be	summarized	by	a	“difference	of	Gaussians”	function	that	mediates	the	
attraction	and	joint	representation	of	similar	colors	and	the	repulsion	of	dissimilar	
ones	(figure	6A;	yellow	shading).	If	the	two	stored	colors	are	similar	enough	to	
promote	mutual	recurrent	excitation,	each	represented	color	will	experience	biased	
excitation	in	the	direction	of	its	neighboring	color,	and	eventually	the	two	color	
“bumps”	will	merge	to	form	a	single	representation	(figure	6A)	(Wei	et	al.,	2012).	In	
contrast,	if	the	stored	colors	are	separated	beyond	the	narrowly	tuned	recurrent	
excitation	function,	mutual	recurrent	inhibition	will	dominate,	leading	to	a	net	
repulsion	of	color	representations	from	one	another	(Felsen,	Touryan,	&	Dan,	2005;	
Kiyonaga	&	Egner,	2016),	which	can	serve	as	a	selective	partition	(figure	6A).	

	
	
Figure	6:	Center-surround	dynamics	facilitate	attractive	and	repulsive	inter-item	forces	that	
can	improve	recall	at	the	cost	of	precision.	A)	Local	recurrent	excitation	and	broadly	tuned	lateral	
inhibition	give	rise	to	two	counteracting	forces:	recurrent	excitation	facilitates	attraction	of	

0 2 4 6 8
0.4

0.6

0.8

1

1.2

Ab
so

lu
te

 er
ro

r
B

0 2 4 6 8
3

4

5

6

7

8

Pr
ec

isi
on

C

0 2 4 6 8
Items in array

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n 

re
ca

lle
d

A

Excitation

inhibition

Net attraction
Net 

repulsion

Color

Stronger 
dynamics

Weaker
 dynamics

“chunking”“partitioning”

D

Items in array

Items in array

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/098939doi: bioRxiv preprint 

https://doi.org/10.1101/098939
http://creativecommons.org/licenses/by-nc-nd/4.0/


neighboring	representations	through	“bump	collisions”	(Wei	et	al.,	2012),	whereas	broadly	tuned	
lateral	inhibition	facilitates	repulsion	of	distinct	bumps	of	neural	activity	(Felsen	et	al.,	2005;	
Kiyonaga	&	Egner,	2016).	Together,	these	forces	produce	a	difference	of	Gaussians	tuning	function	
(yellow	shading)	that	facilitates	attraction	of	closely	neighboring	representations	but	repulsion	of	
more	distant	ones.	Here	we	model	these	effects	at	the	cognitive	level	by	assuming	that	two	imprecise	
internal	representations	of	color	are	chunked,	and	jointly	represented	by	their	mean	value,	with	a	
fixed	probability	defined	by	a	narrowly	tuned	von	Mises	distribution	(green	curve;	B&C)	in	order	to	
mimic	the	effects	of	narrowly	tuned	excitation.	After	probabilistic	chunking,	each	color	
representation	exerts	a	repulsive	influence	over	all	other	representations	with	a	magnitude	defined	
by	a	broadly	tuned	von	Mises	distribution	(red	curve)	in	order	to	mimic	the	effects	of	broadly	tuned	
inhibition.	The	model	stores	a	Poisson	number	of	the	representations,	chunked	or	otherwise,	for	
subsequent	recall.	B)	The	influence	of	center-surround	dynamics	over	model	performance	can	be	
manipulated	by	applying	a	gain	to	the	amplitude	of	the	excitation	and	inhibition	functions	such	that	
larger	values	correspond	to	greater	item	interdependencies	and	lead	to	smaller	errors	on	average	
(lighter	colors	correspond	to	higher	gain).	C&D)	The	performance	improvement	mediated	by	
increasing	center-surround	dynamics	relies	on	a	tradeoff	between	recall	probability	and	precision,	
through	which	increased	attractive	and	repulsive	forces	reduce	precision	(lighter	bars;	C),	but	
enhance	recall	probability	(lighter	bars;	D).	
 
	
We	next	examined	how	chunking,	as	implemented	through	this	framework,	would	
impact	performance	as	a	function	of	stimulus	array	size.	To	do	so,	we	summarized	
the	impact	of	center-surround	connectivity	in	an	algorithmic	model	of	working	
memory	performance	that	contained	a	small	number	of	intuitive	parameters.	We	
implemented	attractive	and	repulsive	forces	among	stored	memories	in	accordance	
with	narrowly	tuned	excitation	and	broadly	tuned	inhibition	functions	(see	Methods	
for	details).	On	each	trial,	each	color	from	the	target	array	was:	1)	perturbed	by	a	
mean	zero	random	variable	to	simulate	neural	noise,	2)	chunked	with	each	other	
color	in	the	array	with	probability	proportional	to	the	excitation	tuning	function,	3)	
repulsed	by	each	other	color	in	the	array	with	magnitude	proportional	to	the	
inhibition	tuning	function,	and	4)	probabilistically	stored	across	the	delay	period	
according	to	a	Poisson	process.	The	proportionality	constants	allowed	us	to	examine	
the	performance	of	models	ranging	from	those	that	were	not	affected	by	recurrent	
dynamics	(zero	proportionality	constant)	to	those	that	were	highly	affected	(large	
proportionality	constant).	
	
Models	implementing	greater	recurrent	dynamics	achieved	better	performance	
through	a	recall/precision	tradeoff.	Performance	was	simulated	on	delayed	report	
tasks	in	which	target	number	(array	size)	ranged	from	one	to	eight.	Performance	of	
models	employing	recurrent	dynamics	was	slightly	worse	for	easier	tasks	but	
dramatically	improved	for	more	difficult	ones,	similar	to	the	effects	observed	in	the	
binary	model	above	(figure	6B;	lighter	lines	represent	stronger	recurrent	
dynamics).	Here,	though,	performance	differences	were	characterized	by	opposing	
effects	of	recurrent	dynamics	on	precision	and	recall.	Models	employing	recurrent	
dynamics	showed	improved	recall,	particularly	in	the	hardest	tasks,	as	attractive	
forces	allowed	for	the	storage	of	multiple	target	features	in	a	single	representation	
(figure	6D).	However,	these	same	recurrent	dynamics	came	at	the	cost	of	reduced	
precision,	as	both	attractive	and	repulsive	forces	reduced	the	fidelity	of	stored	color	
representations	(figure	6C).	In	standard	models	of	resource	limitations,	precision	
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decrements	with	increased	array	sizes	have	been	attributed	to	the	division	of	a	
limited	resource.		However,	in	the	recurrent	dynamics	models,	the	decrement	in	
precision	is	caused	by	the	increase	in	inter-item	interactions	that	occurs	when	
additional	items	are	added	to	the	memory	array.	Thus,	the	inclusion	of	recurrent	
dynamics	affects	the	nature	of	capacity	limitations:	minimizing	the	impact	of	center-
surround	forces	leads	to	a	specific	decay	in	recall	as	a	function	of	array	size,	as	
predicted	by	“slots”	models,	whereas	maximizing	the	impact	of	center-surround	
forces	leads	to	decays	in	precision	across	set	size,	which	is	a	key	feature	of	resource	
depletion	accounts	(Bays	&	Husain,	2008;	Luck	&	Vogel,	2013;	Ma	et	al.,	2014;	Zhang	
&	Luck,	2008).		
	
In	summary,	inter-item	dependencies	that	emerge	from	center-surround	dynamics	
are	sufficient	to	mediate	the	performance	bonuses	of	chunking,	but	do	so	at	the	cost	
of	precision.	Thus,	if	working	memory	is	optimized	through	chunking	in	this	way,	it	
should	lead	to	more	faithful	recall	for	clustered	stimulus	arrays	but	more	precise	
recall	of	less	clustered	ones.	In	principle,	such	optimization	could	be	guided	in	
cognitive	or	real-world	tasks	by	implicit	or	explicit	feedback	to	favor	successful	
chunking	strategies	and	avoid	unsuccessful	ones.		
	
People	are	less	precise	when	remembering	clustered	target	arrays.		
	
Our	center-surround	implementation	of	chunking	and	partitioning	predicts	that	
chunking	advantages	should	come	at	the	cost	of	precision	(figure	6B&C).	To	test	this	
prediction,	we	examined	the	difference	in	error	distributions	for	random	vs.	fixed	
spacing,	pooled	across	all	subjects	(figure	7,	left	column).	The	error	distributions	
from	both	conditions	were	consistent	in	shape	with	those	previously	reported	in	
similar	tasks	(figure	7A&D)	(van	den	Berg	et	al.,	2014).	However,	the	error	
distributions	differed	subtly	between	the	two	conditions:	in	the	random-spacing	
condition,	subjects	made	more	moderately	small	errors,	but	did	not	have	more	
perfect	recalls	(figure	7G).	This	pattern	of	difference	was	also	evident	in	data	
simulated	from	the	center-surround	chunking	model	(figure	7,	middle	column)	but	
not	in	data	simulated	from	an	independent	encoding	model	fit	to	subject	behavior	
(figure	7,	right	column).	Thus,	both	the	subjects	and	the	center-surround	chunking	
model	reported	more	colors	that	were	slightly	offset	from	the	target	color	in	the	
random-spacing	condition	than	in	the	fixed-spacing	condition,	consistent	with	a	
reduction	in	precision	resulting	from	chunking.		
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Figure	7:	Error	distributions	reveal	evidence	for	center-surround	chunking.	A-C)	Signed	color	
reproduction	errors	made	in	the	random	spacing	condition	by	(A)	subjects,	(B)	center-surround	
chunking	models,	and	(C)	independent	encoding	models.	Data	is	collapsed	across	all	simulated	or	
actual	sessions.	D-F)	Same	as	A-C	but	for	the	fixed	spacing	condition.	Red	dashed	lines	indicate	
probed	and	non-probed	target	locations.	Note	that	the	alignment	of	non-probed	target	locations	
emphasizes	the	prominence	of	non-probed	target	reports	(binding	errors),	which	would	appear	
uniformly	distributed	in	the	random	spacing	condition.	G-I)	Difference	in	above	error	distributions	
for	random	minus	fixed.	To	aid	in	visualization,	bin	count	differences	were	smoothed	with	a	Gaussian	
kernel	(standard	deviation	=	1	bin).	Subjects	and	the	center-surround	chunking	model	show	
increased	moderately	small,	but	non-zero,	errors	in	the	random	spacing	condition.	Note	that	
differences	of	reports	between	the	random	and	fixed	conditions	near	the	non-probed	targets	are	
present	in	both	models,	as	they	simply	reflect	an	artifact	of	the	alignment	of	binding	errors	in	the	
fixed	spacing	condition.		
	
Errors	are	modulated	by	nearest	neighbors	consistent	with	chunking	via	recurrence	
	
To	better	understand	the	nature	of	these	error	distributions,	and	to	what	extent	
they	are	predicted	by	attraction	and	repulsion	forces	in	center-surround	dynamics,	
we	sorted	trials	according	to	the	non-probed	target	color	that	was	most	similar	to	
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the	probed	target	color	(nearest	neighbor	color;	see	Methods	for	details).	This	
procedure	revealed	structure	in	individual	subject	color	reports	related	to	the	
nearest	neighbor	non-probed	color	(see	figure	S4).	To	determine	whether	such	
structure	persisted	systematically	across	subjects,	we	fit	a	descriptive	mixture	
model	to	error	distributions	pooled	across	subjects	in	sliding	windows	of	nearest	
neighbor	distance.	The	model	contained	free	parameters	to	examine	1)	the	
precision	of	error	distributions,	2)	the	bias	of	error	distributions	toward	(or	away	
from)	the	nearest	neighbor	non-probed	target	color,	and	3)	the	relative	proportion	
of	trials	that	were	recalled,	forgotten,	or	mis-bound	(in	keeping	with	nomenclature	
from	previous	literature	(Bays	et	al.,	2009;	Fallon,	Zokaei,	&	Husain,	2016)).		
	
	
The	model	fits	revealed	that	subject	precision	and	bias	depended	on	neighboring	
colors	in	a	manner	consistent	with	chunking	through	recurrent	dynamics.	In	
particular,	subject	memory	reports	were	biased	towards	the	nearest	neighbor	color	
if	it	was	sufficiently	similar	to	the	probed	target	color,	but	biased	away	from	it	if	it	
was	sufficiently	dissimilar	(figure	8A).	This	pattern	of	bias	maps	onto	the	idea	of	a	
narrowly	tuned	excitation	function	promoting	attraction	of	nearby	targets	and	a	
broadly	tuned	inhibition	function	promoting	repulsion	of	more	distant	ones	(see	
figure	8A).	Precision	also	depended	on	nearest	neighbor	color	distance:	subject	
precision	was	maximal	when	the	nearest	neighbor	color	was	most	dissimilar	to	the	
probe	color	and	minimal	when	it	was	moderately	similar	(figure	8D).	In	addition,	
fits	revealed	an	increase	in	the	proportion	of	correct	recalls,	and	a	corresponding	
decrease	in	the	number	of	uniform	guesses,	when	a	nearby	neighbor	color	existed	in	
the	stimulus	array	(figure	S5).	This	pattern	of	results	was	strikingly	consistent	with	
those	produced	by	a	chunking	model	based	on	recurrent	dynamics	(figure	8,	middle	
column)	but	not	with	those	produced	by	the	best	fitting	mixture	model	(figure	8,	
right	column).		
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Figure	8:	Neighboring	stimulus	features	affect	bias,	precision,	and	recall	probability	as	
predicted	by	the	center-surround	chunking	model.		Subject	(left)	and	simulated	(center	=	center-
surround,	right	=	independent	encoding)	data	were	collapsed	across	all	sessions	and	binned	in	
sliding	windows	according	to	the	absolute	distance	between	the	probed	target	color	and	the	most	
similar	non-probed	target	color	(nearest	neighbor	distance;	abscissa).	Data	in	each	bin	were	fit	with	a	
mixture	model	that	included	free	parameters	to	estimate	1)	the	bias	of	memory	reports	towards	the	
closest	color	in	the	target	array	expressed	as	a	fraction	of	distance	to	that	target	(A-C),	and	2)	the	
precision	of	memory	reports	(D-F).	The	qualitative	trends	present	in	subject	data	are	also	present	in	
data	simulated	from	the	center-surround	chunking	model	but	not	in	those	simulated	from	the	
independent	encoding	model.	Red	bars	reflect	the	nearest	neighbor	distance	at	which	precision	fits	
to	subject	data	were	minimal	and	also	corresponds	well	with	the	crossover	point	of	the	bias	fits.		
	
Quantitative	model-fitting	of	center-surround	model	reveals	empirical	evidence	of	
performance	advantage	for	chunking.		
	
While	the	above	mixture	model	fits	revealed	structure	across	subjects	on	average,	
here	we	provide	a	quantitative	fit	of	the	center-surround	model	directly	to	the	trial-
by-trial	memory	report	data	for	each	individual	subject,	allowing	us	to	quantify	
chunking	effects	and	examine	the	range	of	behavioral	chunking	strategies	across	
individual	participants.	To	make	this	fitting	more	tractable	(i.e.,	to	facilitate	a	closed	
form	likelihood	function),	we	simplified	the	center-surround	model	while	retaining	
its	core	elements.	These	simplifications	included	removal	of	sensory	noise	and	the	
simplification	of	the	center	(chunking)	and	surround	(repulsion)	forces	(see	
Methods).	We	fit	three	different	models	to	estimate	the	potentially	separable	
contributions	of	center	and	surround	functions	using	maximum	likelihood.	The	
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“center”	model	estimated	the	partitioning	criterion,	which	summarized	the	center	
function,	as	a	free	parameter,	whereas	the	“surround”	model	fit	the	repulsion	
coefficient	as	a	free	parameter.		The	“center-surround”	model	fit	both	center	and	
surround	with	free	parameters.	All	models	were	also	compared	to	a	basic	mixture	
model.	Goodness	of	fit	was	evaluated	for	each	model	using	AIC,	which	applies	a	fixed	
complexity	penalty	for	each	parameter	and	provided	better	model	recovery	for	
simulated	data	than	BIC.		
	
Comparison	of	the	center-surround	model	to	a	basic	mixture	model	revealed	an	
explanatory	advantage	of	the	former,	albeit	with	considerable	heterogeneity	across	
individual	subjects.	The	center-surround	model	achieved	the	lowest	average	AIC	
values	per	subject	of	all	models	(AIC	relative	to	best	model:	2.0,	2.56,	1.14,	and	0	for	
basic	mixture,	center,	surround,	and	center-surround	models	respectively).	
Inclusion	of	both	center	and	surround	terms	was	favored	by	a	likelihood	ratio	test	
(χ2(94)	=	281,	p	<10e-5)	and	Bayesian	model	selection	favored	the	center-surround	
model	in	terms	of	explaining	the	largest	proportion	of	subject	behavior	(exceedance	
probability	=	0.85).	However,	the	best	fitting	model	was	not	consistent	across	
subjects,	with	some	subjects	best	fit	by	the	simple	mixture	model	and	others	best	fit	
by	the	center-surround	model	(figure	9A).	Parameter	estimates	from	the	best	fitting	
center-surround	model	were	also	indicative	of	heterogeneity.	For	a	large	number	of	
subjects,	the	best	fitting	partitioning	criterions	were	near	zero	(indicating	no	
chunking),	but	partitioning	criterions	fit	to	the	remainder	of	subjects	were	broadly	
distributed	(figure	9B).	Best	fitting	repulsion	coefficients	were	more	normally	
distributed	across	subjects,	tending	to	take	small	positive	values,	indicating	a	
tendency	toward	repulsion	of	partitioned	representations	(figure	9C).		
	
Heterogeneity	in	model	fits	also	related	to	overall	task	performance	in	a	manner	
suggestive	of	a	performance	advantage	for	chunking.	Our	modeling	suggested	that	
criterion-based	chunking	could	be	used	to	reduce	overall	errors	in	a	visual	working	
memory	task,	and	the	differences	in	model	fits	across	our	subjects	offered	us	an	
opportunity	to	test	this	idea.	Consistent	with	chunking	facilitating	in-task	
performance	advantages,	subjects	fit	with	larger	partitioning	criterions	and	
repulsion	coefficients	achieved	better	performance	on	the	task	(figure	9E&F;	
partitioning	criterion:	Spearman’s	ρ	=		-0.54,	p	=	8.5e-5;	repulsion	coefficient:	
Spearman’s	ρ	=		-0.39,	p	=	7.4e-3).	Similar	relationships	were	seen	between	model	
preference	and	overall	performance,	with	the	subjects	that	were	best	fit	by	the	
center-surround	model	also	tending	to	have	the	lower	absolute	errors	in	the	task	
(figure	9D;	Spearman’s	ρ	=		-0.59,	p	=	1.6e-5).	In	order	to	examine	which	parameter	
of	our	model	best	predicts	subject	performance,	we	constructed	a	GLM	to	examine	
the	independent	contributions	of	partitioning	criterion	and	repulsion	parameter	
estimates	on	subject	performance	(as	measured	by	mean	absolute	error)	and	found	
that	when	accounting	for	both	variables,	only	the	partitioning	criterion	maintained	
explanatory	power,	with	higher	partitioning	criterions	corresponding	to	lower	
absolute	error	magnitudes	(partitioning	criterion	β	=	-0.95,		t=	-3.2,	p	=	0.002;	
repulsion		β	=	0.8,		t=	0.4,	p	=	0.7).	Thus,	individuals	who	chunked	the	most	liberally	
also	achieved	the	best	task	performance.			
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Figure	9:	Heterogeneous	chunking	strategies	across	individual	subjects	provide	empirical	
evidence	for	the	performance	advantages	afforded	by	chunking.		A)	AIC	difference	between	
simple	mixture	model	and	more	complex	center	(orange),	surround	(yellow),	and	center	+	surround	
(blue)	models	is	plotted	for	each	subject,	sorted	by	model	preference	(positive	values	indicate	that	
more	complex	model	is	preferred).	Aggregate	AIC	values	favored	the	C+S	model,	yet	there	was	
substantial	variability	across	subjects	in	marginal	improvement	afforded	by	the	C+S	model	over	the	
simpler	mixture	model,	with	AIC	values	providing	moderate	evidence	for	the	mixture	in	some	
subjects,	but	strong	evidence	for	the	C+S	model	in	other	subjects.		B)	Partitioning	criterions	best	fit	to	
subject	data	also	reflected	heterogeneity	in	strategies	across	subjects,	with	a	number	of	subjects	best	
fit	with	criterion	values	near	zero,	and	another	subset	of	subjects	taking	values	across	a	wider	range	
from	0.1-0.5.	C)	Best	fitting	repulsion	coefficients	tended	to	take	positive	values	across	subjects,	
indicating	that	independently	represented	colors	tended	to	exert	repulsive	forces	on	one	another	by	
the	best	fitting	model	parameterization.	D-F)	Subjects	displaying	more	evidence	of	center-surround	
chunking	performed	better	on	the	working	memory	task.	D)	Mean	absolute	error	was	greatest	for	
the	subjects	that	displayed	the	least	evidence	of	center-surround	chunking,	as	assessed	by	the	
difference	in	AIC	between	C+S	and	basic	mixture	models	(ρ	=		-0.59,	p	=	1.6e-5).	E&F)	Errors	were	
also	elevated	for	subjects	that	were	best	fit	with	criterions	near	zero	(E;	ρ	=		-0.54,	p	=	8.5e-5)	or	with	
small	or	negative	repulsion	coefficients	(F;	ρ	=		-0.39,	p	=	7.4e-3).		
	
	
Center-surround	chunking	effects	generalize	across	tasks,	contribute	to	set-size	
dependent	changes	in	precision,	and	mediate	individual	differences	in	performance.		
	
Finally,	to	test	whether	our	findings	were	robust	to	changes	in	task	conditions	and	
to	examine	how	chunking	effects	vary	with	memory	load,	we	fit	a	nested	set	of	
models	to	a	meta-analysis	dataset	that	included	101	subjects	performing	eight	

0 20 40
Subject - sorted by preference

-20

-10

0

10

20

AI
C 

pr
ef

er
en

ce
 

fo
r c

om
pl

ex
 m

od
el

A
C+S
Center
Surround

0 0.5
Partitioning criterion

0

5

10

15

Su
bj

ec
ts

B

-0.2 0 0.2
Repulsion coefficient

0

2

4

6

Su
bj

ec
ts

C

0 10 20
AIC preference for C+S

0.6
0.8

1
1.2
1.4

Me
an

 ab
so

lu
te

 er
ro

r D

0 0.2 0.4
Criterion

0.6
0.8

1
1.2
1.4

E

0 0.05 0.1
Repulsion coefficient

0.6
0.8

1
1.2
1.4

F

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/098939doi: bioRxiv preprint 

https://doi.org/10.1101/098939
http://creativecommons.org/licenses/by-nc-nd/4.0/


different	experiments	(James	M	Gold	et	al.,	2010;	van	den	Berg	et	al.,	2014).	The	
nested	model	set	included	models	that	varied	in	their	assumptions	about	chunking,	
the	distributional	form	of	error	reports,	and	the	direct	effects	of	set	size	on	
precision.	The	model	set	was	built	upon	a	base	model	that	assumed	that	subjects	
would	recall	a	Poisson	number	of	feature	representations	in	the	report	dimension	
and	a	Poisson	number	of	features	in	the	probe	dimension	on	each	trial,	with	failure	
to	recall	the	probe	dimension	resulting	in	a	binding	error	and	failure	to	recall	the	
report	feature	resulting	in	a	uniform	guess.	Precision	of	memory	reports	was	fixed	
across	trials	in	this	base	model.	The	nested	model	set	included	additions	to	the	base	
model	that	allowed	it	to	account	for	1)	effects	of	center-surround	chunking	on	the	
represented	feature	value	and	number	of	stored	features	(C	in	figure	10A),	2)	effects	
of	center-surround	chunking	on	the	precision	of	memory	reports	(N	in	figure	10A),	
3)	differences	in	error	distribution	kurtosis	through	t-distributed	memory	reports	
(T	in	figure	10A)	and	4)	changes	in	precision	as	a	power-function	of	set	size	(P	in	
figure	10A).	Performance	of	the	nested	model	set	was	compared	to	that	of	a	variable	
precision	model	with	Poisson	item	storage	and	binding	errors,	which	was	the	best	
fitting	model	in	a	recent	factorial	model	comparison	using	most	of	the	same	data	(VP	
in	figure	10A,	(van	den	Berg	et	al.,	2014)).		
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Figure	10:	Center-surround	chunking	allows	better	fits	of	meta-analytic	datasets	and	offers	
insight	into	trends	and	individual	differences	in	how	memory	degrades	with	set	size.	A)	Mean	
relative	AIC	(AIC-minimum	AIC	per	subject)	and	exceedance	probability	for	a	nested	model	set.	Base	
refers	to	the	base	model,	C	includes	center-surround	chunking,	N	allows	for	chunking-	and	repulsion-
induced	report	variability,	T	allows	for	t-distributed	errors,	and	P	allows	precision	to	vary	as	a	
power-function	of	set	size.	Models	are	compared	to	the	best	fitting	model	from	a	factorial	model	
comparison	that	used	this	dataset	(VP	=	variable	precision,	Poisson	recall,	with	binding	errors)	(van	
den	Berg	et	al.,	2014).	Bayesian	model	selection	favored	a	model	that	incorporated	t-distributed	
memory	reports,	power-law	precision	decrements	and	all	modeled	aspects	of	center-surround	
chunking	(C+N+T+P).	A	model	lacking	power-law	precision	decrements	(C+N+T)	performed	
similarly	in	model	comparison	to	the	VP	model.	B)	Bars	reflect	AIC	preference	for	the	winning	
(C+N+T+P)	model	over	the	best	model	that	lacks	chunking	(VP)	for	each	experiment	sorted	
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according	to	mean	AIC	preference.		C-G)	Posterior	predictive	checks	reveal	nuanced	discrepancies	in	
the	predictions	across	models.	Actual	and	simulated	data	were	sorted	by	subject	and	set	size	and	fit	
with	a	flexible	mixture	model	(see	Methods)	that	estimated:	guess	rate	(C),	binding	error	rate	(not	
shown),	recall	rate	(D),	report	precision	(E),	modulation	of	recall	by	chunking	(F)	and	modulation	of	
precision	by	chunking	(G).	Points	and	lines	reflect	mean/SEM	fits	to	subject	data	whereas	
lines/shading	reflect	mean/SEM	fits	to	simulated	data	for	each	model	(models	denoted	by	color:	base	
=	gray,	VP	=	green,	C+N+T	=	blue,	C+N+T+P	=	orange).		All	models	captured	guess	and	recall	rates	
reasonably	well	(C&D),	but	only	models	that	included	either	chunking	(C+N+T),	precision	
decrements	with	set	size	(VP)	or	both	(C+N+T+P)	could	account	for	changes	in	precision	of	reports	
across	set	size	(E).	Only	models	that	included	chunking	(C+N+T	&	C+N+T+P)	could	account	for	within	
set	size	modulation	of	recall	(F).	Within	set	size	modulation	of	precision	was	overestimated	by	a	
chunking	model	with	fixed	assumptions	about	precision	(C+N+T)	and	underestimated	by	models	
without	chunking	(base	&	VP)	but	well	estimated	by	a	model	that	included	chunking	and	allowed	
precision	to	vary	with	set	size	(C+N+T+P).	H)	Bars	indicate	mean	partitioning	criterion	for	the	
(C+N+T)	model	across	the	experiments	included	in	the	meta-analysis	(sorted	from	maximum).	I)	
Correlation	between	mean	absolute	error	magnitude	(z-scored	per	experiment	and	set	size)	and	the	
best	fitting	partitioning	criterion	is	plotted	as	a	function	of	set	size	(abscissa).	Points	and	lines	reflect	
mean	and	bootstrapped	95%	confidence	intervals,	respectively.		
	
	
Model	comparison	favored	the	most	complex	model,	which	incorporated	all	aspects	
of	chunking,	flexible	kurtosis	of	error	distributions,	and	allowed	precision	to	change	
as	a	function	of	set	size	(exceedance	probability	=	0.96,	mean	AIC	relative	to	best	
AIC	=	4.7;	figure	10A).	Performance	of	the	model	that	included	all	aspects	of	
chunking	and	kurtosis	but	not	precision	decrements	was	similar	to	that	of	the	VP	
model	(mean	relative	AIC	8.6	and	8.3	for	C+N+T	and	VP	models	respectively;	figure	
10A).	The	advantage	of	the	best	performing	chunking	model	was	more	prominent	in	
some	studies	than	others.	The	studies	using	the	widest	range	of	set	sizes	showed	the	
largest	chunking	advantages	(the	Van	den	Berg	et	al.	studies	all	included	set	sizes	1	
through	8),	whereas	the	study	using	the	smallest	range	of	set	sizes	(Gold	et	al,	2010;	
3	or	4	items)	showed	a	clear	preference	for	the	variable	precision	model	over	the	
best	chunking	model.	It	is	worthy	of	note	that	some	of	the	experiments	included	in	
the	meta-analysis	included	additional	manipulations	or	potential	sources	of	
variability	that	might	have	been	captured	by	the	variable	precision	model	but	could	
not	possibly	be	accounted	for	in	our	chunking	model,	such	as	manipulation	of	the	
duration	of	stimulus	presentation,	the	duration	of	delay,	and	the	day	of	a	multi-day	
experiment.	Thus,	despite	the	overall	performance	advantage	of	the	best	chunking	
model,	it	is	still	likely	that	some	of	the	datasets	include	some	residual	variability	that	
could	be	captured	by	additional	variability	in	precision	across	conditions.		
	
In	order	to	better	understand	why	the	most	complex	chunking	model	offered	a	
better	fit	to	subject	data,	we	performed	a	posterior	predictive	check	by	simulating	
data	from	each	model	using	the	maximum	likelihood	parameter	values	and	then	
examining	the	simulated	and	actual	data	using	an	extended	mixture	model	fit	
separately	to	data	for	each	set	size	(figure	10C-G).	While	all	models	captured	the	
general	trends	in	recall	and	guessing	(figure	10C-D),	the	base	model	was	not	capable	
of	fitting	the	changes	in	precision	across	set	size	observed	in	subject	data,	whereas	
both	the	chunking	models	and	variable	precision	model	could	capture	these	changes	
(figure	10E).	Only	the	models	that	included	chunking	were	capable	of	accounting	for	
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within-set	size	fluctuations	in	recall	rate	(figure	10F).	Similarly,	simulated	data	from	
both	chunking	models	produced	within-set	size	modulations	of	precision	that	were	
qualitatively	similar	to	those	observed	in	subjects,	but	the	chunking	model	that	
lacked	the	ability	to	modulate	precision	according	to	set	size	produced	much	larger	
within-set	size	fluctuations	in	recall	than	were	actually	observed	in	the	data.	Thus,	
the	best	fitting	chunking	model	improved	on	the	VP	model	by	capturing	the	effects	
of	center-surround	chunking	on	recall	and	precision	within	set	size.	On	the	other	
hand,	the	chunking	model	that	did	not	allow	precision	to	change	with	set	size	
seemed	to	capture	set	size	precision	effects	by	over-estimating	the	repulsive	
interactions	between	items,	leading	to	a	worse	fit	than	the	more	complex	model	that	
allowed	precision	to	change	with	set	size.		
	
Across	experiments	and	subjects,	there	were	systematic	differences	in	chunking	that	
related	to	overall	performance.	Mean	partitioning	criterion	differed	systematically	
across	experiments	in	a	manner	unrelated	to	overall	model	preference	(figure	10H).	
While	the	number	of	experiments	included	in	this	analysis	is	small,	it	should	be	
noted	that	two	of	the	experiments	that	included	the	least	inclusive	chunking	
behaviors	involved	storing	an	orientation	rather	than	a	color.	The	other	experiment	
with	a	relatively	small	mean	partitioning	criterion	(Wilken	&	Ma	2004)	used	a	color	
sampling	strategy	that	prevented	fine	grain	estimation	of	the	best	fitting	
partitioning	criterion:	similar	but	non-identical	colors	were	never	included	in	a	
single	color	array.		Within	experiments,	subjects	also	differed	in	the	partitioning	
criterion	that	best	described	their	behavior	in	a	manner	that	related	to	performance.	
Specifically,	subjects	that	were	best	fit	by	the	largest	partitioning	criterion	values	
also	tended	to	make	the	smallest	absolute	errors	in	the	high,	but	not	low,	set	size	
conditions	(Figure	10I).	Thus,	individual	differences	in	chunking	may	underlie	
individual	differences	in	performance	for	high	memory	load	conditions	that	have	
previously	been	thought	to	reflect	differences	in	overall	memory	capacity.		
	
	
Discussion:	
	
Our	work	builds	on	two	parallel	lines	of	research.	One	has	focused	on	how	encoding	
and	decoding	of	working	memories	are	optimized	under	various	statistical	
contingencies	(Brady	et	al.,	2009;	Brady	&	Alvarez,	2011;	Brady	&	Tenenbaum,	
2013;	Lew	&	Vul,	2015;	Orhan	&	Jacobs,	2013;	Sims	et	al.,	2012),	whereas	the	other	
has	focused	on	understanding	the	nature	of	capacity	limitations	in	visual	working	
memory	(Bays	et	al.,	2009;	Bays	&	Husain,	2008;	van	den	Berg	et	al.,	2012;	2014;	
Zhang	&	Luck,	2008;	2009;	2011).	Here,	we	explore	how	people	optimize	encoding	
in	the	same	tasks	that	have	formed	the	basis	of	our	understanding	of	capacity	
limitations.	Our	findings	shed	light	on	both	the	nature	of	memory	capacity	
limitations	and	on	the	encoding	strategies	employed	to	minimize	their	impact.	
	
With	regard	to	encoding	strategies,	the	binary	encoding	model	showed	that	
selective	chunking	allowed	performance	advantages	for	clustered	stimulus	arrays	
that	grew	as	a	function	of	set	size,	could	be	learned	according	to	trial	feedback,	and	
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limited	asymptotic		item	storage	to	approximately	four	items	(figure	3).	Unlike	
previous	models	that	have	examined	how	non-independent	item	encoding	and	
decoding	schemes	could	affect	memory	performance	(Brady	et	al.,	2009;	Brady	&	
Alvarez,	2011;	2015;	Lew	&	Vul,	2015;	Orhan	&	Jacobs,	2013;	Sims	et	al.,	2012),	our	
model	shows	how	memory	storage	could	be	optimized	without	foreknowledge	of,	or	
even	the	existence	of,		statistical	regularities	in	memoranda.	Because	of	this,	our	
model	provides	unique	insight	into	how	subjects	might	optimize	behavior	in	
standard	working	memory	tasks,	in	which	stimulus	dependencies	and	
foreknowledge	thereof	are	intentionally	minimized.	As	predicted	by	our	model,	
human	subjects	display	performance	advantages	when	remembering	clustered	
stimulus	arrays	(figure	4&S1)	that	are	not	explained	by	binding	errors	(Figure	
4D&S2)	and	occur	irrespective	of	whether	the	recalled	item	was	itself	in	a	stimulus	
cluster	(Figure	S3).		
Furthermore,	trial-to-trial	adjustments	in	performance	of	human	subjects	followed	
the	same	basic	pattern	through	which	chunking	was	learned	in	our	model;	namely,	
rewarded	employment	of	chunking	on	one	trial	increased	the	probability	of	
chunking	on	the	next	(Figure	4E&F).		Thus,	our	model	identifies	and	provides	a	
normative	explanation	for	a	major	source	of	performance	variability	across	trials	in	
visual	working	memory	tasks:	selective	chunking	of	similar	items	into	working	
memory	and	the	optimization	thereof.	
	
Our	findings	are	in	line	with	previous	work	that	highlights	the	use	of	chunking	as	a	
mnemonic	strategy	in	a	wide	range	of	working	memory	tasks	(Cowan,	2001).	
Chunking	was	first	used	to	describe	mnemonic	strategies	for	storage	of	sequential	
information,	for	example,	encoding	the	digits	2-0-0-5	as	a	single	date	(2005)	rather	
than	as	its	constituent	digits	(Chen	&	Cowan,	2005;	Cowan,	2001;	G.	A.	Miller,	1956).	
In	the	visual	domain,	visual	features	are	in	some	sense	chunked	into	objects	(Luria	&	
Vogel,	2014).	Recent	work	has	suggested	that	people	can	chunk	arbitrary	visual	
information	when	that	information	is	inherently	clustered	and	visible	for	an	
extended	duration	(Lew	&	Vul,	2015).	Here,	we	extend	on	this	work	to	show	that	a	
simple	form	of	chunking,	joint	encoding	of	similar	feature	values,	is	rapidly	
implemented	by	human	visual	working	memory	systems	to	improve	performance	in	
tasks	that	have	heretofore	been	thought	to	lack	exploitable	statistical	structure.		
	
The	basic	computations	necessary	to	achieve	performance	advantages	through	
chunking	could	be	endowed	to	a	recurrent	neural	network	by	implementing	center-
surround	dynamics	(figure	5).	These	dynamics	arbitrate	a	tradeoff	between	recall	
and	precision	(figure	6)	that	was	supported	by	empirical	evidence	of	higher	
precision	representations	for	unclustered	stimulus	arrays	(figure	7).	This	sort	of	
tradeoff	between	memory	precision	and	item	capacity	is	similar	to	that	observed	in	
binding	pool	models	of	working	memory,	where	the	level	of	connectivity	in	the	
binding	pool	controls	a	tradeoff	between	precision	and	quantity	of	representations	
(Swan	&	Wyble,	2014;	Swan,	Collins,	&	Wyble,	2016).	Here	we	show	that	this	
tradeoff	can	be	exploited	to	improve	performance,	and	that	human	subjects	seem	to	
do	so.	In	particular,	subjects	demonstrated	the	performance	benefits,	response	
biases,	and	costs	in	precision	that	were	predicted	by	center-surround	chunking	and	
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were	quantitatively	best	described	by	it	(figures	5&7-9).	These	findings	are	
generally	consistent	with	previous	work	that	has	highlighted	the	effects	of	center-
surround	processing	on	perception	and	memory	(Almeida	et	al.,	2015;	Johnson,	
Spencer,	Luck,	&	Schöner,	2009;	Störmer	&	Alvarez,	2014;	Xing	&	Heeger,	2001).	
Furthermore,	the	specific	inter-item	dependencies	predicted	by	our	model	and	
observed	in	our	empirical	data	were	consistent	with	those	emerging	from	recurrent	
neural	networks	that	rely	on	tuned	inhibition	(Almeida	et	al.,	2015),	but	not	with	
those	predicted	by	hierarchical	models	of	memory	decoding,	as	the	latter	do	not	
produce	repulsion	of	dissimilar	features	(Brady	&	Alvarez,	2015;	Orhan	&	Jacobs,	
2013).		
	
Our	center-surround	model	serves	not	only	to	describe	nuanced	features	of	
behavior,	but	also	to	link	our	findings	to	potential	biological	mechanisms.	We	show	
that	a	small	change	to	a	prominent	neural	network	model	of	working	memory	
maintenance,	namely	the	incorporation	of	tuned	inhibition,	provides	the	model	with	
the	capability	to	chunk	similar	features	into	a	joint	representation	but	partition	
dissimilar	ones	through	repulsion	(figure	5;	(Ben-Yishai	et	al.,	1995;	Kohonen,	1982;	
Murray	et	al.,	2014;	Somers	et	al.,	1995;	X.	J.	Wang,	1999;	Wei	et	al.,	2012)).	Our	
descriptive	model	based	on	this	mechanistic	account	is	supported	by	the	frequent	
observation	of	sustained	activity	during	the	delay	period	of	memory	tasks	in	both	
parietal	and	prefrontal	cortices	(Funahashi,	Bruce,	&	Goldman-Rakic,	1989;	Fuster	&	
Alexander,	1971;	Gottlieb,	2004)	(but	see	also	(Lara	&	Wallis,	2014)).	Here	we	have	
considered	the	network	to	store	features	on	a	single	dimension	(color);	however,	it	
is	clear	that	at	some	level,	conjunctive	coding	across	features	(e.g.	color	and	
orientation)	is	necessary	to	bind	information	to	the	dimension	used	to	probe	
memories	(Matthey,	Bays,	&	Dayan,	2015).	In	our	task,	it	is	unknown	whether	any	
sustained	representations	reflect	information	about	the	report	feature	(color	in	our	
task),	probe	feature	(orientation	in	our	task),	or	some	conjunction	of	the	two.	Recent	
work	has	hinted	that	in	some	cases,	sustained	representations	in	prefrontal	cortex	
may	only	encode	the	probe	dimension,	which	could	point	back	to	relevant	sensory	
representations	at	time	of	recall	(Ester,	Sprague,	&	Serences,	2015;	Kriete,	Noelle,	
Cohen,	&	O'Reilly,	2013;	Lara	&	Wallis,	2014;	2015).	Previous	computational	
instantiations	of	this	process	have	relied	on	the	basal	ganglia	to	learn	appropriate	
prefrontal	representations	that	can	be	jointly	cued	by	multiple	disparate	perceptual	
features,	based	on	reward	feedback	(A.	G.	E.	Collins	&	Frank,	2013;	Frank	&	Badre,	
2012;	Kriete	et	al.,	2013).	Analogously,	feedback	effects	observed	in	our	data	could	
be	driven	by	the	basal	ganglia	learning	to	selectively	engage	prefrontal	units	that	are	
prone	to	representation	of	multiple	probe	feature	values.	This	interpretation	could	
expand	on	a	large	body	of	work	that	implicates	the	basal	ganglia	in	gating	working	
memory	processes	by	stipulating	a	novel	and	testable	role	for	the	basal	ganglia	in	
optimizing	joint	feature	encoding	(Chatham,	Frank,	&	Badre,	2014;	A.	G.	E.	Collins	&	
Frank,	2013;	Hazy,	Frank,	&	O’Reilly,	2006;	O'Reilly	&	Frank,	2006;	Voytek	&	Knight,	
2010).		
	
An	important	question	stemming	from	our	work	is	to	what	extent	chunking	can	be	
adjusted	to	optimize	working	memory	accuracy	under	different	conditions.	Our	
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modeling	shows	that	a	simple	learning	rule	is	capable	of	rapidly	adjusting	the	
amount	of	chunking	to	optimize	performance	given	the	current	memory	demands,	
leading	to	greater	chunking	for	higher	memory	loads.	Individual	differences	in	
chunking	were	selectively	related	to	performance	in	the	highest	memory	load	
conditions	(figure	9E	&	10I);	however,	neither	our	experiment,	nor	the	meta-
analytic	dataset	explicitly	manipulated	chunking	incentives	over	a	time-course	long	
enough	to	measure	learning	effects.	Nonetheless,	even	in	the	absence	of	explicit	
manipulation,	feedback-dependent	modulation	of	chunking	behaviors	in	our	
experimental	data	was	indicative	of	online	optimization	of	the	chunking	process	
(figure	5D-F),	such	as	the	process	that	allowed	learning	of	the	partitioning	criterion	
in	the	binary	encoding	model	(figure	4G).	Yet	these	trial-to-trial	adjustments	occur	
despite	only	minimal	performance	improvements	across	task	blocks	(figure	7).	
There	are	several	possible	explanations	for	this	discrepancy,	including	1)	that	a	
priori	processing	strategies	are	well-calibrated	to	our	task,	2)	that	optimization	in	
our	task	occurs	on	a	different	timescale	than	our	measurements,	and	3)	that	the	
presence	of	uniformly	spaced	arrays	hindered	learning	overall.	Distinguishing	
between	these	possibilities	will	require	a	better	understanding	of	what	exactly	is	
being	adjusted	in	response	to	feedback.	For	example,	reward	feedback	could	
promote	the	prioritization	of	storing	chunked	arrays	over	non-clustered	ones,	or	it	
could	modulate	center-surround	inhibition	dynamics	(e.g.,	via	fine	tuning	of	feature	
selective	attention	and/or	altering	local	excitation-inhibition	balance	(Störmer	&	
Alvarez,	2014;	Wei	et	al.,	2012)).	In	any	case,	our	work,	along	with	other	recent	
research	showing	an	adaptive	tradeoff	of	precision	and	recall	(Fougnie,	Cormiea,	
Kanabar,	&	Alvarez,	2016),	strongly	motivate	future	work	to	better	understand	the	
scope,	time	course,	and	mechanism	for	this	type	of	optimization	process.		
	
	
Implications	for	capacity	limitations.	Working	memory	limitations	have	been	
theorized	to	result	from	either	a	discrete	limitation	on	available	“slots”	or	a	
continuous	limitation	by	a	divisible	“resource”.	The	distinction	between	these	
theories	is	most	evident	when	additional	targets	are	added	to	a	memory	array.	A	
discrete	limitation	predicts	that	after	all	slots	are	filled,	additional	targets	will	be	
forgotten	and	will	be	reported	as	random	guesses	(Luck	&	Vogel,	2013).	In	contrast,	
a	resource	limitation	predicts	that	additional	targets	will	cause	each	target	to	be	
encoded	with	lower	precision	(Ma	et	al.,	2014).	While	individual	studies	have	
provided	support	for	each	theory	(Bays	et	al.,	2009;	Bays	&	Husain,	2008;	Cowan	&	
Rouder,	2009;	Chris	Donkin	et	al.,	2013a;	Christopher	Donkin	et	al.,	2013b;	Pratte,	
Park,	Rademaker,	&	Tong,	2017;	Rouder	et	al.,	2008;	van	den	Berg	et	al.,	2012;	
Zhang	&	Luck,	2008;	2009;	2011),	a	recent	meta-analysis	provides	simultaneous	
support	for	the	core	predictions	of	both:	increasing	memory	load	leads	to	both	
increased	guessing	and	decreased	precision	(van	den	Berg	et	al.,	2014).		
	
Our	results	suggest	that	a	joint	capacity	limitation	over	recall	and	precision	may	
result	in	part	from	a	rational	chunking	procedure	implemented	through	center-
surround	dynamics	to	effectively	trade	precision	for	recall	(figure	5&6).	This	
procedure	allows	subjects	to	achieve	performance	improvements	for	clustered	
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stimulus	arrays	at	the	cost	of	precision	(figures	6).	It	is	also	capable	of	explaining	
decrements	in	precision	with	set	size,	as	larger	sets	of	items	lead	to	increased	
repulsive	forces	experienced	by	each	individual	item	(figure	10E).	In	addition	to	
accounting	for	known	influences	on	precision,	our	model	also	predicted	that	
measured	precision	should	vary	across	trials,	an	established	feature	of	human	
behavioral	data	(Fougnie	et	al.,	2012;	van	den	Berg	et	al.,	2012),	and	correctly	
predicted	that	this	variability	in	precision	should	depend	on	the	features	of	non-
probed	targets	(figure	8D&E;	10G).	Nonetheless,	the	best	fitting	center-surround	
chunking	model	employed	leptokurtic	memory	reports	in	order	to	capture	
additional	variability	in	precision	that	was	not	accounted	for	by	the	chunking	and	
repulsion	processes	alone,	suggesting	that	other	factors	must	also	contribute	to	
variability	in	precision	(figure	10A).	Furthermore,	the	best	fitting	model	also	
allowed	memory	report	precision	to	vary	as	a	power	function	of	set	size,	as	this	
appropriately	balanced	the	magnitude	of	across	set	size	(figure	10E)	and	within	set	
size	(figure	10G)	precision	effects.	Thus,	center-surround	chunking,	as	we	
implemented	it,	can	quantitatively	account	for	most,	but	not	all,	of	the	changes	in	
precision	across	trials	and	set-sizes.	
	
Our	findings	also	call	the	interpretation	of	precision	measurements	into	question.	
The	center-surround	model	predicts	that	internal	representations	apply	attractive	
and	repulsive	forces	to	one	another,	systematically	biasing	memory	reports.	When	
averaged	across	trials	with	differing	stimulus	configurations,	such	interactions	are	
interpreted	as	variability	in	memory	reports,	as	the	net	forces	on	a	probed	target	
vary	randomly	from	one	stimulus	configuration	to	the	next.	Yet,	since	much	of	this	
variability	is	simply	an	artifact	of	averaging	across	disparate	conditions,	our	work	
raises	an	important	question:	how	much	of	the	variability	in	memory	reports	across	
trials	and	individuals	is	truly	reflective	of	imprecision,	rather	than	bias?	While	the	
notion	that	imprecision	can	emerge	from	systematic	inter-item	dependencies	is	
somewhat	at	odds	with	the	basic	resource	limitation	model,	it	is	consistent	with	the	
recent	proposal	of	a	specific	form	of	resource	limitation	in	which	the	constrained	
resource	is	the	representational	space	itself	(M.	A.	Cohen,	Rhee,	&	Alvarez,	2016;	
Franconeri,	Alvarez,	&	Cavanagh,	2013;	Oberauer	&	Lin,	2017).		
	
Within	such	a	framework,	it	is	interesting	to	reconsider	the	meaning	of	individual	
differences	in	memory	storage	recall	and	precision.	Previous	work	has	shown	that	
individual	differences	in	the	number	of	items	successfully	retained	in	visual	working	
memory	tasks,	but	not	differences	in	precision,	are	related	to	fluid	intelligence	and	
psychiatric	conditions	such	as	schizophrenia,	among	other	factors	(Fukuda,	Vogel,	
Mayr,	&	Awh,	2010;	James	M	Gold	et	al.,	2010).	These	results	have	been	interpreted	
in	terms	of	differences	in	a	discrete	capacity	for	memory	storage,	or	in	filtering	
irrelevant	information	(Vogel,	McCollough,	&	Machizawa,	2005),	but	our	results	
suggest	that	some	of	these	individual	differences	may	be	driven	instead	by	
differences	in	chunking	behavior	or	the	optimization	thereof.	To	this	effect,	we	
showed	both	in	our	own	dataset	and	in	the	meta-analytic	dataset	that	individual	
differences	in	task	performance,	particularly	at	high	set	sizes,	were	systematically	
related	to	differences	in	chunking	policy,	with	subjects	that	chunked	most	liberally	
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achieving	the	best	performance	for	higher	set	sizes	(figures	9E&10I).	It	is	not	clear	
to	what	extent	these	individual	differences	in	chunking	policy	result	from	
differences	in	the	ability	to	learn	an	appropriate	criterion,	or	from	hard-wired	
differences	that	might	predispose	individuals	toward	either	chunking	or	
partitioning	neural	representations.	Our	neural	network	model	suggests	that	
performance-based	measures	of	capacity	may	be	sensitive	to	individual	differences	
in	lateral	connectivity	profiles	that	favor	a	spectrum	from	independent	to	merged	
feature	storage	policies,	and	to	the	ability	to	override	such	policies	through	learned	
top-down	modulation	of	lateral	connectivity	(Freeman,	Driver,	Sagi,	&	Zhaoping,	
2003;	Freeman,	Sagi,	&	Driver,	2001;	Lowe	et	al.,	2016).	
	
In	summary,	our	results	show	that	humans	readily	exploit	chunking	strategies	to	
improve	performance	on	visual	working	memory	tasks.	The	implementation	of	
chunking	is	consistent	with	a	form	of	center-surround	dynamics	that	combines	
similar	representations	and	facilitates	mutual	repulsion	of	disparate	ones.	This	
implementation	leads	to	a	fundamental	tradeoff	between	the	number	of	items	
stored	and	the	precision	with	which	they	are	stored,	providing	a	natural	bridge	
between	slots	and	resource	accounts	of	working	memory	capacity	limitations.	
People	optimize	this	tradeoff	from	trial-to-trial	according	to	stimulus	statistics	and	
evaluative	feedback	in	a	manner	that	differs	across	individuals	and	is	predictive	of	
working	memory	task	performance.	These	results	provide	a	normative	joint	account	
of	how	and	why	discrete	and	continuous	factors	contribute	to	working	memory	
capacity	limits	across	individuals	and	task	conditions.			
		
	
Methods:	
	
Delayed	report	task.	54	human	subjects	completed	five	blocks	(100	trials	each)	of	a	
delayed	report	color	reproduction	task	(figure	2).	Each	trial	of	the	task	consisted	of	
four	primary	stages:	stimulus	presentation,	delay,	probe,	and	feedback.	During	
stimulus	presentation,	subjects	were	shown	five	oriented	bars	(length	=	2	degrees	
visual	angle)	arranged	in	a	circle	(radius	=	4	degrees	visual	angle)	centered	on	a	
fixation	point.	Bar	positions	were	equally	spaced	around	the	circle	and	jittered	
uniformly	from	trial	to	trial.	Bar	orientations	were	uniformly	spaced,	jittered	from	
trial	to	trial,	and	independent	of	position	or	color.	Bar	colors	were	chosen	from	a	
fixed	set	of	colors	corresponding	to	a	circle	in	CIELAB	color	space	(L=	80,	radius	in	
a*,	b*	=	60)	and	referred	to	by	angular	position	for	convenience.	In	the	“random	
spacing”	condition,	all	five	colors	were	sampled	independently	of	one	another	from	
the	color	space,	allowing	for	the	possibility	of	two	similar	colors	in	the	same	
stimulus	array.	In	the	“fixed	spacing”	condition,	colors	were	uniformly	spaced	along	
the	CIELAB	color	wheel	and	randomly	assigned	to	bar	locations.	Stimuli	were	
presented	for	200	ms,	after	which	the	screen	was	blanked.	
	
The	subsequent	delay	period	lasted	900	ms,	during	which	subjects	were	forced	to	
remember	the	colors	and	orientations	of	the	preceding	stimulus	array.	During	the	
subsequent	probe	stage,	subjects	were	shown	a	gray	oriented	bar	in	the	center	of	
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the	screen	for	one	second,	before	being	asked	to	report	the	color	that	had	been	
associated	with	that	orientation	in	the	preceding	stimulus	array.	Color	reports	were	
made	by	adjusting	the	color	of	the	oriented	bar	using	a	mouse.	The	initial	position	of	
the	mouse	on	the	color	wheel	was	randomly	initialized	on	each	trial.	On	a	subset	
(1/3)	of	trials,	subjects	were	asked	to	make	a	post-decision	wager	about	the	
accuracy	of	their	report	by	choosing	to	bet	either	0	or	2	points.	Binary	feedback	was	
provided	on	each	trial	based	on	whether	subject	reporting	accuracy	fell	within	a	
certain	error	tolerance	window	(π/3	radians	–	low	precision	condition	[26	
subjects]	or	π/8	radians	–	high	precision	condition	[28	subjects]).	A	priori	target	
sample	size	for	each	group	was	set	to	twenty-four	based	on	other	studies	in	the	field	
(without	explicit	power	calculations).	Additional	subjects	were	recruited	beyond	
this	to	account	for	potentially	unusable	data	(e.g.	subjects	guessing	on	all	trials).		
Four	subjects	in	the	high	precision	condition	and	three	subjects	in	the	low	precision	
condition	were	removed	from	analyses	because	of	error	distributions	that	were	not	
statistically	distinguishable	from	uniform	guessing	(error	variance	>	0.91),	leading	
to	sample	sizes	of	23	and	24	for	low	and	high	precision	conditions	respectively.	All	
subjects	were	paid	bonuses	according	to	total	accumulated	points.	All	human	
subject	procedures	were	approved	by	the	Brown	University	Institutional	Review	
Board	and	conducted	in	agreement	with	the	Declaration	of	Helsinki.	
			
Binary	encoding	model.	To	explore	the	potential	advantage	of	chunking	in	delayed	
report	tasks,	we	developed	a	flexible	and	computationally	tractable	model	for	
capacity-limited	storage.	This	model	stores	color	and	orientation	information	
symbolically	in	a	set	of	binary	“words”	concatenated	to	form	a	“sentence”.	During	
the	stimulus	presentation	phase,	target	colors	and	orientations	are	“encoded”	as	an	
alternating	sequence	of	binary	words	reflecting	the	position	on	a	circular	feature	
space	(figure	3).	The	number	of	binary	digits	(bits)	in	a	word	controls	the	precision	
with	which	the	feature	is	stored.	For	example,	a	single	digit	can	encode	which	half	of	
the	feature	space	contains	the	color	of	a	bar,	whereas	three	bits	can	narrow	the	
stimulus	color	down	to	one	eighth	of	the	color	space	(figure	3,	top).	Each	binary	
word	is	followed	by	a	“stop”	symbol	denoting	the	type	of	information	in	the	
preceding	word	(e.g.	color	or	orientation).	A	capacity	limitation	is	implemented	in	
the	model	as	a	limit	on	the	number	of	bits	that	can	be	stored	in	memory.	Specifically,	
we	applied	a	fixed	limit	of	15	bits	for	storage	of	color	information.	Similar	results	
were	achieved	by	applying	a	limit	to	the	total	bits,	i.e.	including	orientation	
information,	but	here	we	allow	for	perfect	orientation	storage	in	order	to	isolate	the	
effects	of	capacity	limitations	on	the	recall	dimension	(color).		
	
Bits	were	allocated	in	two	different	ways:	in	one	set	of	simulations,	bits	were	
assumed	to	be	continuously	divisible	(analogous	to	resource	models)	and	in	the	
other	set	of	simulations,	bits	were	not	divisible	beyond	binary	units	(analogous	to	
slots-and-averaging	models).	For	resource	model	simulations,	performance	was	
computed	analytically	according	the	following	error	function:		
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𝐸𝑟𝑟𝑜𝑟 = Δ𝜇 +
𝑅
2 − 𝑟

!
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where	Δμ	is	the	difference	in	the	“chunk”	mean	and	the	true	color	and	R	is	the	
continuous	range	over	possible	stimulus	values	specified	by	the	encoding	model,	
which	depends	on	the	number	of	bits	allocated	to	each	item	according	to	the	
following	function:	
	

𝑅 =  
2𝜋
2! 	

	
where	b	is	the	number	of	bits	allocated	to	each	target,	which	in	turn	depends	on	the	
total	number	of	items	and	the	exact	pattern	of	chunking	and	partitioning	across	the	
stimulus	values.	Chunking	and	partitioning	were	controlled	in	three	ways:	1)	in	the	
fully	partitioning	model,	all	colors	were	represented	separately,	2)	in	the	optimal	
partitioning	model,	all	possible	partitioning	patterns	were	considered	for	each	
stimulus	array	and	only	the	performance	of	the	best	partitioning	pattern	was	
reported,	and	3)	in	the	criterion-based	partitioning	model,	all	colors	separated	by	
less	than	a	criterion	value	were	merged	into	a	single	chunk	and	represented	by	their	
mean	value.	The	performance	of	the	criterion-based	partitioning	model	was	
computed	across	a	range	of	possible	partitioning	criterions	and	the	performance	of	
the	best-performing	criterion	across	all	trials	for	a	given	set	size	was	reported	(see	
figure	4A).		
	
In	the	second	set	of	simulations	where	bits	were	considered	to	be	indivisible,	
analogous	to	the	slots	+	averaging	framework,	model	performance	was	assessed	
through	exhaustive	simulations.	In	this	framework,	bits	were	as	evenly	distributed	
among	represented	colors	as	was	possible	for	a	given	stimulus	array,	as	this	
strategy	for	allocation	of	bits	achieved	the	best	performance.	During	the	probe	
phase,	the	model	is	presented	with	a	single	orientation	and	recalls	the	color	word	
that	immediately	precedes	that	orientation	in	the	stored	binary	sentence.	A	report	is	
then	sampled	from	a	uniform	distribution	across	the	range	of	colors	consistent	with	
that	stored	binary	color	word.	For	example,	if	the	color	word	contains	one,	two,	or	
three	bits,	it	is	sampled	from	uniform	distribution	over	one	half,	quarter,	or	eighth	
of	the	color	space.	
	
Chunking	was	parametrically	implemented	in	the	binary	encoding	model	by	adding	
a	“partitioning	criterion”	that	specifies	the	minimum	distance	between	two	colors	in	
color	space	that	is	necessary	for	independent	storage.	Colors	separated	by	distances	
smaller	than	the	partitioning	criterion	are	“chunked”	into	a	single	color	
representation.	The	distance	computation	is	completed	during	the	“encoding”	
phase,	before	colors	are	converted	to	binary	words.	Distances	are	corrupted	with	a	
small	amount	of	noise	consistent	with	variability	in	the	visual	representation	or	the	
chunking	processes	(normally	distributed	with	standard	deviation	equal	to	0.4	
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times	the	partitioning	criterion).	After	chunking,	bits	are	allocated	evenly	across	all	
represented	colors,	as	described	above.		
	
Model	performance	was	simulated	for	the	delayed	estimation	task	across	eight	
different	array	sizes	(1-8)	with	two	different	color	generation	conditions	(fixed-	and	
random-spacing)	for	nine	different	partitioning	criterions	ranging	from	zero	to	π.	
For	each	condition	and	model,	mean	absolute	error	was	computed	across	5000	
simulated	trials.	The	best	chunking	model	(see	figure	4L)	was	defined	as	the	model	
with	the	lowest	mean	absolute	error,	whereas	the	fully	partitioned	model	was	the	
model	with	partitioning	criterion	equal	to	zero	(such	that	every	color	was	stored	
independently).	For	each	condition,	chunking	bonus	was	computed	as	the	difference	
in	absolute	error	between	the	non-chunking	and	best-chunking	models.		
	
For	the	trial-to-trial	optimization	of	the	partitioning	criterion	(figure	4g),	we	
adjusted	the	partitioning	criterion	on	each	trial	according	to	the	following	rule:	
	

𝑃𝐶 = 𝑃𝐶 −  𝛼 𝛿 ∆𝐶	
	
where	PC	is	the	partitioning	criterion,	𝛼	is	a	learning	rate,	𝛿 is	a	reward	prediction	
error	(previous	trial	feedback	minus	long	term	average	feedback),	and	∆𝐶	is	the	
number	of	“chunks”	into	which	the	previous	stimulus	array	was	divided	minus	the	
long	term	average	of	that	quantity.	Thus,	if	by	chance	the	model	did	more	chunking	
on	a	given	trial,	the	∆𝐶	would	take	a	negative	value,	and	positive	feedback	would	
drive	a	positive	𝛿	and	a	corresponding	increase	in	the	partitioning	criterion,	leading	
to	an	increase	in	chunking	on	subsequent	trials.	Negative	feedback	for	the	same	trial	
would	lead	to	a	negative	𝛿	and	corresponding	decrease	in	the	partitioning	criterion,	
leading	to	a	decrease	in	chunking	on	subsequent	trials.			
	
Computing	array	clustering.	In	order	to	assess	the	potential	benefits	of	chunking	on	
each	trial	we	computed	a	clustering	statistic,	within-cluster	variance	(WCV),	for	
each	stimulus	array.	WCV	was	computed	by	dividing	the	array	colors	into	two	
clusters	that	minimized	the	mean	variance	within	the	clusters.	WCV	was	defined	as	
the	average	circular	variance	over	colors	within	these	clusters.			
	
Logistic	regression	models.	Binary	accuracy	and	betting	data	were	concatenated	
across	all	subjects	and	interrogated	with	a	mixed-effects	logistic	regression	model	
that	included	terms	to	account	for	fixed	effects	of	1)	–log(WCV),	a	proxy	for	stimulus	
array	chunkability,	2)	the	color	distance	between	the	probed	target	and	each	other	
color	in	the	array,	ordered	from	smallest	to	largest,	3)	feedback	on	previous	and	
subsequent	trials,	4)	spatial	distance	between	the	location	of	the	probed	target	and	
the	location	of	the	previously	probed	target,	and	5)	task	block.	In	addition,	the	
model	included	dummy	variables	to	account	for	random	intercepts	specific	to	
individual	subjects.	The	same	analysis	was	applied	to	data	simulated	from	the	best	
fitting	mixture	model,	which	considered	all	reports	to	come	from	a	weighted	
mixture	of	recall,	uniform	guess,	and	binding	error	distributions	(Bays	et	al.,	2009).	
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Mixture	model.		We	extended	the	standard	mixture	model	of	memory	reports	(Bays	
et	al.,	2009;	Zhang	&	Luck,	2008)	to	allow	for	modulation	of	recall	probability,	
precision,	and	bias	according	to	WCV,	nearest	neighbor	distance,	and	feedback.	The	
standard	mixture	model	assumes	reports	are	generated	from	a	mixture	of	“correct	
recall”,	“guessing”,	and	“binding	error”	processes.	These	three	mixture	components	
were	specified	using	two	free	parameters:	one	dictating	the	probability	with	which	
an	item	would	be	successfully	stored	 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 	and	one	
specifying	the	probability	with	which	a	stored	item	would	be	correctly	reported	

!"##$!% !"#$%%
!"##$!% !"#$%%!!"#$"#% !""#"

.	We	allowed	the	parameter	dictating	successful	storage	
to	be	modified	as	a	logistic	function	of	1)	log(WCV),	2)	previous	feedback,	3)	
previous	log(WCV),	4)	previous	feedback*log(WCV)	and	5)	previous	
feedback*log(WCV)*previous	log(WCV).	All	potential	modulators	of	successful	
storage	were	mean-centered	(before	and	after	interaction)	and	constrained	by	
priors	favoring	values	near	zero	[~normal(0,	0.5)].	Since	our	successful	storage	
parameter	is	the	probability	the	subject	will	not	elicit	a	uniform	guess,	it	affects	both	
correct	recall	and	binding	error	mixture	components.	However,	since	reports	were	
far	more	likely	to	correspond	to	correct	recalls	(median	mixture	proportion	=	0.50	
across	subjects)	than	binding	errors	(median	binding	error	proportion	=	0.17	across	
subjects),	modulator	coefficients	had	larger	effects	on	recall	than	binding	errors,	
and	we	refer	to	them	in	the	results	as	modulating	recall	for	simplicity.	We	also	
considered	an	alternative	model	in	which	modulators	affected	the	recall	term	
directly	and	found	similar	results,	although	this	alternative	model	provided	a	worse	
overall	fit	of	the	data.		
	
Neural	network	simulations.	Neural	network	simulations	were	conducted	using	a	
basic	recurrent	neural	network	that	has	been	described	previously	(Wei	et	al.,	
2012).	The	model	consists	of	2048	pyramidal	(excitatory)	neurons	and	512	
inhibitory	interneurons.	Pyramidal	neurons	had	the	following	cellular	properties:	
Cm	=	0.5	nF,	gleak=	0.025	μS,		Vleak	=	-70	mV,	Vthresh	=-50	mV,	Vres_=-60	mV,	τ	=	1	ms.		
Interneurons	had	the	following	cellular	properties:	Cm	=	0.2	nF,	gleak=	0.02	μS,		Vleak	=	
-70	mV,	Vthresh	=-50	mV,	Vres_=-60	mV,	τ	=	1	ms.	The	model	included	AMPA,	NMDA,	
and	GABA	receptors	with	properties	described	previously	(Furman	&	Wang,	2008).	
Pyramidal-to-pyramidal	connection	weights	followed	a	narrowly	tuned	Gaussian	
profile	across	stimulus	space	(σ	=5,	J+		=5.6).	Pyramidal-to-interneuron	and	
interneuron-to-pyramidal	connectivity	profiles	were	identical,	and	in	one	set	of	
simulations	fully	connected	with	uniform	weights	(figure	5C).	In	the	second	set	of	
simulations,	the	cross-population	connectivity	was	defined	by	a	mixture	of	uniform	
weights	and	broadly	tuned	Gaussian	weights	(σ	=20,	mixture	proportion	=	0.1).	
Input	was	delivered	to	both	networks	for	200	ms	through	activation	of	an	AMPA	
current	with	gmax	=	0.57	using	a	spatial	profile	that	was	centered	on	5	“target	colors”	
with	a	Gaussian	profile	(σ	=4).	Stimulus	delivery	was	followed	by	a	delay	period	
during	which	no	input	was	provided	to	the	network	and	activity	was	sustained	
completely	through	recurrent	connectivity.		
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Center-surround	chunking	model.	To	determine	the	effects	that	center-surround	
dynamics	would	have	on	visual	working	memory	task	performance,	we	extended	
the	standard	descriptive	model	of	delayed	memory	reports	to	incorporate	features	
of	center-surround	dynamics.	In	particular,	on	each	trial,	internal	representations	of	
each	color	were	generated	from	a	von	Mises	distribution	with	fixed	concentration	(7	
for	simulations).	Pairwise	distances	(in	color	space)	were	computed	for	each	pair	of	
internal	representations.	Chunking	probability	was	computed	as	a	scaled	von	Mises	
function	of	this	distance	(μ	=	0,		κ	=	12	for	simulation),	corresponding	to	the	narrow	
excitatory	“center”	over	which	local	representations	are	likely	to	attract	one	another	
(figure	5A-C).	Representations	were	merged	in	accordance	with	these	chunking	
probabilities	by	replacing	the	color	associated	with	each	merged	representation	
with	the	mean	of	the	merged	colors.	After	probabilistic	chunking,	distances	were	
recomputed	between	representations,	and	each	representation	applied	a	repulsive	
force	on	neighboring	representations	as	defined	by	a	scaled	von	Mises	function	of	
the	re-computed	distance	(μ	=	0,		κ	=	2	for	simulation),	corresponding	to	the	broadly	
tuned	“surround”	over	which	representations	repulse	one	another	(figure	5A-C).	
Applying	these	forces	leads	each	representation	to	be	reset	according	to	the	
following	equation:	
	
	

𝑐𝑜𝑙𝑜𝑟! ⟵ 𝑐𝑜𝑙𝑜𝑟! +  𝑊!"##$"%&   
!!!
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where	𝑊!"##$"%& 	is	a	weight	that	controls	the	overall	magnitude	of	surround	effects,	
the	second	term	in	the	sum	is	the	probability	density	function	for	a	von	Mises	
distribution,	and	the	final	term	serves	to	ensure	that	targets	exert	repulsive	forces	
on	neighboring	targets.	For	the	simulations	in	figure	5,	the	weight	parameters	for	
both	center	and	surround	were	set	to	equal	values	ranging	from	0	to	0.7.	For	
comparisons	to	subject	data,	𝑊!"##$"%& 	was	set	to	0.6			and	𝑊!"#$"% 	was	set	to	1.2.	
	
Probabilistic	recall	was	implemented	in	the	model	according	to	a	Poisson	memory	
process	(Sims	et	al.,	2012;	van	den	Berg	et	al.,	2014).	On	each	trial,	the	model	
accurately	recalled	some	number	of	representations	drawn	from	a	Poisson	
distribution	(λ	=	2	for	simulations).	Similar	results	were	achieved	using	an	
inhibition	based	forgetting	process	inspired	by	Wei	and	colleagues	(Wei	et	al.,	
2012);	however,	here	we	use	a	more	standard	Poisson	process	for	simplicity.	In	the	
case	that	a	representation	that	was	not	successfully	recalled	was	probed,	the	model	
reported	either	a	uniformly	distributed	guess	(p	=	0.65)	or	the	color	of	an	
alternative	representation	(binding	error,	p	=	0.35).		
	
Quantitative	model	fitting.	In	order	to	estimate	model-likelihood	directly,	the	center-
surround	chunking	model	was	modified	to	allow	for	a	closed-form	likelihood	
function.	To	this	end,	we	stipulated	that	internal	representations	would	faithfully	
reflect	the	true	stimulus	colors	before	being	subjected	to	chunking	and	repulsion	
processes	instead	of	assuming	that	internal	representations	were	subject	to	
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variability	resulting	from	perceptual	processing	(as	described	above).	In	order	to	
improve	gradient	descent,	we	implemented	chunking	using	a	gamma	distribution	
over	partitioning	criterions	in	which	the	mean	of	the	distribution	was	fit	as	a	free	
parameter	and	the	variance	was	fixed	to	0.01.	The	repulsion	process	was	simplified	
to	a	linear	function	of	inter-item	similarity,	with	a	slope	that	was	fit	as	a	free	
parameter	and	could	take	either	positive	values	to	capture	attraction	or	negative	
values	to	capture	repulsion.	Three	versions	of	the	simplified	chunking	model	were	
fit	to	delayed	report	data:	1)	a	center-only	model	in	which	the	partitioning	criterion	
mean	was	fit	as	a	free	parameter	and	the	repulsion	coefficient	was	fixed	to	zero,	2)	a	
surround-only	model	in	which	the	partitioning	criterion	mean	was	fixed	to	zero	and	
the	repulsion	coefficient	was	fit	as	a	free	parameter	and	3)	a	center-surround	model	
in	which	both	terms	were	fit	as	free	parameters.	In	addition,	all	models	included	the	
following	free	parameters:	1)	Poisson	lambda	to	describe	the	number	of	items	that	
would	be	stored	on	a	given	trial,	2)	binding	error	fraction	to	describe	the	frequency	
that	reports	would	be	generated	from	a	non-probed	representation,	and	3)	
precision	of	the	report	distribution.	All	models	were	compared	to	a	basic	mixture	
model	(Bays	et	al.,	2009)	using	AIC	to	penalize	for	complexity,	as	AIC	allowed	for	
better	model	recovery	from	simulated	data	than	did	BIC.	Bayesian	model	selection	
was	performed	using	-1/2	AIC	as	a	proxy	for	model	evidence	with	the	SPM	toolbox	
(Stephan,	Penny,	Daunizeau,	Moran,	&	Friston,	2009).		
		
Meta-analysis.	In	order	to	test	the	robustness	of	our	findings	and	determine	how	the	
behavioral	hallmarks	of	chunking	scale	with	the	size	of	the	stimulus	array,	we	
applied	a	modified	version	of	our	mixture	model	to	a	meta-analysis	dataset.	The	
meta-analysis	dataset	included	eight	studies	and	a	total	of	101	subjects	(Bays	et	al.,	
2009;	James	M	Gold	et	al.,	2010;	Rademaker,	Tredway,	&	Tong,	2012;	van	den	Berg	
et	al.,	2012;	Wilken	&	Ma,	2004;	Zhang	&	Luck,	2008).	Seven	of	the	datasets,	
available	online	at	http://www.cns.nyu.edu/malab/resources.html,	were	originally	
compiled	by	van	den	Berg	et	al.	and	have	previously	been	described	in	detail	(van	
den	Berg	et	al.,	2014).	Three	of	the	studies	compiled	by	Van	den	Berg	et	al.	were	
excluded	from	our	analyses	due	to	retraction	of	the	original	studies,	although	the	
inclusion	of	these	studies	did	not	qualitatively	change	our	results.	The	eighth	
dataset	(28	subjects)	comprised	the	control	subjects	in	a	psychiatric	comparative	
study	of	visual	working	memory	(James	M	Gold	et	al.,	2010).	Each	study	differed	in	
experimental	details	but	involved	a	delayed	report	working	memory	task	with	at	
least	two	different	array	sizes.		
	
Quantitative	model	fitting	to	meta-analytic	data.	We	constructed	a	nested	set	of	
models	to	better	understand	whether	chunking	could	improve	explanations	of	
behavior	in	previous	studies	visual	working	memory	studies.	Each	model	was	
extended	beyond	a	“base”	model	in	which	the	partitioning	criterion	was	fixed	to	
zero.	The	base	model	included	one	change	from	the	models	that	were	fit	to	the	data	
from	our	experiment	in	order	to	account	for	the	possibility	that	binding	errors	
depend	on	set	size	(which	was	variable	in	the	meta-analytic	data	but	fixed	in	our	
own	study).	Specifically,	we	replaced	the	fixed-probability	of	binding	errors	with	a	
Poisson	distribution	that	described	the	number	of	probe	dimension	features	that	
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would	be	recalled	on	a	given	trial	(s),	with	lambda	of	this	distribution	fit	as	a	free	
parameter.	For	each	trial,	this	distribution	was	used	to	compute	a	probability	that	
the	relevant	probe	feature	would	not	be	stored	in	memory:	
	

𝑝 𝑓𝑜𝑟𝑔𝑜𝑡 𝑝𝑟𝑜𝑏𝑒 =  1−  𝑝 𝑠 ∗min 1, 
𝑠
𝑛  

!

!!!

	

	
where	n	is	the	number	of	targets	presented	on	a	given	trial	and	p(s)	is	the	
probability	of	recalling	s	probe	dimension	features	on	a	Poisson	distribution.	The	
minimum	term	accounts	for	the	case	where	the	number	of	available	items	is	smaller	
than	the	number	of	probe	dimension	features	that	could	have	been	stored	on	a	given	
trial.		
	
The	probability	of	making	a	binding	error,	given	that	the	recall	feature	was	
remembered,	was	then	computed	as:	
	

𝑝 𝐵𝐸 =  𝑝 𝑓𝑜𝑟𝑔𝑜𝑡 𝑝𝑟𝑜𝑏𝑒 −  
𝑝 𝑓𝑜𝑟𝑔𝑜𝑡 𝑝𝑟𝑜𝑏𝑒

𝑛 	
	
to	correct	for	the	possibility	that,	in	the	case	that	the	model	did	not	correctly	store	
the	probe	dimension	feature,	it	could	choose	the	correct	report	dimension	feature	
by	chance.	This	change	allowed	the	model	to	capture	tendencies	for	binding	errors	
to	increase	with	set	size,	as	have	been	reported	previously	(Bays	et	al.,	2009).	
	
The	first	extension	to	the	base	model	allowed	the	partitioning	criterion	and	
repulsion	criterion	to	be	fit	as	free	parameters,	rather	than	set	to	zero	as	they	were	
in	the	base	model.	This	extension	allowed	the	model	to	capture	the	biases	and	recall	
benefits	that	are	predicted	by	our	more	general	center-surround	chunking	model	
(e.g.	figures	5-8);	however,	it	would	not	capture	variability	in	reports	that	would	be	
expected	to	occur	through	the	amplification	of	sensory	noise	by	the	chunking	and	
repulsion	processes,	as	the	sensory	noise	was	removed	in	order	to	allow	for	a	closed	
form	likelihood	function.		
	
In	order	to	account	for	the	basic	effects	of	chunking	and	repulsion	on	report	
variability	that	would	be	expected	based	on	our	center-surround	chunking	model,	
but	maintain	the	tractability	of	our	likelihood	function,	we	added	two	additional	
parameters	to	the	model	to	allow	the	variance	in	memory	reports	to	scale	linearly	
with	1)	the	variance	of	feature	values	stored	within	a	single	chunk	[chunking	noise],	
and	2)	the	total	repulsive	forces	experienced	by	the	recalled	feature	[repulsion	
noise].	
	
We	also	considered	an	extension	that	employed	a	more	flexible	report	distribution	
that	included	an	additional	free	parameter	to	model	differences	in	kurtosis.	In	this	
extension,	memory	reports	were	generated	from	a	t-distribution	centered	on	the	
value	of	the	internal	representation	and	truncated	at	that	value	plus	or	minus	π	
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radians.	The	t-distribution	included	a	base	scale	parameter	fit	to	each	subject,	which	
accounted	for	overall	variability	in	memory	reports	and	was	incremented	by	the	
additional	chunking	and	repulsion	variability	as	described	above.	In	addition,	the	t-
distribution	included	a	degrees	of	freedom	parameter	that	was	fit	to	each	individual	
subject,	which	allowed	the	model	to	capture	report	distributions	ranging	from	
leptokurtic	(low	degrees	of	freedom)	to	mesokurtic	(high	degrees	of	freedom).	
	
Finally,	we	considered	an	extension	to	the	model	that	included	the	possibility	that	
precision	depends	on	set	size.	Specifically,	we	stipulated	that	precision,	or	inverse	
variance,	of	memory	reports	would	obey	a	power-law	relationship	with	set	size:	
	

1
𝜎!"#$!%! = 𝐽 ∗ 𝑛! 	

			
where	J	is	the	response	precision	expected	when	set	size	is	equal	to	1,	and	α	is	the	
power	delineating	the	dependency	of	precision	on	set	size,	with	negative	values	of	α	
corresponding	to	precision	values	that	decay	with	set	size.		
	
The	nested	set	of	models	were	tested	against	one	another,	and	also	compared	to	a	
variable	precision	model	that	includes	Poisson	item	limits	and	binding	errors	that	
scale	linearly	with	set	size,	which	was	the	best	performing	model	in	a	previous	
meta-analysis	of	delayed	report	working	memory	behavior	(van	den	Berg	et	al.,	
2014).	Model	comparison	using	AIC	and	Bayesian	model	selection	was	done	as	
described	above.	Posterior	predictive	checks	were	conducted	by	fitting	actual	and	
model-generated	meta-analytic	data	with	a	descriptive	model	of	memory	report	
distributions	separately	for	each	subject	and	set	size.	The	descriptive	model	
estimated	the	rate	of	three	response	types	(guess,	binding	errors,	and	correct	recall)	
and	the	precision	of	memory	reports	as	has	been	described	previously	(Bays	et	al.,	
2009).	However,	the	model	also	included	two	additional	terms	to	capture	
fluctuations	in	recall	and	precision	within	a	given	set	size	that	would	be	predicted	
by	chunking.	Specifically,	the	model	allowed	the	probability	of	recall	to	vary	as	a	
logistic	function	of	trial-to-trial	recall	probabilities	extracted	from	the	center-
surround	chunking	model,	and	allowed	the	variance	of	the	report	distribution	to	
vary	as	a	linear	function	of	the	trial-to-trial	prediction	for	response	variance	
extracted	from	the	center-surround	chunking	model.	Trial-to-trial	model	
predictions	were	extracted	from	the	center-surround	chunking	model	that	included	
chunking	and	repulsion	noise	as	well	as	t-distributed	errors,	as	this	model	provided	
a	combination	of	a	good	fit	to	most	subject	data	and	relatively	well-behaved	
parameter	estimates.			
	
Nearest	neighbor	analysis.	For	each	trial,	the	nearest	neighbor	color	was	identified	as	
the	color	of	the	non-probed	target	that	was	most	similar	to	that	of	the	probed	target.	
Target	colors	and	subject	reports	were	transformed	for	each	trial	such	that	the	
probed	target	color	corresponded	to	zero	and	the	nearest	neighbor	color	ranged	
from	zero	to	π.	Trials	were	then	sorted	according	to	absolute	nearest	neighbor	
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distance	(see	figure	S2)	and	binned	in	sliding	windows	of	50	trials	according	to	
nearest	neighbor	distance.	Binned	data	were	combined	across	all	subjects	and	fit	
with	a	mixture	model	that	assumed	data	were	generated	from	a	mixture	of	1)	a	von	
Mises	distributed	memory	report	(free	parameters:	mean,	precision,	and	mixture	
weight),	2)	uniformly	distributed	guesses	(free	parameters:	mixture	weight),	and	3)	
binding	errors	that	were	von	Mises	distributed	and	centered	on	non-probed	targets	
(no	free	parameters	required,	as	mixture	weight	forms	simplex	with	the	other	
mixture	components).	Maximum	posterior	probability	parameter	estimates	for	the	
mixture	model	fits	to	subject	and	model	simulated	data	are	reported	in	figure	9	
(prior	distributions	for	all	modulator	terms	were	centered	on	zero	with	σ	=	0.5	for	
recall	modulators,	σ	=	2	for	precision	modulators,	and	σ	=	0.05	for	bias	modulators).			
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Figure	S1:	Uniformly	spaced	stimulus	configurations	degrade	task	performance	and	
confidence	in	human	subjects.	Subject	performance	was	assessed	in	terms	of	accuracy	(percent	of	
trials	eliciting	positive	feedback)	and	confidence	(percent	of	trials	eliciting	high	post-decision	
wagers)	separately	according	to	precision	condition	(23	subjects	were	required	to	achieve	an	error	
of	less	than	π/3	to	elicit	positive	feedback	[low	precision],	whereas	24	subjects	were	required	to	
achieve	an	error	of	less	than	π/8	to	elicit	positive	feedback	[high	precision]).	A)	Subjects	in	the	low	
precision	condition	were	more	accurate	for	random	spacing,	as	opposed	to	fixed	spacing,	stimulus	
configurations	(orange;	t=5.6,	p	<	10e-4),	whereas	subjects	in	the	high	precision	condition	attained	
similar	overall	performance	in	both	configurations	(blue;	t=1.5,	p	=	0.15).	Points/lines	indicate	group	
mean/SEM.		B)	Subjects	in	both	conditions	indicated	higher	confidence	for	random-spacing,	as	
opposed	to	fixed-spacing,	stimulus	configurations	(t	=	[2.3,	2.0]	and	p	=	[0.03,	0.06]	for	high	and	low	
precision	conditions,	respectively).	C)	Subjects	that	were	most	accurate,	as	assessed	online	according	
to	a	fixed	error	threshold,	also	tended	to	make	higher	post-decision	wagers.	Orange	and	blue	points	
indicate	subjects	in	low	and	high	precision	conditions,	respectively.	D)	Furthermore,	the	
improvement	in	accuracy	from	fixed-	to	random-spaced	arrays	was	greater	for	subjects	that	showed	
the	largest	increase	in	confidence	across	the	same	conditions.		
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Figure	S2:	Stimulus	clustering	and	recent	feedback	impact	accuracy	and	confidence	after	
controlling	for	other	confounded	factors	in	a	GLM.	Effects	of	color	clustering	on	performance	
(left)	and	confidence	(right)	persist	after	accounting	for	potential	confounding	factors	and	feedback-
dependent	performance	adjustments.	Coefficients	from	a	mixed-effects	logistic	regression	model	of	
binary	accuracy	and	wager	are	plotted	on	the	abscissa.	Circles/lines	reflect	mean/SEM,	and	X	marks	
indicate	coefficients	significantly	different	from	zero	(p	<	0.05).	Coefficients	for	log(WCV),	a	proxy	for	
stimulus	clustering,	are	highlighted	in	orange.	Coefficients	for	log(WCV)	are	significantly	lower	than	
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zero,	indicating	better	performance	/	higher	wagering	on	trials	where	stimulus	colors	were	more	
clustered.	This	effect	is	not	present	in	accuracy	data	simulated	from	a	mixture	model	that	includes	
binding	errors	(center).		
	
	
	

	
	
	
Figure	S3:	Recall	is	affected	by	clustering	of	both	probed	and	non-probed	stimuli.	To	further	
examine	the	source	of	the	recall	benefits,	subject	data	were	fit	with	a	mixture	model	that	considered	
reports	to	come	from	a	mixture	of	processes	including	1)	a	uniform	“guess”	distribution,	2)	a	
“memory+binding”	distribution	centered	on	the	color	of	the	probed	target,	and	3)	a	“binding	error”	
distribution	including	peaks	at	each	non-probed	target.	Additional	terms	were	included	in	the	model	
to	allow	the	recall	probability	to	vary	as	a	logistic	function	of	various	descriptive	aspects	of	stimulus	
clustering	that	all	factor	into	the	within-cluster	variance	measurements	reported	in	figure	5.	To	do	
so,	the	color	array	from	each	trial	was	divided	into	two	(minimal	variance)	clusters	to	compute	1)	the	
variance	of	the	cluster	that	did	not	contain	the	probed	item	[OCV],	2)	the	variance	of	the	cluster	that	
did	contain	the	probed	item	[ICV],	and	the	number	of	colors	in	the	cluster	that	contained	the	probed	
target	[CS].	A)	Mean/SEM	coefficients	across	subjects	indicated	that	these	three	factors,	along	with	
their	interactions,	were	systematically	related	to	trial-to-trial	fluctuations	in	subject	recall	rates.	
B&C)	The	predicted	recall	rates	from	model	fits	are	plotted	as	a	function	of	ICV	(B)	and	OCV	(C)	color	
coded	according	to	the	number	of	items	in	the	relevant	cluster	(the	cluster	containing	the	probed	
item	for	B,	and	the	cluster	that	did	not	contain	the	probed	item	for	C).	Recall	bonuses	are	evident	for	
low	values	of	both	ICV	and	OCV,	although	these	benefits	scale	with	the	number	of	colors	contained	in	
the	relevant	cluster.		
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Figure	S4:	Sorting	trials	according	to	the	nearest	neighbor	non-probed	target	color	reveals	
structure	in	memory	reports.	A&B:	Signed	error	of	memory	reports	(red	points)	for	all	trials	
completed	by	two	sample	subjects	(left	=	subject	1,	right	=	subject	31).	Trial	errors	are	sorted	by	the	
distance	from	the	probed	target	to	the	most	similar	color	in	the	target	array	(nearest	neighbor	
distance,	NND)	and	transformed	according	to	the	direction	of	the	nearest	neighbor	target	(blue	
points).	Green	points	reflect	the	positions	of	other	colors	in	the	target	array,	relative	to	the	probed	
color	and	transformed	as	described	above.	Note	the	asymmetry	in	error	distributions	appears	to	
change	as	a	function	of	the	nearest	neighbor	distance.	C&D:	Error	histograms	for	the	same	two	
example	subjects,	transformed	as	described	above.	Note	that	in	some	cases	apparent	structure	in	the	
sorted	errors	(A)	is	no	longer	visible	after	collapsing	across	nearest	neighbor	distances	(C).		
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Figure	S5:	Neighboring	stimulus	features	affect	fits	of	mixture	model.		Subject	(left)	and	
simulated	(center	=	center-surround,	right	=	independent	encoding)	data	were	collapsed	across	all	
sessions	and	binned	in	sliding	windows	according	to	the	absolute	distance	between	the	probed	
target	color	and	the	most	similar	non-probed	target	color	(NN	dist;	abscissa).	Data	in	each	bin	were	
fit	with	a	mixture	model	that	included	free	parameters	to	estimate	the	proportion	of	reports	
generated	from	1)	the	von	Mises	“memory	distribution”	(A-C),		2)	the	uniform	“guess	distribution”	
(D-F),	or	3)the	mixture	of	von	Mises	“binding	error	distribution”	(G-I).	Parameter	estimates	for	
precision	and	bias	terms	are	reported	in	the	main	text	(figure	8).		
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