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Abstract:	
 
 The amount of visual information that can be stored in working memory is 
inherently limited, and the nature of this limitation has been a subject of intense 
debate. The debate has relied on tasks and models that assume visual items are 
independently encoded in working memory. Here we propose an alternative to 
this assumption: similar features are jointly encoded through a “chunking” 
process to optimize performance on visual working memory tasks. We show that 
such chunking can: 1) facilitate performance improvements for abstract capacity-
limited systems, 2) be optimized through reinforcement, 3) be implemented by 
neural network center-surround dynamics, and 4) increase effective storage 
capacity at the expense of recall precision. Human subjects performing a delayed 
report working memory task show evidence of the performance advantages, trial-
to-trial behavioral adjustments, precision detriments, and inter-item dependencies 
predicted by optimization of task performance though chunking. Furthermore, by 
applying similar analyses to previously published datasets, we show that markers 
of chunking behavior are robust and increase with memory load. Taken together, 
our results support a more nuanced view of visual working memory capacity 
limitations: tradeoff between memory precision and memory quantity through 
chunking leads to capacity limitations that include both discrete (item limit) and 
continuous (precision limit) aspects.  
 
	
Introduction:	
	
	 People	and	animals	are	limited	in	their	capacity	to	retain	visual	information	
in	short-term	memory;	however,	the	exact	nature	of	this	limitation	is	hotly	debated		
1,2.	Competing	theories	have	stipulated	that	capacity	is	constrained	by	either	a	
discrete	item	limit	(e.g.,	a	fixed	number	of	“slots”)	or	by	the	distribution	of	a	flexible	
resource	across	relevant	visual	information	(resource)	3,4.	In	their	simplest	form,	
these	competing	theories	are	both	philosophically	distinct	and	statistically	
identifiable,	but	experimental	evidence	has	been	mixed,	with	some	studies	favoring	
each	theory	and	the	best	fitting	computational	models	incorporating	elements	of	
each	3-13.	In	particular,	as	the	number	of	items	to	be	retained	increases,	visual	
working	memory	reports	tend	to	become	less	precise,	as	predicted	by	resource	
models,	and	more	likely	to	reflect	guessing,	as	predicted	by	slots	models	13.		
	 While	the	competing	classes	of	visual	working	memory	models	have	evolved	
substantially	over	the	past	decade,	they	have	both	relied	on	the	underlying	
assumption	that	items	are	stored	independently	of	one	another	in	working	memory.	
Recent	work	has	challenged	this	assumption,	instead	highlighting	the	tendency	of	
human	subjects	to	exploit	any	available	stimulus	regularities	to	optimize	
performance	14-19.	It	is	still	unknown	to	what	extent	such	optimization	affects	the	
tasks	used	to	probe	capacity	limits,	and	thereby	our	understanding	of	their	nature.	
This	is	by	design,	in	that	these	tasks	minimize	statistical	structure,	thereby	
eliminating	the	potential	advantages	conferred	by	optimization	of	stimulus	
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encoding	through	lossless	data	compression	or	optimization	of	memory	decoding	
through	Bayesian	inference	(figure	1).	Nonetheless,	people	may	employ	fast	and	
frugal	lossy	data	compression	techniques	optimized	to	reduce	memory	storage	
requirements	at	a	small	but	acceptable	cost	to	task	performance.		
	 One	such	compression	strategy	is	the	joint	encoding,	or	chunking,	of	similar	
feature	values	into	a	single	blended	memory	representation,	or	chunk.	Such	an	
encoding	strategy	would	be	in	line	with	the	broader	psychological	literature	
suggesting	that	humans	efficiently	chunk	sequences	of	information	to	reduce	
effective	memory	demands	20.	Furthermore,	similarity-based	chunking	could	be	
thought	of	as	an	extreme	extension	of	the	center-surround	dynamics	prominent	in	
the	visual	system	21-23:	where	standard	implementations	of	center-surround	
dynamics	predict	attraction	of	similar	representations,	chunking	would	require	
merging	such	representations	completely.	Indeed,	single	layer	neural	network	
models	of	working	memory	have	observed	this	phenomenon	and	suggested	that	it	
might	play	a	role	in	limiting	precision	in	visual	working	memory	24.	More	complex	
network	architectures,	in	conjunction	with	experimental	data,	have	suggested	that	
the	access	to	working	memory	is	gated,	subject	to	reinforcement	learning,	and	used	
as	a	form	of	stimulus	clustering,	suggesting	a	mechanism	through	which	this	form	of	
chunking	might	be	optimized	according	to	task	success	25-27.		
	 Here	we	directly	test	whether	and	how	people	compress	visual	information	
through	chunking	and	examine	how	this	affects	notions	of	working	memory	
capacity	limitation.	To	do	so,	we	first	develop	an	abstract	model	of	capacity-limited	
memory	and	use	it	to	demonstrate	that	chunking	improves	simulated	performance,	
can	be	optimized	according	to	reward	feedback,	and	offers	larger	performance	
advantages	for	more	clustered	stimulus	arrays.	Second,	we	establish	that	a	similar	
chunking	advantage	is	conferred	at	the	implementational	level	by	center-surround	
dynamics,	and	that	these	dynamics	mediate	a	direct	tradeoff	between	the	number	of	
items	stored	and	the	apparent	precision	with	which	those	items	are	stored.	Third,	
we	demonstrate	empirically	that	working	memory	performance	in	human	subjects	
is	enhanced	for	the	most	“chunkable”	stimulus	arrays	and	adjusted	according	to	
reward	feedback,	as	predicted	by	the	abstract	model,	and	that	this	enhancement	
comes	at	the	cost	of	reduced	precision,	as	predicted	by	the	center-surround	model.	
Finally,	we	show	that	the	behavioral	markers	of	chunking	are	present	across	a	large	
corpus	of	previously	published	working	memory	datasets	and	increase	as	a	function	
of	memory	demand.	Together,	these	results	suggest	that	people	optimize	center-
surround	chunking	to	trade	precision	for	recall	probability	when	approaching	
capacity	limits,	effectively	producing	a	hybrid	between	continuous	and	discrete	
capacity	limitation.		
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Figure	1:	Working	memory	requires	encoding	sensory	representations	and	decoding	them	
during	retrieval	to	inform	downstream	decisions.	Both	encoding	and	decoding	involve	
transformations	that	can	be	optimized	to	maximize	accuracy	of	memory	reports.	Optimization	of	
encoding	requires	compressing	data	for	efficient	storage	(data	compression)	14,20,	whereas	
optimization	of	decoding	requires	pooling	information	from	relevant	sources	including	prior	
expectations	and	conditional	item	dependencies	(Bayesian	inference)	15,16,18.	Standard	delayed	report	
visual	working	memory	tasks	minimize	statistical	structure	that	can	be	exploited	through	lossless	
data	compression	and	Bayesian	inference	3,11,28.	It	is	unknown	whether	performance	advantages	
might	be	achieved	in	these	tasks	through	a	form	of	lossy	data	compression	that	deemphasizes	
encoding	the	visual	information	that	is	least	relevant	to	successful	performance.		
	
Results:	
	
We	use	three	distinct	approaches	to	examine	whether,	how,	and	why	people	might	
chunk	visual	information	in	standard	working	memory	tasks.	First,	we	provide	a	
computational	level	analysis	of	the	potential	utility	of	chunking	within	an	abstract	
memory	system	that	stores	visual	features	as	binary	words	in	a	buffer	with	a	fixed	
capacity	and	optimizes	information	content	by	adjusting	encoding	strategies	as	a	
function	of	task	success.	Second,	we	consider	how	chunking	could	be	implemented	
through	center-surround	dynamics,	and	we	examine	its	predicted	impact	on	
memory	reports.	Specifically,	we	extend	a	descriptive	model	of	working	memory	to	
include	item	and	feature	interactions	that	would	be	expected	to	emerge	from	
center-surround	dynamics	in	memory	attractor	networks.	Third,	we	test	the	unique	
behavioral	predictions	of	each	of	these	models	with	data	from	human	subjects	
performing	a	novel	delayed	report	task	designed	to	test	chunking	model	
predictions.	Finally,	we	establish	that	the	behavioral	patterns	indicative	of	chunking	
in	our	dataset	are	also	visible	in	a	meta-analysis	of	behavioral	datasets	that	have	
previously	been	used	to	evaluate	competing	models	of	working	memory,	but	which	
heretofore	have	not	considered	a	role	for	chunking.		
	
Chunking	similar	object	features	can	improve	performance	of	capacity-limited	
systems.	
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Visual	working	memory	capacity	is	typically	measured	using	either	delayed	report	
or	change	detection	tasks	4,8,28.	Here	we	focus	on	the	former,	as	they	have	provided	
nuanced	information	about	the	shape	of	memory	distributions	and	have	formed	the	
basis	for	competing	models	of	capacity	limitation	1,2,12,29.		
	
Specifically,	we	consider	a	delayed	report	color	reproduction	task	that	requires	
storage	of	color	and	orientation	information	(figure	2).	Each	trial	of	the	task	consists	
of	three	core	stages:	stimulus	presentation,	delay,	and	probe.	During	stimulus	
presentation,	five	oriented	colored	bars	are	displayed.	During	the	subsequent	delay,	
the	screen	is	blanked,	requiring	short-term	storage	of	color	and	orientation	
information.	During	the	probe	stage,	an	oriented	bar	is	displayed	(in	gray)	and	the	
participant	is	required	to	report	the	color	that	had	been	associated	with	that	
orientation	in	the	preceding	stimulus	array.	
	

	
	
Figure	2:	Delayed	report	color	reproduction	task.	Each	trial	begins	with	central	fixation	for	500	
msec,	followed	by	stimulus	presentation	for	200	msec.	Stimuli	consist	of	five	colored	and	oriented	
bars	evenly	distributed	around	a	circle	subtending	4	degrees	of	visual	angle	and	centered	on	the	
point	of	fixation.	Stimulus	presentation	is	followed	by	a	900	msec	delay,	after	which	a	single	oriented	
bar	is	displayed	centrally.	The	subject	is	required	to	report	the	color	associated	with	the	bar	with	the	
probed	orientation	in	the	previous	stimulus	array.	After	confirming	the	report,	the	subject	receives	
feedback	dependent	on	whether	the	absolute	magnitude	of	the	reproduction	error	was	greater	or	
less	than	a	fixed	threshold.	Stimulus	colors	on	any	given	trial	are	selected	either:	1)	randomly	and	
independently	as	is	standard	in	such	tasks	(random	spacing;	upper	left)	or	2)	ensuring	uniform	
spacing	on	the	color	wheel	so	as	to	minimize	within-array	color	similarity	(fixed	spacing).		
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To	first	understand	whether,	in	principle,	information	encoding	could	be	optimized	
in	this	task,	we	developed	a	limited-capacity	system	for	memory	storage	in	which	
colors	and	orientations	are	represented	with	binary	words	(figure	3).	The	precision	
with	which	a	color	is	stored	depends	on	the	number	of	binary	digits	(bits)	used	to	
represent	that	color:	a	single	bit	can	be	used	to	specify	a	half	of	the	color	wheel,	a	
second	bit	can	be	added	to	specify	a	quadrant	of	the	color	wheel,	and	so	on	(figure	3,	
top).	Capacity	limitations	within	such	a	system	can	be	easily	implemented	as	a	fixed	
limit	on	the	number	of	bits	stored	during	the	delay	period.	These	bits	can	be	used	to	
represent	the	individual	colors	in	the	target	array,	by,	for	example,	dividing	them	
evenly	among	the	available	targets	(independent	item	encoding;	figure	3).	
Alternatively,	multiple	similar	colors	could	be	jointly	represented	with	a	single	
binary	word	that	is	then	linked	to	multiple	orientations	(chunking;	figure	3).	An	
intuitive	advantage	of	the	second	encoding	strategy	is	that	reducing	the	number	of	
binary	color	words	increases	the	number	of	bits	available	to	represent	each	word,	
potentially	offsetting	the	biased	encoding	of	the	chunked	items	by	better	
representing	each	encoded	color.	
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Figure	3:	Binary	encoding	model	of	visual	working	memory.	In	order	to	formalize	capacity	
limitations,	it	is	useful	to	consider	an	abstract	model	of	working	memory	that	stores	features	in	
binary	words.	Top:	Each	color	can	be	described	by	a	binary	word	of	fixed	length,	where	the	number	
of	digits	in	the	word	determines	the	storage	precision.	Middle	&	Bottom:	Stimulus	arrays	can	be	
stored	by	linking	ordered	pairs	of	color	and	orientation	words.	Capacity	limitations	are	modeled	by	a	
fixed	limit	on	the	length	of	the	resulting	“sentence”	comprised	of	color	and	orientation	words	
separated	by	word	termination	symbols	(2/3	for	color/orientation	words,	respectively).	One	
strategy	for	storing	ordered	pairs	involves	alternating	sequences	of	color	and	orientation	words,	
such	that	each	color	is	linked	to	a	single	orientation	(Middle).	Another	strategy	for	storage	would	be	
to	link	two	or	more	orientations	to	a	single	color.	This	reduces	the	number	of	colors	that	need	to	be	
stored,	and	thus	increases	the	number	of	bits	allotted	to	each	color	(Bottom).		
	
To	test	this	potential	advantage	quantitatively,	we	simulated	the	task	performance	
of	models	with	various	levels	of	chunking	under	a	variety	of	conditions.	We	
parameterized	chunking	by	setting	a	“partitioning	criterion”	that	defines	the	
minimum	distance	between	two	colors	required	for	independent	representation.	If	
the	distance	between	two	colors	is	smaller	than	the	partitioning	criterion,	the	colors	
are	represented	as	a	single	“chunk”.	Thus,	a	partitioning	criterion	of	zero	indicates	
that	all	items	are	represented	independently,	whereas	a	partitioning	criterion	of	π	
indicates	that	all	item	colors	will	be	chunked	together	(i.e.	represented	by	a	single	
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binary	word).	Performance	of	models	with	various	partitioning	criterions	was	
simulated	for	working	memory	color	reproduction	tasks	ranging	from	easy	(two	
targets)	to	difficult	(eight	targets).		
	
Model	performance	depended	on	partitioning	criterion	as	a	function	of	task	
difficulty	(figure	4).	For	easier	tasks	with	few	items	to	encode,	the	model’s	memory	
buffer	was	large	enough	to	store	each	item	independently	with	a	reasonable	number	
of	bits,	such	that	increasing	the	partitioning	criterion	beyond	zero	was	detrimental	
to	task	performance	(two	targets;	figure	4a).	However,	for	harder	tasks,	in	which	
storing	each	item	with	high	precision	was	not	possible	due	to	limited	buffer	size,	
performance	was	best	for	moderate	partitioning	criterions	that	allow	for	joint	
representation	of	similar,	but	not	divergent,	colors	(five	targets;	figure	4b).	Across	
task	difficulties,	there	was	a	monotonic	relationship	between	the	number	of	targets	
and	the	performance	advantage	that	could	be	attained	through	some	level	of	
chunking	(figure	4C).	However,	the	magnitude	of	the	chunking	bonus	also	depended	
on	the	exact	distribution	of	the	target	colors	within	the	array.	If	the	colors	were	
randomly	sampled	independently,	which	is	the	standard	method	in	such	tasks,	
chunking	offered	large	advantages.	In	contrast,	the	advantages	of	chunking	were	
considerably	smaller	when	colors	were	uniformly	distributed	in	color	space	to	
maximize	color	separation	(fixed	spacing;	figure	1	inset;	compare	the	blue	and	
yellow	lines	in	figure	4A-C).		
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Figure	4:	Chunking	improves	memory	performance	in	binary	encoding	model.	A&B:	Mean	
absolute	error	(abscissa)	for	simulated	performance	of	a	binary	encoding	model	with	partitioning	
criterions	(ordinate)	ranging	from	0	(all	colors	are	stored	independently)	to	π	(all	colors	are	stored	
in	a	single	chunk).	Blue/yellow	lines	reflect	performance	on	tasks	containing	random/fixed	spacing	
color	arrays.	When	capacity	is	large	relative	to	the	array	size,	as	in	A,	increased	chunking	produced	
larger	errors	and	diminished	performance.	However,	for	larger	memory	arrays,	as	in	B,	chunking	
similar	items	produced	smaller	errors	and	improved	performance,	particularly	when	stimuli	were	
randomly	spaced.	C:	The	chunking	bonus,	measured	as	the	mean	absolute	error	of	the	non-chunking	
model	(partitioning	criterion	=	0)	minus	the	mean	absolute	error	of	the	best	performing	model,	
increased	monotonically	with	memory	load	and	was	larger	for	random	spacing	stimulus	arrays.	D&E:	
Within	cluster	variance	provides	a	measure	of	feature	clustering	within	a	stimulus	array,	with	low	
values	indicating	more	clustering	(D)	and	high	values	indicating	less	clustering	(E).	F:	Performance	of	
the	best	chunking	model,	but	not	the	non-chunking	model,	depends	on	the	clustering	of	individual	
stimulus	arrays,	as	assessed	through	within	cluster	variance.	Mean	absolute	error	is	plotted	for	
stimulus	arrays	grouped	in	sliding	windows	of	within	cluster	variance	for	the	best	chunking	(green)	
and	non-chunking	(black)	models.	Circles	reflect	the	same	values	computed	for	fixed	spacing	trials.	G:	
Chunking	behaviors	could	be	optimized	by	adjustment	of	the	partitioning	criterion	as	a	function	of	
trial-by-trial	feedback	about	task	success.		Partitioning	criterion	(left)	and	mean	absolute	error	
(right)	are	plotted	across	trials	(ordinate)	for	simulated	models	that	adjust	the	partitioning	criterion	
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on	each	trial	according	to	the	chunking	and	feedback	on	the	previous	trial	using	reinforcement	
learning	(see	Methods).	Simulations	are	sorted	by	array	size,	with	lighter	colors	corresponding	to	
larger	memory	arrays.		
			
	
To	better	characterize	the	aspects	of	the	randomly	spaced	target	arrays	that	enabled	
better	performance	in	the	chunking	models,	we	computed	the	within	cluster	
variance	(WCV)	as	a	simple	metric	of	the	“chunkability”	of	each	stimulus	array	(see	
Methods).	Target	arrays	with	tightly	clustered	colors	have	low	WCV,	whereas	target	
arrays	with	distantly	spaced	colors	have	high	WCV	(figure	4D&E).	The	performance	
of	chunking	models	depended	monotonically	on	WCV,	with	the	smallest	errors	
achieved	on	low	WCV	target	arrays	(figure	4F),	supporting	the	notion	that	chunking	
advantages	are	achieved	by	more	efficient	representation	of	similar	colors	through	
joint	encoding.		
	
To	examine	whether	the	advantages	of	chunking	could	be	learned	online,	we	tested	
whether	the	partitioning	criterion	could	be	optimized	on	a	trial-to-trial	basis	via	
reinforcement	learning.	When	the	partitioning	criterion	was	adjusted	on	each	trial	
according	to	the	chunking	(total	number	of	chunks)	and	reward	feedback	
(thresholded	binary	feedback)	from	the	previous	trial,	it	tended	to	increase	rapidly	
until	reaching	a	load-dependent	asymptote	(figure	4G).	Trial-to-trial	increases	in	the	
partitioning	criterion	corresponded	to	rapid	improvements	in	overall	task	
performance,	as	measured	by	average	absolute	error	(figure	4G).	Thus,	chunking	
could	be	optimized	across	conditions	to	improve	performance	and	facilitate	greater	
chunking	in	higher	memory	load	contexts.		
	
Taken	together,	the	results	from	the	binary	encoding	model	suggest	that	1)	
chunking	nearby	feature	values	can	improve	performance	in	working	memory	tasks,	
2)	performance	improvements	from	chunking	increase	with	target	number	and	are	
mitigated	by	uniformly	spacing	feature	values,	3)	performance	of	chunking	models	
depends	monotonically	on	WCV,	and	4)	chunking	behavior	can	be	learned	through	
reinforcement	of	successful	chunking	behaviors.	In	summary,	the	binary	encoding	
model	clarifies	why,	and	under	what	conditions,	chunking	could	benefit	working	
memory	performance	in	standard	tasks.	In	the	next	section,	we	extend	these	ideas	
to	examine	how	chunking	could	be	achieved	by	biological	systems	and	to	identify	
more	detailed	behavioral	predictions	of	plausible	chunking	mechanisms.		
	
Chunking	advantages	can	be	conferred	by	center-surround	dynamics.	
	
The	brain	is	thought	to	implement	visual	working	memory	in	neural	networks	that	
include	individual	neurons	tuned	to	specific	visual	features	and	capable	of	
maintaining	representations	in	the	absence	of	input	30-34.	Neural	responses	within	
such	networks	are	thought	to	obey	center-surround	receptive	field	architectures	
that	are	present	throughout	the	visual	system	35,36,	supported	by	lateral	connectivity	
37-39,	and	have	recently	been	shown	to	bias	working	memory	reports	40.	In	
computational	models,	the	ability	of	a	neural	network	to	maintain	feature	
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representations	in	the	absence	of	inputs	depends	critically	on	the	recurrent	
connections	between	neurons	41-45.	In	particular,	persisting	feature	representations,	
like	those	of	the	colors	in	our	task,	are	facilitated	by	local	excitatory	connections	
between	similarly	tuned	neurons	and	by	broadly	tuned	inhibition	between	neurons	
with	dissimilar	tuning	(figure	5A).	Such	connectivity	promotes	interactions	between	
multiple	simultaneous	representations,	with	the	impact	of	each	color	representation	
on	the	others	depending	on	their	level	of	similarity.	If	the	two	stored	colors	are	
similar	enough	to	promote	mutual	recurrent	excitation,	each	represented	color	will	
experience	biased	excitation	in	the	direction	of	its	neighboring	color,	and	eventually	
the	two	color	“bumps”	will	merge	to	form	a	single	representation	(figure	5B)	24.	In	
contrast,	if	the	stored	colors	are	separated	beyond	the	narrowly	tuned	recurrent	
excitation	function,	mutual	recurrent	inhibition	will	dominate,	leading	to	a	net	
repulsion	of	color	representations	from	one	another	(figure	5C)	40,46.	Together,	the	
interactive	dynamics	of	the	system	can	be	described	by	a	“difference	of	Gaussians”	
function	that	mediates	the	attraction	and	joint	representation	of	similar	colors	and	
the	repulsion	of	dissimilar	ones	(figure	5B&C;	yellow	shading).	 
	
To	incorporate	these	dynamics	into	a	descriptive	model	of	working	memory	
performance,	we	implemented	attractive	and	repulsive	forces	among	stored	
memories	in	accordance	with	narrowly	tuned	excitation	and	broadly	tuned	
inhibition	functions.	On	each	trial,	each	color	from	the	target	array	was:	1)	
perturbed	by	a	mean	zero	random	variable	to	simulate	neural	noise,	2)	chunked	
with	each	other	color	in	the	array	with	probability	proportional	to	the	excitation	
tuning	function,	3)	repulsed	by	each	other	color	in	the	array	with	magnitude	
proportional	to	the	inhibition	tuning	function,	and	4)	probabilistically	stored	across	
the	delay	period	according	to	a	Poisson	process.	The	proportionality	constants	
allowed	us	to	examine	the	performance	of	models	ranging	from	those	that	were	not	
affected	by	recurrent	dynamics	(zero	proportionality	constant)	to	those	that	were	
highly	affected	(high	proportionality	constant).	
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Figure	5:	Attractive	and	repulsive	forces	characteristic	of	center-surround	connectivity	can	
mediate	chunking	to	improve	recall	at	the	cost	of	precision.	A)	Local	recurrent	excitation	and	
distributed	lateral	inhibition	are	thought	to	be	key	components	of	biological	networks	responsible	
for	visual	working	memory	storage.		These	patterns	of	neural	connectivity	give	rise	to	two	
counteracting	forces:	recurrent	excitation	facilitates	attraction	of	neighboring	representations	
through	“bump	collisions”	24,	whereas	broadly	tuned	lateral	inhibition	facilitates	repulsion	of	distinct	
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bumps	of	neural	activity	40,46.	B&C)Together,	these	forces	produce	a	difference	of	Gaussians	tuning	
function	(yellow	shading;	B&C)	that	facilitates	attraction	of	closely	neighboring	representations	but	
repulsion	of	more	distant	ones.	Here	we	model	these	effects	at	the	cognitive	level	by	assuming	that	
two	imprecise	internal	representations	of	color	are	chunked,	and	jointly	represented	by	their	mean	
value,	with	a	fixed	probability	defined	by	a	narrowly	tuned	von	Mises	distribution	(green	curve;	
B&C)	in	order	to	mimic	the	effects	of	narrowly	tuned	excitation.	After	probabilistic	chunking,	each	
color	representation	exerts	a	repulsive	influence	over	all	other	representations	with	a	magnitude	
defined	by	a	broadly	tuned	von	Mises	distribution	(red	curve;	B&C)	in	order	to	mimic	the	effects	of	
broadly	tuned	inhibition.	The	model	stores	a	Poisson	number	of	the	representations,	chunked	or	
otherwise,	for	subsequent	recall.	D)	The	influence	of	center-surround	dynamics	over	model	
performance	can	be	manipulated	by	applying	a	gain	to	the	amplitude	of	the	excitation	and	inhibition	
functions	such	that	larger	values	correspond	to	greater	item	interdependencies	and	lead	to	smaller	
errors	on	average	(lighter	colors	correspond	to	higher	gain).	E&F)	The	performance	improvement	
mediated	by	increasing	center-surround	dynamics	relies	on	a	tradeoff	between	recall	probability	and	
precision,	through	which	increased	attractive	and	repulsive	forces	reduce	precision	(lighter	bars;	E),	
but	enhance	recall	probability	(lighter	bars;	F).	
	
	
Models	implementing	greater	recurrent	dynamics	achieved	better	performance	
through	a	recall/precision	tradeoff.	Performance	was	simulated	on	delayed	report	
tasks	in	which	target	number	(array	size)	ranged	from	one	to	eight.	Performance	of	
models	employing	recurrent	dynamics	was	slightly	worse	for	easier	tasks	but	
dramatically	improved	for	more	difficult	ones,	similar	to	the	effects	observed	in	the	
binary	model	above	(figure	5D;	lighter	lines	represent	stronger	recurrent	
dynamics).	Here,	though,	performance	differences	were	characterized	by	opposing	
effects	of	recurrent	dynamics	on	precision	and	recall.	Models	employing	recurrent	
dynamics	showed	improved	recall,	particularly	in	the	hardest	tasks,	as	“bump”	
collisions	allowed	for	the	storage	of	multiple	target	features	in	a	single	
representation	(figure	5F).	On	the	other	hand,	models	employing	recurrent	
dynamics	showed	reduced	precision,	as	both	attractive	and	repulsive	forces	reduced	
the	fidelity	of	stored	color	representations	(figure	5E).	In	standard	models	of	
resource	limitations,	decrements	in	precision	that	occur	with	increased	array	sizes	
have	been	attributed	to	the	division	of	a	limited	resource.		However,	in	the	recurrent	
dynamics	models,	the	decrement	in	precision	is	caused	by	the	increase	in	inter-item	
interactions	that	occurs	when	additional	items	are	added	to	the	memory	array.	
Thus,	the	inclusion	of	recurrent	dynamics	affects	the	nature	of	capacity	limitations:	
minimizing	the	impact	of	center-surround	forces	leads	to	a	specific	decay	in	recall	as	
a	function	of	array	size,	as	predicted	by	“slots”	models,	whereas	maximizing	the	
impact	of	center-surround	forces	leads	to	decays	in	precision	across	set	size,	
heretofore	linked	to	resource	depletion	accounts	1-4.		
	
In	summary,	inter-item	dependencies	that	emerge	from	center-surround	dynamics	
are	sufficient	to	mediate	the	performance	bonuses	of	chunking,	but	do	so	at	the	cost	
of	precision.	Thus,	if	working	memory	is	optimized	through	chunking	in	this	way,	it	
should	lead	to	more	faithful	recall	for	clustered	stimulus	arrays	but	more	precise	
recall	of	less	clustered	ones.	In	principle,	such	optimization	could	be	guided	in	
cognitive	or	real-world	tasks	by	implicit	or	explicit	feedback	to	favor	successful	
chunking	strategies	and	avoid	unsuccessful	ones.		
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Figure	6:	Uniformly	spaced	stimulus	configurations	degrade	task	performance	and	confidence	
in	human	subjects.	Subject	performance	was	assessed	in	terms	of	accuracy	(percent	of	trials	
eliciting	positive	feedback)	and	confidence	(percent	of	trials	eliciting	high	post-decision	wagers)	
separately	according	to	precision	condition	(23	subjects	were	required	to	achieve	an	error	of	less	
than	π/3	to	elicit	positive	feedback	[low	precision],	whereas	24	subjects	were	required	to	achieve	an	
error	of	less	than	π/8	to	elicit	positive	feedback	[high	precision]).	A)	Subjects	in	the	low	precision	
condition	were	more	accurate	for	random	spacing,	as	opposed	to	fixed	spacing,	stimulus	
configurations	(orange;	t=5.6,	p	<	10e-4),	whereas	subjects	in	the	high	precision	condition	attained	
similar	overall	performance	in	both	configurations	(blue;	t=1.5,	p	=	0.15).	Points/lines	indicate	group	
mean/SEM.		B)	Subjects	in	both	conditions	indicated	higher	confidence	for	random-spacing,	as	
opposed	to	fixed-spacing,	stimulus	configurations	(t	=	[2.3,	2.0]	and	p	=	[0.03,	0.06]	for	high	and	low	
precision	conditions,	respectively).	C)	Subjects	that	were	most	accurate,	as	assessed	online	according	
to	a	fixed	error	threshold,	also	tended	to	make	higher	post-decision	wagers.	Orange	and	blue	points	
indicate	subjects	in	low	and	high	precision	conditions,	respectively.	D)	Furthermore,	the	
improvement	in	accuracy	from	fixed-	to	random-spaced	arrays	was	greater	for	subjects	that	showed	
the	largest	increase	in	confidence	across	the	same	conditions.		
	
People	are	more	accurate	and	confident	when	remembering	chunkable	target	arrays.		
	
To	directly	test	key	predictions	made	by	the	binary	encoding	and	center-surround	
models,	we	collected	behavioral	data	from	human	participants	in	the	task	described	
in	figure	2.	The	critical	manipulation	in	the	task	is	that	the	colors	in	some	trials	were	
uniformly	spaced	on	the	color	wheel	(fixed	spacing)	whereas	the	colors	in	
interleaved	trials	were	randomly	and	independently	sampled	from	the	color	wheel	
(random	spacing).	This	manipulation	allowed	us	to	test	1)	the	prediction	of	the	
binary	coding	model	that	chunkable	random	spacing	arrays	will	lead	to	better	
performance	(figures	4b	and	2)	the	prediction	of	the	center-surround	encoding	
model	that	such	recall	improvements	will	be	accompanied	by	decrements	in	
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precision	(figure	5E&F).	The	task	also	required	a	post-decision	wager	on	one	third	
of	trials	and	provided	explicit	feedback	on	each	trial,	determined	by	comparing	
error	magnitude	to	a	fixed	threshold.	These	task	features	allowed	us	to	determine	
whether	participants	were	aware	of	any	performance	bonuses	attributable	to	
chunking,	and	to	test	the	extent	to	which	chunking	behaviors	are	adjusted	trial-by-
trial	in	accordance	with	their	effects	on	task	performance.		
	
In	accordance	with	the	predictions	about	behavioral	optimization	through	chunking,	
participants	were	more	accurate	and	confident	when	presented	with	randomly	
spaced	stimuli.	Subject	accuracy,	as	assessed	using	the	same	error	threshold	
procedure	used	to	determine	feedback,	was	greater	on	random	spacing	trials	than	
on	fixed	spacing	trials	(figure	6A;	t	=	4.4,	p	<	10e-4).	This	accuracy	improvement	
was	more	prevalent	for	subjects	that	experienced	a	liberal	accuracy	criterion	(low	
precision,	absolute	error	<	π/3)	than	for	those	that	experienced	a	conservative	
accuracy	criterion	(high	precision,	absolute	error	<	π/8;	two	sample	t-test	for	group	
difference:	t	=	-2.5,	p	=	0.02).	Participants	also	wagered	more	frequently	on	random	
spacing	than	fixed	spacing	trials,	suggesting	that	they	were	cognizant	of	the	
conferred	performance	advantage	(figure	6B;	t	=	3.1,	p	=	0.003).	Subjects	tended	to	
gauge	their	wagering	behavior	reasonably	well,	with	subjects	who	achieved	higher	
levels	of	accuracy	also	betting	more	frequently	(figure	6C;	Pearson’s	rho	=0.68,	p	
<10e-6).	Furthermore,	individual	differences	in	the	adjustment	of	wagering	as	a	
function	of	color	spacing	configuration	correlated	with	the	change	in	accuracy	that	
subjects	experienced	across	the	configurations	(figure	6D;	Pearson’s	rho	=044,	p	=	
0.002).	Taken	together,	these	data	suggest	that	subjects	experienced	and	were	
aware	of	performance	advantages	for	randomly	spaced	stimuli,	but	that	the	extent	
of	these	advantages	differed	across	individuals.		
	
To	better	understand	these	performance	advantages,	we	tested	the	extent	to	which	
trial-to-trial	accuracy	and	confidence	scores	depended	on	stimulus	clustering	within	
the	randomly	spaced	stimulus	arrays.	Specifically,	we	computed	within	cluster	
variance	(WCV)	for	each	color	array	to	evaluate	whether	this	clustering	statistic	
could	be	used	to	predict	subjects’	accuracy	of,	and	confidence	in,	color	reports.	As	
predicted	by	binary	encoding	chunking	models	(figure	4F),	subjects	were	more	
accurate	for	low	WCV	trials;	performance	on	high	WCV	trials	was	similar	to	that	in	
the	fixed	spacing	configuration	(figure	7A).	Furthermore,	subject	wagering	also	
decreased	monotonically	with	WCV,	such	that	betting	behavior	on	the	highest	WCV	
(least	chunkable)	color	arrays	was	similar	to	that	on	fixed	spacing	trials	(figure	7B).		

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 6, 2017. ; https://doi.org/10.1101/098939doi: bioRxiv preprint 

https://doi.org/10.1101/098939
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	
Figure	7:	Memory	performance	and	confidence	vary	from	trial	to	trial	according	to	stimulus	
clustering.		A&B)	Memory	performance	and	confidence	increase	linearly	with	the	chunkability	of	
stimulus	arrays.	Mean	absolute	error	magnitude	(A)	and	high	wager	frequency	(B)	was	computed	
per	subject	in	sliding	bins	of	within	cluster	variance	(larger	values	=	decreased	chunkability)	for	
random	(lines)	and	fixed	spacing	conditions	(points).	Lines	and	shading	reflect	mean	and	SEM	across	
subjects.		C&D)	Effects	of	chunkability	on	performance	and	confidence	persist	after	accounting	for	
potential	confounding	factors	and	feedback-dependent	performance	adjustments.	Coefficients	from	a	
mixed-effects	logistic	regression	model	of	binary	accuracy	(C)	and	wager	(D)	are	plotted	on	the	
abscissa.	Circles/lines	reflect	mean/SEM,	and	X	marks	indicate	coefficients	significantly	different	
from	zero	(p	<	0.05).		
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To	determine	whether	the	effects	of	WCV	on	confidence	and	accuracy	could	be	
mediated	by	alternative	explanations,	we	applied	a	generalized	linear	model	(GLM)	
to	the	binary	accuracy	and	confidence	data.	The	GLM	included	–log(WCV)	as	well	as	
variables	that	would	better	explain	the	data	under	competing	explanations.	In	
particular,	we	included	the	distances	between	the	target	color	and	each	non-probed	
color	as	nuisance	variables	to	determine	whether	the	apparent	WCV	effects	could	be	
better	explained	by	a	tendency	to	report	non-probed	colors,	which	are	often	closer	
to	the	target	color	for	more	chunkable	stimulus	arrays.	When	this	model	was	
applied	separately	to	accuracy	and	post-decision	wagers,	coefficients	for	–log(WCV)	
were	greater	than	zero,	suggesting	that	the	advantage	is	conferred	by	the	
configuration	of	all	stimuli,	and	not	simply	by	the	proximity	of	the	target	color	to	
neighboring	colors	(figure	7C&D;	accuracy	β	=	0.028,	t	=	5.3,	p	<	10e-6;	confidence	β	
=	0.051,	t	=	5.8,	p	<	10e-8).		
	
Choice	accuracy	is	modulated	by	reward	feedback.		
	
The	GLM	also	included	terms	to	account	for	other	factors	that	could	potentially	
affect	task	performance,	including	feedback	from	previous	trials.	Positive	feedback	
on	the	previous	trial	was	predictive	of	higher	accuracy	and	confidence	for	the	
current	trial,	in	a	manner	consistent	with	trial-by-trial	behavioral	adjustment	
(figure	7C&D,	“correct	(t-1)”	coefficient;	accuracy	β	=	0.017,	t	=	5.0,	p	<	10e-6;	
confidence	β	=	0.026,	t	=	4.8,	p	<	10e-5).	This	predictive	relationship	was	unlikely	to	
be	driven	by	autocorrelation	in	performance,	as	such	an	explanation	should	also	
predict	that	confidence	measurements	relate	to	accuracy	on	future	trials,	and	this	
relationship	was	not	evident	in	the	data	(figure	7D,	“correct	(t+1)”	coefficient;	
confidence	β	=	0.0017,	t	=	0.3,	p	=	0.75).	Despite	seemingly	robust	feedback-driven	
effects,	overall	performance	improvements	across	the	session	were	somewhat	
modest,	as	evidenced	by	a	relatively	small	positive	coefficient	for	a	term	in	the	GLM	
relating	block	number	to	accuracy	(figure	7C,	“block”	coefficient;	accuracy	β	=	0.007,	
t	=	2.3,	p	=	0.02).	Thus,	the	GLM	results	suggest	that	subjects	gained	a	performance	
advantage	for	chunkable	target	arrays,	modulated	behavior	in	response	to	previous	
feedback,	and	improved	slightly	over	the	course	of	task	sessions.		
	
People	are	less	precise	when	remembering	chunkable	target	arrays.		
	
If	the	chunking	advantages	described	above	are	mediated	through	center-surround	
dynamics	in	recurrent	networks,	then	they	should	come	at	the	cost	of	precision	
(figure	5E&F).	To	test	this	prediction,	we	pooled	the	error	distributions	across	all	
subjects	separately	for	random-	and	fixed-spacing	trials	and	examined	the	
difference	in	error	distributions	for	the	two	conditions	(figure	8,	left	column).	The	
error	distributions	from	both	conditions	were	consistent	in	shape	with	those	
previously	reported	in	similar	tasks	(figure	8A&D)	13.	However,	the	error	
distributions	differed	subtly	between	the	two	conditions:	in	the	random-spacing	
condition,	subjects	made	more	small	errors,	but	did	not	have	more	perfect	recalls	
(figure	8G).	This	pattern	of	difference	was	also	evident	in	data	simulated	from	the	
center-surround	chunking	model	(figure	8,	middle	column)	but	not	in	data	
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simulated	from	an	independent	encoding	model	fit	to	subject	behavior	(figure	8,	
right	column).	Thus,	both	the	subjects	and	the	center-surround	chunking	model	
reported	more	colors	that	were	slightly	offset	from	the	target	color	in	the	random-
spacing	condition	than	in	the	fixed-spacing	condition,	consistent	with	a	reduction	in	
precision	resulting	from	chunking.		
	

	
Figure	8:	Error	distributions	reveal	evidence	for	center-surround	chunking.	A-C)	Signed	color	
reproduction	errors	made	in	the	random	spacing	condition	by	(A)	subjects,	(B)	center-surround	
chunking	models,	and	(C)	independent	encoding	models.	Data	is	collapsed	across	all	simulated	or	
actual	sessions.	D-F)	Same	as	A-C	but	for	the	fixed	spacing	condition.	Red	dashed	lines	indicate	
probed	and	non-probed	target	locations.	Note	that	alignment	of	non-probed	target	locations	
emphasizes	the	prominence	of	non-probed	target	reports	(binding	errors),	which	would	appear	
uniformly	distributed	in	the	random	spacing	condition.	G-I)	Difference	in	above	error	distributions	
for	random	minus	fixed.	To	aid	in	visualization,	bin	count	differences	were	smoothed	with	a	Gaussian	
kernel	(standard	deviation	=	1	bin).	Subjects	and	the	center-surround	chunking	model	show	
increased	moderately	small,	but	non-zero,	errors	in	the	random	spacing	condition.	Note	that	
differences	of	reports	near	the	non-probed	targets	are	present	in	both	models,	as	they	simply	reflect	
an	artifact	of	alignment	of	binding	errors	in	the	fixed	spacing	condition.		
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Errors	are	modulated	by	nearest	neighbors	consistent	with	chunking	via	recurrence	
	
To	better	understand	the	nature	of	the	increased	moderate	sized	errors	in	the	
random	spacing	condition,	we	sorted	trials	according	to	the	non-probed	target	color	
that	was	most	similar	to	the	probed	target	color	(nearest	neighbor	color;	see	
Methods	for	details).	This	procedure	revealed	structure	in	individual	color	reports	
related	to	the	nearest	neighbor	non-probed	color	(see	supplementary	figure	1).	To	
determine	whether	such	structure	persisted	systematically	across	subjects,	we	fit	a	
descriptive	mixture	model	to	error	distributions	pooled	across	subjects	in	sliding	
windows	of	nearest	neighbor	distance.	The	model	contained	free	parameters	to	
examine	1)	the	precision	of	error	distributions,	2)	the	bias	of	error	distributions	
toward	the	nearest	neighbor	non-probed	target	color,	and	3)	the	relative	proportion	
of	trials	that	were	recalled,	forgotten,	or	mis-bound	(in	keeping	with	nomenclature	
from	previous	literature	11,47).	
	
The	model	fits	revealed	that	subject	precision	and	bias	depended	on	nearby	
stimulus	colors	in	a	manner	consistent	with	chunking	through	recurrent	dynamics.	
In	particular,	subject	memory	reports	were	biased	towards	the	nearest	neighbor	
color	if	it	was	sufficiently	similar	to	the	probed	target	color,	but	biased	away	from	it	
if	it	was	sufficiently	dissimilar	(figure	9A).	Qualitatively,	this	pattern	of	bias	maps	
onto	the	idea	of	a	narrowly	tuned	excitation	function	promoting	attraction	of	nearby	
targets	and	a	broadly	tuned	inhibition	function	promoting	repulsion	of	more	distant	
ones	(see	figures	5B&C).	Precision	also	depended	on	nearest	neighbor	color	
distance.	Subject	precision	was	maximal	when	the	nearest	neighbor	color	was	most	
dissimilar	to	the	probe	color	and	minimal	when	it	was	moderately	similar	(figure	
9D).	In	addition,	fits	revealed	an	increase	in	the	proportion	of	correct	recalls,	and	a	
corresponding	decrease	in	the	number	of	uniform	guesses,	when	a	nearby	neighbor	
color	existed	in	the	stimulus	array	(Figure	9G&J).	This	pattern	of	results	was	
strikingly	consistent	with	those	produced	by	a	chunking	model	based	on	recurrent	
dynamics	(figure	9,	middle	column)	but	not	with	those	produced	by	the	best	fitting	
independent	encoding	model	(figure	9,	right	column).		
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Figure	9:	Neighboring	stimulus	features	affect	bias,	precision,	and	recall	probability	as	
predicted	by	the	center-surround	chunking	model.		Subject	(left)	and	simulated	(center	=	center-
surround,	right	=	independent	encoding)	data	were	collapsed	across	all	sessions	and	binned	in	
sliding	windows	according	to	the	absolute	distance	between	the	probed	target	color	and	the	most	
similar	non-probed	target	color	(NN	distance;	abscissa).	Data	in	each	bin	was	fit	with	a	mixture	
model	that	included	free	parameters	to	estimate	1)	the	bias	of	memory	reports	towards	the	closest	
color	in	the	target	array	expressed	as	a	fraction	of	distance	to	that	target	(A-C),	2)	the	precision	of	
memory	reports	(D-F),	and	3)	the	proportion	of	reports	generated	from:	the	von	Mises	“memory	
distribution”	(G-I),	the	uniform	“guess	distribution”	(J-L),	or	the	mixture	of	von	Mises	“binding	error	
distribution”	(M-O).	The	qualitative	trends	present	in	subject	data	are	also	present	in	data	simulated	
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from	the	center-surround	chunking	model	but	not	in	those	simulated	from	the	independent	encoding	
model.		
	
Jointly	accounting	for	recall,	precision,	and	bias	reveals	feedback-dependent	
adjustments	of	chunking.		
	
To	account	for	the	predicted	effects	of	chunking	on	precision,	recall,	and	bias,	we	
extended	the	basic	mixture	model	of	subject	memory	reports	described	above	to	
include	coefficients	simultaneously	quantifying	WCV	effects	on	recall	(figure	7)	and	
nearest	neighbor	distance	(NND)	effects	on	precision	and	bias	(figure	9).	
Coefficients	for	these	modulatory	terms	indicated	that	the	probability	of	
remembering	a	target	decreased	as	a	function	of	WCV,	while	precision	and	bias	
increased	according	to	NND-based	predictions	(figure	10,	gray	points;	WCV	effect	on	
recall:	t	=	-6.8,	p	<	10e-7;	precision	modulation	by	NN	distance:	t	=	4.24,	p	=	10e-4;	
mean	shift	modulation	by	NN	distance:	t	=	2.5,	p	=	0.02).	This	same	pattern	of	results	
held	for	data	simulated	from	the	center-surround	chunking	model,	but	not	for	data	
from	an	independent	encoding	model	(figure	10,	gold	and	blue	points,	respectively).		
	
We	also	tested	whether	people	adjusted	chunking	strategies	online	as	a	function	of	
reward	feedback	in	a	manner	similar	to	that	used	to	optimize	performance	in	the	
binary	encoding	model	(figure	4G).	In	particular,	in	the	binary	encoding	model,	the	
partitioning	criterion	was	adapted	based	on	the	previous	trial’s	chunking	and	
feedback	and	selectively	contributed	to	performance	improvements	for	the	most	
chunkable	stimulus	arrays	(figure	4F).	To	explore	the	possibility	that	people	adjust	
chunking	in	a	similar	way,	we	included	additional	terms	in	the	mixture	model	to	
allow	recall	probability	to	vary	as	a	function	of	previous	trial	feedback	(pCorr),	
proxies	for	previous	and	current	trial	chunkability	(pWCV,	WCV),	and	their	
predicted	interactions	(see	Methods).	The	best	fitting	coefficients	revealed	an	
overall	recall	bonus	on	trials	following	correct	feedback	(pCorrect:	t	=	5.4,	p	<	10e-
5),	but	also	that	the	magnitude	of	this	bonus	was	greater	for	more	chunkable	trials	
(pCorrect	*	WCV:	t	=	-2.1,	p	<	0.05)	and	for	trials	that	had	a	chunkability	matched	to	
that	of	the	previous	trial	(pCorrect	*	WCV	*	pWCV:	t	=	2.0,	p	<	0.05;	figure	10D).	
Consistent	with	optimization	of	chunking	via	reinforcement	learning,	these	
interactions	capture	a	tendency	toward	larger	feedback-driven	changes	in	task	
performance	when	both	the	current	and	previous	trial	color	arrays	were	highly	
chunkable	(figure	10E&F).		
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Figure	10:	Extended	mixture	model	reveals	chunking	effects	on	recall,	precision,	and	bias,	
together	with	feedback-based	adjustments	in	chunking	behavior.	Subject	and	simulated	data	
was	fit	with	a	descriptive	model	in	which	errors	were	generated	from	a	mixture	of	three	processes:	
successful	recall,	uniform	guesses,	and	binding	errors	(recalling	the	color	of	a	non-probed	target).	
The	model	was	extended	in	three	ways	to	account	for	the	effects	of	chunking	on	recall,	precision,	and	
bias.	A)	Coefficients	describing	the	logistic	effect	of	within	cluster	variance	(WCV)	on	recall	
probability	are	plotted	separately	for	subjects	(gray)	and	simulated	data	(center-surround	and	
independent	encoding	in	yellow	and	blue,	respectively).	Mean	and	SEM	are	reflected	by	circles	and	
lines,	respectively.	B)	Coefficients	describing	the	effect	of	neighboring	color	distance	on	overall	
precision.	Positive	values	indicate	adherence	to	the	relationship	in	figure	9D.	C)	Coefficients	
describing	the	overall	bias	in	recall	distributions	towards	the	nearest	neighbor	non-probed	target	
color	(left)	and	the	modulation	of	this	bias	according	to	the	nearest	neighbor	color	distance.	Positive	
values	indicate	adherence	to	the	(center-surround)	relationship	in	figure	9A.	D)	Recall	probability	
was	modulated	by	feedback	and	chunkability,	suggesting	trial-to-trial	adjustments	of	chunking.	The	
extended	mixture	model	included	additional	terms	to	account	for	the	effects	of	feedback	on	
subsequent	trial	performance.	Mean/SEM	coefficients	for	terms	accounting	for	1)	the	overall	effect	of	
positive	feedback	(pCorr)	on	subsequent	performance,	2)	the	overall	effect	of	previous	trial	log	
within	chunk	variance	(plWCV)	on	subsequent	performance,	3)	the	multiplicative	interaction	
pCorr*plWCV,	and	4)	the	three-way	interaction	pCorr*lWCV*plWCV	are	represented	from	left	to	
right	with	points/bars.	E&F)	Recall	probability	of	best	fitting	descriptive	models	plotted	as	a	function	
of	the	log(WCV)	for	the	current	trial	and	divided	according	to	previous	feedback	(color)	and	the	
log(WCV)	for	the	previous	trial	[E	(unchunkable):	plWCV	=-1,	F	(chunkable):	plWCV=-5].	
Lines/shading	reflect	mean/SEM	across	subjects.		
	
Chunking	effects	generalize	across	tasks	and	scale	with	memory	load.		
	
Finally,	to	test	whether	our	empirical	findings	were	robust	to	changes	in	task	
conditions	and	to	examine	how	they	vary	with	memory	load,	we	fit	the	mixture	
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model	described	above	to	a	meta-analysis	dataset	that	included	101	subjects	
performing	eight	different	experiments	13.	Consistent	with	previous	reports,	recall	
proportion	decayed	as	a	function	of	the	number	of	targets	in	the	stimulus	array	
(array	size)	across	all	subjects	and	experiments	(figure	11A;	yellow),	and	precision	
was	greatest	for	the	smallest	array	sizes	(figure	11B)	13.	
	
Modulators	of	recall,	precision,	and	bias	also	varied	as	a	function	of	array	size	in	a	
manner	consistent	with	chunking	(figure	11C-F).	To	quantify	these	effects	across	
tasks	and	individuals,	we	summarized	parameters	fit	to	each	subject	with	a	
regression	model	that	included	two	terms:	one	intercept	term	that	captured	the	
average	parameter	value	across	array	sizes	and	one	slope	term	that	captured	the	
change	in	the	parameter	as	a	function	of	array	size.	Coefficients	describing	the	
effects	of	WCV	on	recall	were	negative	on	average,	indicating	better	recall	of	more	
chunkable	arrays	(figure	11G;	median	intercept	=	-0.60,	permutation	p	<	10e-4).	
Negative	coefficients	were	also	more	extreme	for	larger	array	sizes,	suggesting	that	
subjects	appropriately	increased	chunking	as	a	function	of	memory	load	(figure	
11H;	median	WCV	slope	=	-0.17,	permutation	p	=	0.007).	Across	array	sizes,	there	
was	no	main	effect	of	precision	modulation	to	NND	(median	intercept	=	0.001,	
permutation	p	=	0.92),	but	precision	modulation	coefficients	tended	to	be	positive	
for	the	largest	target	arrays	(figure	11D),	which	drove	an	increase	in	precision	
modulation	coefficients	across	array	size	(figure	11H;	median	slope	=	0.20,	
permutation	p	=	0.02).	Overall,	there	was	a	slight	bias	of	memory	reports	towards	
nearest	neighbors	(figure	11E&G;	median	intercept	=	0.20,	permutation	p	=	0.06),	
and	the	magnitude	of	this	bias	increased	with	array	size	(figure	11H;	median	slope	=	
0.15,	permutation	p	=	0.001).	Furthermore,	this	bias	was	modulated	according	to	
NND,	as	predicted	by	the	center-surround	chunking	model	and	observed	in	our	
empirical	data	(figure	11F&G;	median	intercept	=	0.42,	permutation	p	<	10e-4).	
There	was	no	significant	effect	of	array	size	on	the	magnitude	of	this	modulatory	
effect	(figure	11H;	median	slope	=	-0.15,	permutation	p	<	0.13).	Taken	together,	
these	results	support	the	robustness	of	our	behavioral	markers	for	chunking	and	
supply	evidence	that	chunking	is	more	prominent	for	larger	target	arrays,	in	which	
it	could	provide	the	largest	advantages	(see	predictions	from	figure	4C).		
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Figure	11:	The	effects	of	chunking	on	recall,	precision,	and	bias	are	robust	across	previous	
working	memory	studies	and	depend	on	overall	memory	load.	The	extended	mixture	model	was	
fit	to	a	meta-analysis	dataset	that	includes	delayed	memory	reports	from	101	subjects	collected	in	
eight	labs	using	a	variety	of	specific	task	features	(see	Methods).	A)	Fit	mixture	proportions	for	recall,	
guess,	and	binding	error	distributions	are	plotted	as	a	function	of	the	number	of	items	in	the	memory	
array.	B)	Precision	is	plotted	as	a	function	of	memory	array	size.	C-F)	Coefficients	describing	the	
effects	of	chunking	on	recall,	precision,	and	bias	are	plotted	as	a	function	of	array	size.	From	left	to	
right,	plots	indicate	(D)	the	logistic	effect	of	WCV	on	recall,	(D)	the	modulation	of	precision	by	the	
distance	to	the	closest	neighboring	feature	value,	(E)	the	tendency	of	reports	to	be	biased	towards	
nearest	neighbor	feature	values,	and	(F)	the	modulation	of	bias	according	to	the	proximity	of	the	
nearest	neighbor	feature	value.	G)	Main	effects	of	each	chunking	coefficient	are	plotted	across	
memory	array	size.	H)	Slopes	of	per-subject	chunking	coefficients	are	plotted	across	memory	array	
size.	Positive	values	indicate	larger	coefficients	for	larger	memory	arrays.	Circles	and	lines	in	bottom	
panels	reflect	median	and	bootstrapped	95%	confidence	intervals.		
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Discussion:	
	
Our	work	builds	on	two	parallel	lines	of	research.	One	has	focused	on	how	encoding	
and	decoding	of	working	memories	is	optimized	under	various	statistical	
contingencies	14-18,48,	whereas	the	other	has	focused	on	understanding	the	nature	of	
capacity	limitations	in	visual	working	memory	3,4,7,8,11-13.	Here,	we	explore	how	
people	optimize	encoding	in	the	same	tasks	that	have	formed	the	basis	of	our	
understanding	of	capacity	limitations.	Our	findings	shed	light	on	both	the	nature	of	
memory	capacity	limitations	and	on	the	encoding	strategies	employed	to	minimize	
their	impact.	
	
With	regard	to	encoding	strategies,	the	binary	encoding	model	showed	that	
selective	chunking	allowed	performance	advantages	that	grew	as	a	function	of	array	
size	(figure	4).	This	chunking	advantage	could	also	be	achieved	by	adding	
biologically	inspired	center-surround	dynamics	to	a	process	model	of	working	
memory	task	performance	(figure	5).	These	dynamics	arbitrate	a	tradeoff	between	
recall	and	precision,	and	they	predict	array-specific	inter-item	dependencies	(figure	
9).	Human	subjects	showed	the	performance	benefits	predicted	by	both	chunking	
models	and	the	costs	in	precision	and	inter-item	dependencies	predicted	by	center-
surround	chunking	in	particular	(figures	7-9).	
	
These	findings	are	in	line	with	previous	work	that	highlights	the	effects	of	center-
surround	processing	on	perception	and	memory,	as	well	as	the	use	of	chunking	as	a	
mnemonic	strategy	in	a	wide	range	of	working	memory	tasks	22,49,50.	Chunking	was	
first	used	to	describe	mnemonic	strategies	for	storage	of	sequential	information,	for	
example,	encoding	the	digits	2-0-0-5	as	a	single	date	(2005)	rather	than	as	its	
constituent	digits	20,51,52.	In	the	visual	domain,	visual	features	are	in	some	sense	
chunked	into	objects	53.	Recent	work	has	suggested	that	people	can	chunk	arbitrary	
visual	information	when	that	information	is	inherently	clustered	and	visible	for	an	
extended	duration	18.	Here,	we	extend	on	this	work	to	show	that	a	simple	form	of	
chunking,	joint	encoding	of	similar	feature	values,	is	rapidly	implemented	by	human	
visual	working	memory	systems	to	improve	performance	in	tasks	that	have	
heretofore	been	thought	to	lack	exploitable	statistical	structure.		
	
An	important	question	stemming	from	this	extension	is	to	what	extent	chunking	can	
be	adjusted	to	optimize	working	memory	accuracy	under	different	conditions.	Our	
modeling	shows	that	a	simple	learning	rule	is	capable	of	rapidly	adjusting	the	
amount	of	chunking	to	optimize	performance	given	the	current	memory	demands,	
leading	to	greater	chunking	for	higher	memory	loads.	Consistent	with	this	notion,	
our	meta-analysis	shows	that	recall	benefits	from	chunking	are	greater	for	larger	
memory	arrays,	suggesting	that	people	selectively	engage	chunking	when	it	is	most	
advantageous	(compare	figure	4C	with	figure	11C).	Furthermore,	feedback-
dependent	modulation	of	chunking	behaviors	in	our	experimental	data	is	indicative	
of	online	optimization	of	the	chunking	process	(figure	10D-F),	such	as	the	process	
that	allowed	learning	of	the	partitioning	criterion	in	the	binary	encoding	model	
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(figure	4G).	Yet	these	trial-to-trial	adjustments	occur	despite	only	minimal	
performance	improvements	across	task	blocks	(figure	7).	There	are	several	possible	
explanations	for	this	discrepancy,	including	1)	that	a	priori	processing	strategies	are	
well-calibrated	to	our	task,	2)	that	optimization	in	our	task	occurs	on	a	different	
timescale	than	our	measurements,	and	3)	that	the	presence	of	unchunkable	arrays	
hindered	learning	overall.	Distinguishing	between	these	possibilities	will	require	a	
better	understanding	of	what	exactly	is	being	adjusted	in	response	to	feedback.	For	
example,	reward	feedback	could	promote	the	prioritization	of	storing	chunked	
arrays	over	non-chunkable	ones,	or	it	could	modulate	center-surround	inhibition	
dynamics	(e.g.,	via	fine	tuning	of	feature	selective	attention	and/or	altering	local	
excitation-inhibition	balance	24,54).	In	any	case,	our	work,	along	with	other	recent	
research	showing	an	adaptive	tradeoff	of	precision	and	recall	55,	strongly	motivate	
future	work	to	better	understand	the	scope,	time	course,	and	mechanism	for	this	
type	of	this	optimization	process.		
	
While	we	do	not	have	direct	measurements	pertaining	to	the	biological	
underpinnings	of	the	chunking	behaviors	identified	here,	the	center-surround	
chunking	model	provides	insight	into	a	potential	mechanism.	In	particular,	our	
descriptive	model	is	based	on	a	mechanistic	account	in	which	each	item	is	stored	in	
a	modified	attractor	network	that	includes	sharply	tuned	recurrent	excitation	and	
broadly	tuned	recurrent	inhibition	(figure	5)	24,37-39,41,45.	This	account	is	supported	
by	the	frequent	observation	of	sustained	activity	during	the	delay	period	of	memory	
tasks	in	both	parietal	and	prefrontal	cortices	56-58	(but	see	also	59).	Here	we	have	
considered	the	network	to	store	features	on	a	single	dimension	(color);	however,	it	
is	clear	that	at	some	level,	conjunctive	coding	across	features	(e.g.	color	and	
orientation)	is	necessary	to	bind	information	to	the	dimension	used	to	probe	
memories	60.	In	our	task,	it	is	unknown	whether	any	sustained	representations	
reflect	information	about	the	report	feature	(color	in	our	task),	probe	feature	
(orientation	in	our	task),	or	some	conjunction	of	the	two.	Recent	work	has	hinted	
that	in	some	cases,	sustained	representations	in	prefrontal	cortex	may	only	encode	
the	probe	dimension,	which	could	point	back	to	relevant	sensory	representations	at	
time	of	recall	59,61-63.	Previous	computational	instantiations	of	this	process	have	
relied	on	the	basal	ganglia	to	learn	appropriate	prefrontal	representations	that	can	
be	jointly	cued	by	multiple	disparate	perceptual	features,	based	on	reward	feedback	
27,62,64.	Analogously,	feedback	effects	observed	in	our	data	could	be	driven	by	the	
basal	ganglia	learning	to	selectively	engage	prefrontal	units	that	are	prone	to	
representation	of	multiple	probe	feature	values.	This	interpretation	could	expand	
on	a	large	body	of	work	that	implicates	the	basal	ganglia	in	gating	working	memory	
processes	by	stipulating	a	novel	and	testable	role	for	the	basal	ganglia	in	optimizing	
joint	feature	encoding	25,27,65-67.		
	
Implications	for	capacity	limitations.	Working	memory	limitations	have	been	
theorized	to	result	from	either	a	discrete	limitation	on	available	“slots”	or	a	
continuous	limitation	by	a	divisible	“resource”.	The	distinction	between	these	
theories	is	most	evident	when	additional	targets	are	added	to	a	memory	array.	A	
discrete	limitation	predicts	that	after	all	slots	are	filled,	additional	targets	will	be	
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forgotten	and	will	be	reported	as	random	guesses	2.	In	contrast,	a	resource	
limitation	predicts	that	additional	targets	will	cause	each	target	to	be	encoded	with	
lower	precision	1.	While	individual	studies	have	provided	support	for	each	theory	3-
12,68,	a	recent	meta-analysis	provides	simultaneous	support	for	the	core	predictions	
of	both:	increasing	memory	load	leads	to	both	increased	guessing	and	decreased	
precision	13.		
	
Our	results	suggest	that	a	joint	capacity	limitation	over	recall	and	precision	may	
result	from	a	rational	chunking	procedure	implemented	through	center-surround	
dynamics	to	effectively	trade	precision	for	recall	(figure	5).	This	procedure	allows	
subjects	to	achieve	performance	improvements	for	chunkable	stimulus	arrays	at	the	
cost	of	precision	(figures	6-8).	It	also	provides	two	reasons	for	precision	to	decrease	
with	array	size:	1)	benefits	of	chunking	increase	with	memory	load,	incentivizing		
higher	recall	probability	and	lower	precision	representations	(figure	4C&G)	and	2)	
larger	memory	arrays	have	a	greater	probability	of	containing	a	non-probed	target	
that	biases	the	encoding	of	the	probed	target	feature	(figure	9D&E).	In	addition	to	
accounting	for	known	influences	on	precision,	our	model	also	predicted	that	
measured	precision	should	vary	across	trials,	an	established	feature	of	human	
behavioral	data	12,29,	and	correctly	predicted	that	this	variability	in	precision	should	
depend	on	the	features	of	non-probed	targets	(figure	9D&E).		
	
However,	our	findings	call	the	interpretation	of	precision	measurements	into	
question.	The	center-surround	model	predicts	that	internal	representations	apply	
attractive	and	repulsive	forces	to	one	another,	systematically	biasing	memory	
reports.	When	averaged	across	trials	with	differing	stimulus	configurations,	such	
interactions	are	interpreted	as	variability	in	memory	reports,	as	the	net	forces	on	a	
probed	target	vary	randomly	from	one	stimulus	configuration	to	the	next.	Yet,	since	
much	of	this	variability	is	simply	an	artifact	of	averaging	across	disparate	
conditions,	our	work	raises	an	important	question:	how	much	of	the	variability	in	
memory	reports	across	trials	and	individuals	is	truly	reflective	of	imprecision,	
rather	than	bias?	While	the	notion	that	imprecision	can	emerge	from	systematic	
inter-item	dependencies	is	somewhat	at	odds	with	the	basic	resource	limitation	
model,	it	is	consistent	with	the	recent	proposal	of	a	specific	form	of	resource	
limitation	in	which	the	constrained	resource	is	the	representational	space	itself	69,70.		
	
Within	such	a	framework,	it	is	interesting	to	reconsider	the	meaning	of	individual	
differences	in	memory	storage	recall	and	precision.	Previous	work	has	shown	that	
individual	differences	in	the	number	of	items	successfully	retained	in	visual	working	
memory	tasks,	but	not	differences	in	precision,	are	related	to	fluid	intelligence	and	
psychiatric	conditions	such	as	schizophrenia,	among	other	factors	71,72.	These	results	
have	been	interpreted	in	terms	of	differences	in	a	discrete	capacity	for	memory	
storage,	or	in	filtering	irrelevant	information	73,	but	our	results	raise	questions	
regarding	whether	some	of	these	individual	differences	may	be	driven	instead	by	
differences	in	chunking	behavior	or	the	optimization	thereof	(figure	6D).	In	
particular,	performance-based	measures	of	capacity	may	be	sensitive	to	individual	
differences	in	lateral	connectivity	profiles	that	favor	a	spectrum	from	independent	
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to	merged	feature	storage	policies,	and	to	the	ability	to	override	such	policies	
through	learned	top-down	modulation	of	lateral	connectivity	74-76.	
	
In	summary,	our	results	show	that	humans	readily	exploit	chunking	strategies	to	
improve	performance	on	visual	working	memory	tasks.	The	implementation	of	
chunking	is	consistent	with	a	form	of	center-surround	dynamics	that	combines	
similar	representations	and	facilitates	mutual	repulsion	of	disparate	ones.	This	
implementation	leads	to	a	fundamental	tradeoff	between	the	number	of	items	
stored	and	the	precision	with	which	they	are	stored,	providing	a	natural	bridge	
between	slots	and	resource	accounts	of	working	memory	capacity	limitations.	
People	optimize	this	tradeoff	from	trial-to-trial	according	to	stimulus	statistics	and	
evaluative	feedback.	These	results	provide	the	first	joint	account	of	how	and	why	
discrete	and	continuous	factors	contribute	to	working	memory	capacity	limits.	
	
	
Methods:	
	
Delayed	report	task.	Human	subjects	completed	five	blocks	(100	trials	each)	of	a	
delayed	report	color	reproduction	task	(figure	2).	Each	trial	of	the	task	consisted	of	
four	primary	stages:	stimulus	presentation,	delay,	probe,	and	feedback.	During	
stimulus	presentation,	subjects	were	shown	five	oriented	bars	(length	=	2	degrees	
visual	angle)	arranged	in	a	circle	(radius	=	4	degrees	visual	angle)	centered	on	a	
fixation	point.	Bar	positions	were	equally	spaced	around	the	circle	and	jittered	
uniformly	from	trial	to	trial.	Bar	orientations	were	uniformly	spaced,	jittered	from	
trial	to	trial,	and	independent	of	position	or	color.	Bar	colors	were	chosen	from	a	
fixed	set	of	colors	corresponding	to	a	circle	in	CIELAB	color	space	(L=	80,	radius	in	
a*,	b*	=	60)	and	referred	to	by	angular	position	for	convenience.	In	the	“random	
spacing”	condition,	all	five	colors	were	sampled	independently	of	one	another	from	
the	color	space,	allowing	for	the	possibility	of	two	similar	colors	in	the	same	
stimulus	array.	In	the	“fixed	spacing”	condition,	colors	were	uniformly	spaced	along	
the	CIELAB	color	wheel	and	randomly	assigned	to	bar	locations.	Stimuli	were	
presented	for	200	msec,	after	which	the	screen	was	blanked.	
	
The	subsequent	delay	period	lasted	900	msec,	during	which	subjects	were	forced	to	
remember	the	colors	and	orientations	of	the	preceding	stimulus	array.	During	the	
subsequent	probe	stage,	subjects	were	shown	a	gray	oriented	bar	in	the	center	of	
the	screen	for	one	second,	before	being	asked	to	report	the	color	that	had	been	
associated	with	that	orientation	in	the	preceding	stimulus	array.	Color	reports	were	
made	by	adjusting	the	color	of	the	oriented	bar	using	a	mouse.	The	initial	position	of	
the	mouse	on	the	color	wheel	was	randomly	initialized	on	each	trial.	On	a	subset	
(1/3)	of	trials	subjects	were	asked	to	make	a	post-decision	wager	about	the	
accuracy	of	their	report	by	choosing	to	bet	either	0	or	2	points.	Binary	feedback	was	
provided	on	each	trial	based	on	whether	subject	reporting	accuracy	fell	within	a	
certain	error	tolerance	window	(π/3	radians	–	low	precision	condition	or	π/8	
radians	–	high	precision	condition).	Subjects	were	paid	bonuses	according	to	total	
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accumulated	points.	All	human	subject	procedures	were	approved	by	the	Brown	
University	Institutional	Review	Board	and	conducted	in	agreement	with	the	
Declaration	of	Helsinki.	
			
Binary	encoding	model.	To	explore	the	potential	advantage	of	chunking	in	delayed	
report	tasks,	we	developed	a	flexible	and	computationally	tractable	model	for	
capacity-limited	storage.	This	model	stores	color	and	orientation	information	
symbolically	in	a	set	of	binary	“words”	concatenated	to	form	a	“sentence”.	During	
the	stimulus	presentation	phase,	target	colors	and	orientations	are	“encoded”	as	an	
alternating	sequence	of	binary	words	reflecting	the	position	on	a	circular	feature	
space	(figure	3).	The	number	of	binary	digits	(bits)	in	a	word	controls	the	precision	
with	which	the	feature	is	stored.	For	example,	a	single	digit	can	encode	which	half	of	
the	feature	space	contains	the	color	of	a	bar,	whereas	three	bits	can	narrow	the	
stimulus	color	down	to	one	eighth	of	the	color	space	(figure	3,	top).	Each	binary	
word	is	followed	by	a	“stop”	symbol	denoting	the	type	of	information	in	the	
preceding	word	(e.g.	color	or	orientation).	A	capacity	limitation	is	implemented	in	
the	model	as	a	limit	on	the	number	of	bits	that	can	be	stored	in	memory.	Specifically,	
we	applied	a	fixed	limit	of	15	bits	for	storage	of	color	information.	Similar	results	
were	achieved	by	applying	a	limit	to	the	total	bits,	i.e.	including	orientation	
information,	but	here	we	allow	for	perfect	orientation	storage	in	order	to	isolate	the	
effects	of	capacity	limitations	on	the	recall	dimension	(color).	Bits	were	evenly	
distributed	among	represented	colors,	as	this	strategy	for	allocation	of	bits	is	
optimal	for	standard	cost	functions	(e.g.	minimizing	squared	or	absolute	errors).		
	
During	the	probe	phase,	the	model	is	presented	with	a	single	orientation	and	recalls	
the	color	word	that	immediately	precedes	that	orientation	in	the	stored	binary	
sentence.	A	report	is	then	sampled	from	a	uniform	distribution	across	the	range	of	
colors	consistent	with	that	stored	binary	color	word.	For	example,	if	the	color	word	
contains	one,	two,	or	three	bits,	it	is	sampled	from	uniform	distribution	over	one	
half,	quarter,	or	eighth	of	the	color	space.	
	
Chunking	was	parametrically	implemented	in	the	binary	encoding	model	by	adding	
a	“partitioning	criterion”	that	specifies	the	minimum	distance	between	two	colors	in	
color	space	that	is	necessary	for	independent	storage.	Colors	separated	by	distances	
smaller	than	the	partitioning	criterion	are	“chunked”	into	a	single	color	
representation.	The	distance	computation	is	completed	during	the	“encoding”	
phase,	before	colors	are	converted	to	binary	words.	Distances	are	corrupted	with	a	
small	amount	of	noise	consistent	with	variability	in	the	visual	representation	or	the	
chunking	processes	(normally	distributed	with	standard	deviation	equal	to	0.4	
times	the	partitioning	criterion).	After	chunking,	bits	are	allocated	evenly	across	all	
represented	colors,	as	described	above.		
	
Model	performance	was	simulated	for	the	delayed	estimation	task	across	eight	
different	array	sizes	[1-8]	with	two	different	color	generation	conditions	(fixed-	and	
random-spacing)	for	nine	different	partitioning	criterions	ranging	from	zero	to	π.	
For	each	condition	and	model,	mean	absolute	error	was	computed	across	5000	
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simulated	trials.	The	“best-chunking”	model	was	defined	as	the	model	with	the	
lowest	mean	absolute	error,	whereas	the	“non-chunking”	model	was	the	model	with	
partitioning	criterion	equal	to	zero	(such	that	every	color	was	stored	
independently).	For	each	condition,	chunking	bonus	was	computed	as	the	difference	
in	absolute	error	between	the	non-chunking	and	best-chunking	models.		
	
For	the	trial-to-trial	optimization	of	the	partitioning	criterion	(figure	4g),	we	
adjusted	the	partitioning	criterion	on	each	trial	according	to	the	following	rule:	
	

𝑃𝐶 = 𝑃𝐶 −  𝛼 𝛿 ∆𝐶	
	
where	PC	is	the	partitioning	criterion,	𝛼	is	a	learning	rate,	𝛿 is	a	reward	prediction	
error	(previous	trial	feedback	minus	long	term	average	feedback),	and	∆𝐶	is	the	
number	of	“chunks”	into	which	the	previous	stimulus	array	was	divided	minus	the	
long	term	average	of	that	quantity.	Thus,	if	by	chance	the	model	did	more	chunking	
on	a	given	trial,	the	∆𝐶	would	take	a	negative	value,	and	positive	feedback	would	
drive	a	positive	𝛿	and	a	corresponding	increase	in	the	partitioning	criterion,	leading	
to	an	increase	in	chunking	on	subsequent	trials.	Negative	feedback	for	the	same	trial	
would	lead	to	a	negative	𝛿	and	corresponding	decrease	in	the	partitioning	criterion,	
leading	to	a	decrease	in	chunking	on	subsequent	trials.			
	
Center-surround	chunking	model.	To	determine	the	effects	that	center-surround	
dynamics	would	have	on	visual	working	memory	task	performance,	we	extended	
the	standard	descriptive	model	of	delayed	memory	reports	to	incorporate	features	
of	center-surround	dynamics.	In	particular,	on	each	trial,	internal	representations	of	
each	color	were	generated	from	a	von	Mises	distribution	with	fixed	concentration	(7	
for	simulations).	Pairwise	distances	(in	color	space)	were	computed	for	each	pair	of	
internal	representations.	Chunking	probability	was	computed	as	a	scaled	von	Mises	
function	of	this	distance	(μ	=	0,		κ	=	12	for	simulation),	corresponding	to	the	narrow	
excitatory	“center”	over	which	local	representations	are	likely	to	attract	one	another	
(figure	5A-C).	Representations	were	merged	in	accordance	with	these	chunking	
probabilities	by	replacing	the	color	associated	with	each	merged	representation	
with	the	mean	of	the	merged	colors.	After	probabilistic	chunking,	distances	were	
recomputed	between	representations,	and	each	representation	applied	a	repulsive	
force	on	neighboring	representations	as	defined	by	a	scaled	von	Mises	function	of	
the	re-computed	distance	(μ	=	0,		κ	=	2	for	simulation),	corresponding	to	the	broadly	
tuned	“surround”	over	which	representations	repulse	one	another	(figure	5A-C).	
Applying	these	forces	leads	each	representation	to	be	reset	according	to	the	
following	equation:	
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Where	𝑊!"##$"%& 	is	a	weight	that	controls	the	overall	magnitude	of	surround	effects,	
the	second	term	in	the	sum	is	the	probability	density	function	for	a	von	Mises	
distribution,	and	the	final	term	serves	to	ensure	that	targets	exert	repulsive	forces	
on	neighboring	targets.	For	the	simulations	in	figure	5,	the	weight	parameters	for	
both	center	and	surround	were	set	to	equal	values	ranging	from	0	to	0.7.	For	
comparisons	to	subject	data,	𝑊!"##$"%& 	was	set	to	0.6			and	𝑊!"#$"% 	was	set	to	1.2.	
	
Probabilistic	recall	was	implemented	in	the	model	according	to	a	Poisson	memory	
process	13,16.	On	each	trial,	the	model	accurately	recalled	some	number	of	
representations	drawn	from	a	Poisson	distribution	(λ	=	2	for	simulations).	Similar	
results	were	achieved	using	an	inhibition	based	forgetting	process	inspired	by	Wei	
and	colleagues	24;	however,	here	we	use	a	more	standard	Poisson	process	for	
simplicity.	In	the	case	that	a	representation	that	was	not	successfully	recalled	was	
probed,	the	model	reported	either	a	uniformly	distributed	guess	(p	=	0.65)	or	the	
color	of	an	alternative	representation	(binding	error,	p	=	0.35).		
	
Computing	array	“chunkability”.	In	order	to	assess	the	potential	benefits	of	chunking	
on	each	trial	we	computed	a	clustering	statistic,	within	cluster	variance	(WCV),	for	
each	stimulus	array.	WCV	was	computed	by	dividing	the	array	colors	into	two	
clusters	that	minimized	within	cluster	variance	(see	figure	4).	WCV	was	defined	as	
the	average	circular	variance	over	colors	within	these	clusters.			
	
Logistic	regression	models.	Binary	accuracy	and	betting	data	were	concatenated	
across	all	subjects	and	interrogated	with	a	mixed-effects	logistic	regression	model	
that	included	terms	to	account	for	fixed	effects	of	1)	–log(WCV),	a	proxy	for	stimulus	
array	chunkability,	2)	the	color	distance	between	the	probed	target	and	each	other	
color	in	the	array,	ordered	from	smallest	to	largest,	3)	feedback	on	previous	and	
subsequent	trials,	4)	spatial	distance	between	the	location	of	the	probed	target	and	
the	location	of	the	previously	probed	target,	and	5)	task	block.	In	addition,	the	
model	included	dummy	variables	to	account	for	random	intercepts	specific	to	
individual	subjects.	
	
Nearest	neighbor	analysis.	For	each	trial,	the	nearest	neighbor	color	was	identified	as	
the	color	of	the	non-probed	target	that	was	most	similar	to	that	of	the	probed	target.	
Target	colors	and	subject	reports	were	transformed	for	each	trial	such	that	the	
probed	target	color	corresponded	to	zero	and	the	nearest	neighbor	color	ranged	
from	zero	to	π.	Trials	were	then	sorted	according	to	absolute	nearest	neighbor	
distance	(see	supplementary	figure	1)	and	binned	in	sliding	windows	of	50	trials	
according	to	nearest	neighbor	distance.	Binned	data	was	combined	across	all	
subjects	and	fit	with	a	mixture	model	that	assumed	data	were	generated	from	a	
mixture	of	1)	a	von	Mises	distributed	memory	report	(free	parameters:	mean,	
precision,	and	mixture	weight),	2)	uniformly	distributed	guesses	(free	parameters:	
mixture	weight),	and	3)	binding	errors	that	were	von	Mises	distributed	and	
centered	on	non-probed	targets	(no	free	parameters	required,	as	mixture	weight	
forms	simplex	with	the	other	mixture	components).	Maximum	posterior	probability	
parameter	estimates	for	the	mixture	model	fits	to	subject	and	model	simulated	data	
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are	reported	in	figure	9	(prior	distributions	for	all	modulator	terms	were	centered	
on	zero	with	σ	=	0.5	for	recall	modulators,	σ	=	2	for	precision	modulators,	and	σ	=	
0.05	for	bias	modulators).			
	
Mixture	model.		We	extended	the	standard	mixture	model	of	memory	reports	3,11	to	
allow	for	modulation	of	recall	probability,	precision,	and	bias	according	to	WCV,	
nearest	neighbor	distance,	and	feedback.	The	standard	mixture	model	assumes	
reports	are	generated	from	a	mixture	of	“correct	recall”,	“guessing”,	and	“binding	
error”	processes.	These	three	mixture	components	were	specified	using	two	free	
parameters:	one	dictating	the	probability	with	which	an	item	would	be	successfully	
stored	 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 	and	one	specifying	the	probability	with	
which	a	stored	item	would	be	correctly	reported	 !"##$!% !"#$%%

!"##$!% !"#$%%!!"#$"#% !""#"
.	We	

allowed	the	parameter	dictating	successful	storage	to	be	modified	as	a	logistic	
function	of	1)	log(WCV),	2)	previous	feedback,	3)	previous	log(WCV),	4)	previous	
feedback*log(WCV),	5)	previous	feedback*log(WCV)*previous	log(WCV).	All	
potential	modulators	of	successful	storage	were	mean-centered	(before	and	after	
interaction)	and	constrained	by	priors	favoring	values	near	zero	[~normal(0,	0.5)].	
Since	our	successful	storage	parameter	is	the	probability	the	subject	will	not	elicit	a	
uniform	guess,	it	affects	both	correct	recall	and	binding	error	mixture	components.	
However,	since	reports	were	far	more	likely	to	correspond	to	correct	recalls	
(median	mixture	proportion	=	0.50	across	subjects)	than	binding	errors	(median	
binding	error	proportion	=	0.17	=	across	subjects),	modulator	coefficients	had	larger	
effects	on	recall	than	binding	errors,	and	we	refer	to	them	in	the	results	as	
modulating	recall	for	simplicity.	We	also	considered	an	alternative	model	in	which	
modulators	affected	the	recall	term	directly	and	found	similar	results,	although	this	
alternative	model	provided	a	worse	overall	fit	of	the	data.		
	
The	model	also	contained	a	modulator	term	to	account	for	changes	in	precision	
occurring	as	a	function	of	the	distance	to	the	nearest	neighboring	target	color	(see	
figure	9D).	Trial-wise	precision	estimates	were	generated	by	interpolating	the	basic	
fits	displayed	in	figure	9D	using	a	leave-one-subject-out	procedure	to	ensure	that	
precision	estimates	for	each	subject	were	not	informed	by	their	own	data.	These	
precision	estimates	were	then	included	as	a	linear	modulator	of	the	precision	
parameter	in	the	mixture	model,	which	was	constrained	to	take	values	near	zero	
using	normal	priors	[~normal(0,	2)].		
	
Finally,	the	model	also	included	two	terms	to	allow	the	mean	of	the	reported	
response	distribution	to	be	shifted	1)	a	fixed	amount	toward	the	nearest	neighbor	
color	and	2)	according	to	the	distance-dependent	function	in	figure	9A,	computed	
using	the	same	leave-one-subject-out	procedure	described	above.	
	
Meta-analysis.	In	order	to	test	the	robustness	of	our	findings	and	determine	how	the	
behavioral	hallmarks	of	chunking	scale	with	the	size	of	the	stimulus	array,	we	
applied	a	modified	version	of	our	mixture	model	to	a	meta-analysis	dataset.	The	
meta-analysis	dataset	included	eight	studies	and	a	total	of	101	subjects	3,11,12,28,72,77.	
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Seven	of	the	datasets,	available	online	at	
http://www.cns.nyu.edu/malab/resources.html,	were	originally	compiled	by	van	
den	Berg	et	al.	and	have	previously	been	described	in	detail	13.	Three	of	the	studies	
compiled	by	Van	den	Berg	et	al.	were	excluded	from	our	analyses	due	to	retraction	
of	the	original	studies,	although	the	inclusion	of	these	studies	did	not	qualitatively	
change	our	results.	The	eighth	dataset	(28	subjects)	comprised	the	control	subjects	
in	a	psychiatric	comparative	study	of	visual	working	memory	72.	Each	study	differed	
in	experimental	details	but	involved	a	delayed	report	working	memory	task	with	at	
least	two	different	array	sizes.		
	
We	analyzed	the	data	for	each	subject	and	array	size	separately	using	a	simplified	
version	of	the	mixture	model	described	above.	The	simplified	version	did	not	
include	any	parameters	related	to	the	feedback	or	stimulus	configuration	on	the	
previous	trial,	as	most	of	the	included	studies	did	not	provide	feedback.	For	each	
subject	and	parameter	in	the	model,	parameter	estimates	were	analyzed	with	a	
subject-level	regression	to	quantify	1)	the	mean	parameter	value	across	array	sizes	
(intercept)	and	2)	the	extent	to	which	parameter	estimates	increased	with	array	
size	(slope).	A	bootstrapping	procedure	was	used	to	non-parametrically	estimate	
95%	confidence	intervals	over	the	median	slope	and	intercept	for	each	parameter.	
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Supplementary	Information:	
	

	
	
	
Supplementary	Figure	1:	Sorting	trials	according	to	the	nearest	neighbor	non-
probed	target	color	reveals	structure	in	memory	reports.	A&B:	Signed	error	of	
memory	reports	(red	points)	for	all	trials	completed	by	two	sample	subjects	(left	=	
subject	1,	right	=	subject	46).	Trial	errors	are	sorted	by	the	distance	from	the	probed	
target	to	the	most	similar	color	in	the	target	array	(nearest	neighbor	distance,	NND)	
and	transformed	according	to	the	direction	of	the	nearest	neighbor	target	(blue	
points).	Green	points	reflect	the	positions	of	other	colors	in	the	target	array,	relative	
to	the	probed	color	and	transformed	as	described	above.	Note	the	asymmetry	in	
error	distributions	appears	to	change	as	a	function	of	the	nearest	neighbor	distance.	
C&D:	Error	histograms	for	the	same	two	example	subjects,	transformed	as	
described	above.	Note	that	in	some	cases	apparent	structure	in	the	sorted	errors	(A)	
is	no	longer	visible	after	collapsing	across	nearest	neighbor	distances	(C).		
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