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Abstract 

 Deep mRNA sequencing (mRNAseq) is the state-of-the-art for whole transcriptome 

measurements. A key step is creating a library of cDNA sequencing fragments from RNA. This 

is generally done by random priming, creating multiple sequencing fragments along the length of 

each transcript. A 3’ end-focused library approach cannot detect differential splicing, but has 

potentially higher throughput at lower cost (~10-fold lower), along with the ability to improve 

quantification by using transcript molecule counting with unique molecular identifiers (UMI) to 

correct for PCR bias. Here, we compare implementation of such a 3’-digital gene expression (3’-

DGE) approach with “conventional” random primed mRNAseq, which has not yet been done. 

We find that while conventional mRNAseq detects ~15% more genes, the resulting lists of 

differentially expressed genes and therefore biological conclusions and gene signatures are 

highly concordant between the two techniques. We also find good quantitative agreement on the 

level of individual genes between the two techniques in terms of both read counts and fold 

change between two conditions. We conclude that for high-throughput applications, the potential 

cost savings associated with the 3’-DGE approach are a very reasonable tradeoff for modest 

reduction in sensitivity and inability to observe alternative splicing, and should enable much 

larger scale studies focused on not only differential expression analysis, but also quantitative 

transcriptome profiling. The computational scripts and programs, along with experimental 

standard operating procedures used in our pipeline presented here, are freely available on our 

website (www.dtoxs.org).  
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Introduction 

 Massively parallel sequencing of mRNA, or mRNAseq, was first introduced in 2008 

(Mortazavi et al. 2008; Trapnell et al. 2010, 2009), and since has rapidly become the preferred 

method for whole transcriptome measurements (Li et al. 2014a; Conesa et al. 2016; Li et al. 

2014b; Risso et al. 2014; Wang et al. 2014; Su et al. 2014; Byron et al. 2016; Trapnell et al. 

2013), culminating recently with the announcement by Illumina of the discontinuation of the 

Human Expression Array BeadChip (HumanHT-12 v4 as of 9 Dec 2016). The procedure consists 

of two basic steps. First is library preparation, which consists of converting mRNA isolated from 

samples into cDNA that is compatible with the deep sequencing platform. Next is the sequencing 

itself, which often consists of paired-end protocols on the Illumina HiSeq platform to generate 

millions of reads per sample. The resulting quantification of transcript levels comes from 

counting the reads aligned to each transcript, followed with normalizing by transcript length 

(since # of reads depends on transcript length due to random priming), and the total number of 

reads (sequencing depth) (Trapnell et al. 2013; Conesa et al. 2016). Analysis of alternative 

splicing is also possible with paired-end sequencing, which, along with a reference 

transcriptome, puts strong constraints on the distance between reads and allows assessment of 

compatibility with known splice isoforms (Conesa et al. 2016; Trapnell et al. 2010).     

Although the data resulting from mRNAseq is often considered superior to that obtained 

by the former transcriptome measurement standard, the microarray, the cost per sample is 

currently ~$300-$500 (depending on various options), precluding widespread high-throughput 

application. The primary component of this cost, typically ~70-90% depending on core facility 

and desired sequencing depth, is the library preparation. Thus, reduction in library preparation 

cost is expected to pay large returns for ability to increase mRNAseq throughput.  
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Another current issue with mRNAseq data are the biases introduced by PCR during 

library preparation. Because every sequence has a potentially different propensity to be amplified 

during PCR, the resulting quantitative representation of transcripts in the sequencing library is 

non-linearly distorted from the original abundance in ways that are difficult to predict. One way 

that has been shown to correct for this bias is to tag every transcript molecule with a unique 

random nucleotide sequence prior to amplification (Kivioja et al. 2011; Islam et al. 2014; Smith 

and Birtwistle 2016). Such sequences are termed unique molecular identifiers (UMIs). UMIs 

allow removal of PCR bias by only counting reads for a gene that have different UMI sequences, 

and ignoring those that have the same UMI sequence, since they came from the same original 

transcript molecule and thus are PCR duplicates. For this reason, such quantification approaches 

are also often referred to as transcript counting or digital gene expression (DGE).  

Here, we demonstrate the use of a library preparation method that takes advantage of 3’-

end creation of cDNA (poly-T priming) and incorporates UMI-based quantification, but only 

costs ~$30 per sample, greatly reducing total mRNAseq cost to ~$50 per sample, a nearly 10-

fold reduction in typical cost. Because it is not yet clear to what extent the results from this 3’-

DGE library preparation method overlap with the current gold-standard of random primed 

conventional mRNA sequencing, we performed a comprehensive comparison of data obtained by 

both methods, from the same RNA samples. We find that 3’-DGE has only about ~15% lower 

sensitivity than conventional random primed mRNAseq, good quantitative agreement, and high 

overlap in lists of differentially expressed genes. We conclude that the 3’-DGE approach used 

here is a viable low-cost alternative to conventional random-primed mRNAseq for high-

throughput applications, particularly when looking for differentially expressed genes between 

treatment conditions, as is a common goal for transcriptomic studies, but also for simple 
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expression profiling which is becoming more commonplace in single-cell mRNAseq 

(DeLaughter et al. 2016; Wagner et al. 2016; La Manno et al. 2016; Olsson et al. 2016) or tissue-

level examinations (Ardlie et al. 2015; Melé et al. 2015; Genomics et al. 2015).         
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Results and Discussion 

3’-Digital Gene Expression Versus Conventional mRNA Sequencing  

 Both conventional and 3’-DGE mRNAseq consist of (i) library preparation, (ii) 

sequencing, (iii) alignment to a reference genome and (iv) quantification, but there are 

differences between the two approaches in each of these four main steps (Fig. 1 illustrates some 

of these). For conventional library preparation, following isolation of mRNA from total RNA (in 

our case with oligo dT beads—see Methods), cDNA is typically synthesized via random priming 

of thermally-sheared mRNA. In 3’-DGE, cDNA is generated via 3’-directed oligo dT priming, 

during which unique molecular identifiers (UMI) are incorporated (for quantification purposes—

see below), and strand-specificity is preserved. For conventional sequencing, single-end or 

paired-end constant read length is used (we used 100 bp single-end in this paper). In 3’-DGE, 

paired-end is required. At least 16 bp are needed on the first read to capture UMI and sample 

barcode data. We used 46 bp on the second read to acquire transcript-specific sequence data. 

Focus on the 3’ end of the transcript coupled with lack of transcript-specific information on both 

reads precludes identification of alternative splicing for 3’-DGE. For conventional alignment, the 

entire reference transcriptome is used since sequenced fragments are randomly distributed. In 3’-

DGE, a reduced transcriptome is used, since sequenced fragments are localized near the 3’ end 

of transcripts. Because of this, there are slight differences in the gene lists obtained from each 

alignment (Table S1), but a large majority of protein-coding genes (22,811) are shared between 

the approaches. For conventional quantification, the total number of uniquely aligned reads to a 

particular gene is used, termed read counts. Read counts are often divided by the average 

transcript length and read depth (units of reads per kilobase of transcript length per million 

mapped reads—RPKM). In 3’-DGE, the total number of uniquely aligned reads to particular 
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genes is available, but is only an intermediate to the final quantification by UMI counts for each 

gene. This UMI count metric corrects for PCR bias by removing reads that align to the same 

genomic region and share the same UMI sequence (this strongly suggests they arose from the 

same original transcript molecule).  

To gain a thorough practical understanding of the differences between data obtained by 

3’-DGE and conventional mRNAseq, we isolated RNA from 16 PromoCell primary 

cardiomyocyte cultures treated with either DMSO vehicle control (eight biological replicates), 

sorafenib (four biological replicates) or sunitinib (four biological replicates) for 48 hours. These 

experiments were part of a larger signature generation project in our DToxS LINCS center 

focused on cellular signatures for cardiotoxicity of kinase inhibitors (www.dtoxs.org and 

www.lincsproject.org) We expected, based on our prior data, that sorafenib would induce large 

changes in gene expression, whereas sunitinib would induce negligible changes in gene 

expression, providing positive and negative control test cases for differential expression analysis. 

The 16 RNA samples were analyzed for quality, and then split and sent to either the conventional 

or 3’-DGE mRNAseq pipeline for library preparation, sequencing, alignment and quantification 

(see Methods and Fig. S1). The average read depth for conventional was 5.9x106 reads / sample, 

and for 3’-DGE was 3.8x106 reads / sample. Read depth was also consistent across samples (Fig. 

S2), and overall read count distribution was similar for the two techniques (Fig. S3). 

Fidelity of Sequence Alignments for 3’-DGE 

 Because sequence information in 3’-DGE comes from a restricted region of the exome 

that may have reduced sequence entropy amongst genes, we first investigated the fidelity of 

sequence alignments. For each gene with at least four read counts (summed across all samples), 

we quantified the proportion of reads that align only to that gene, and looked at the frequency 
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distribution of this proportion across genes (Fig. 2). The distribution is highly skewed towards 

proportions > 0.95, indicating most genes are quantified by reads that align only to that single 

gene. This proportion is less than 0.10 for a small number of genes (738 out of 14,574; gene 

names are in Table S2). Thus these 738 genes are not able to be reliably quantified without 

further assumptions and considerations. The reads associated with these unquantifiable genes 

account for most such degenerately-aligned reads (>50%). We conclude from these data that 

despite the fact that reads are 3’ end-focused, a large and sufficient majority can be reliably 

mapped to individual genes with high fidelity. This feature may be facilitated by the strand-

specificity of the 3’-DGE library preparation method. From this point forward we only consider 

read counts that are reliably aligned to a single gene.  

Sensitivity to Detect Gene Expression as a Function of Read Depth 

 We wanted to determine the sensitivity of the two techniques to detect expression of the 

22,811 genes shared between the reference sequence databases. To do this we employed a read 

removal approach, where each sample’s dataset was progressively downsized (Fig. 3A and Figs. 

S4-5). Read counts were removed from each gene with probability proportional to that gene’s 

overall representation in the dataset, and expression of a gene was considered detected with four 

or greater reads (see Methods). We verified that this stochastic nature of read removal introduced 

negligible variability into our results (Fig. S6).  

 In all treatment cases, we observed a hyperbolic dependency between read depth and 

number of detected genes. We parameterized these relationships with a Michaelis-Menten model 

to quantify differences between the techniques (Table 1). We found that the estimated parameter 

values were consistent across samples for each measurement type. The Vmax parameter indicates 

that on average conventional mRNAseq detects approximately 15% (~2000) more genes. The 
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genes that were differentially detected by conventional were very consistent across treatments, 

and were greater in number than those differentially detected by 3’-DGE as expected (Fig. 3B). 

The overall fraction of genes identified by only conventional or 3’-DGE was small, indicating 

good concordance between the techniques (>104 vs. <103). The Km parameter indicates that on 

average conventional mRNAseq is slightly more sensitive; however, at read depths even far 

below typical levels (106 / sample), both techniques detect ~95% of the maximum possible. We 

conclude that conventional mRNAseq detects the expression of approximately 15% more genes 

(~13,000 vs. ~11,000), but both techniques saturate in terms of detecting new genes at greater 

than 2-3 million reads / sample. It should be noted here that the 3’-DGE method was designed to 

be compatible with very little total RNA extract (e.g. single cell RNAseq), so this may well 

account for the differences observed here. Also, detection is strongly distinct from statistical 

power, so 2-3 million reads / sample my not be sufficient to detect differential expression of 

lowly expressed genes between two conditions, despite being detected.  

Quantitative Comparison Between the Techniques 

 We next wanted to do a quantitative comparison of expression gene-by-gene for matched 

samples and treatment conditions. The first step in doing so is to normalize read depth amongst 

all the samples. To do that we used the read removal process as above to downsample each 

dataset to the lowest common read depth, which was ~2.8 million reads per sample. Correlation 

amongst replicates within the same technique was very high (Fig. 4A), but the resulting x-y 

scatterplots of conventional read counts vs. DGE read counts yielded poor correlation (Fig. 4B). 

We reasoned that this poor correlation could be due to the fact that conventional read counts 

depend strongly on transcript length, whereas in principal those from 3’-DGE do not. When we 

normalized conventional read counts by transcript length, the correlation improved significantly 
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(Fig. 4C). We observed similar agreement on the level of individual sample-to-sample 

correlations (Fig. S7). We conclude that the two techniques show reasonable quantitative 

agreement with one another.  

 We also used such scatter plot analysis to yield insight into potential biases in detection 

for each technique (Fig. 4D). We first took the average read count values for each gene across all 

16 samples, with the thinking that strong biases should largely be sample independent. As a 

simple and conservative approach, we drew lines parallel to x=y that flank the typical variance in 

the data, and identified points falling outside of this range (Fig. 4D). We identified a small 

relative number of such genes—165 for 3’-DGE and 98 for conventional (Tables S5-S6). These 

genes should be interpreted with caution when appearing as differentially expressed in 

downstream analyses.   

Differential Expression Analysis 

 The typical endpoint of an mRNA sequencing experiment is testing for statistical 

significance of differential expression between two or more conditions. There are many software 

packages available for doing this; here we used EdgeR (Robinson et al. 2009) (see Methods for 

specific software settings). Specifically, we compared DMSO vehicle-treated control (CTRL) to 

either sunitinib (SUN) or sorafenib (SOR) treatment. A typical definition of a “differentially 

expressed gene” is that which has a false discovery rate (FDR) of lower than 0.1 (Fig. 5A). Both 

conventional and 3’-DGE data show that sunitinib causes very few genes to be differentially 

expressed, whereas sorafenib causes differential expression of several thousand genes (Fig. 5A). 

For the 3,136 sorafenib-associated gene expression changes identified by both conventional and 

3’-DGE, there is a strong correlation between the p-values for differential expression (Fig. 5B). 

However, there are another ~3,600 genes identified as differentially expressed by conventional 
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that are not found by 3’-DGE. The reason for this is a simple statistical power argument due to 

UMI counting versus read counting. While using UMI counts as the quantification metric in 

principal improves precision due to removal of PCR bias, at the same time, it reduces effective 

read depth and therefore statistical power. We thus decided to forgo strict FDR cutoffs and 

instead analyze trends visible from all 10,121 genes with defined p-values for differential 

expression. An expected cone-shape that falls along the x=y line is observed as statistical 

significance varies from weak to strong, consistent with the above hypothesis and further 

suggestive of concordance between the techniques (Fig. 5C). This concordance is also evident 

from the strong agreement between the log2-fold changes for differential expression from each 

technique (Fig. 5D). This strongly suggests the biological conclusions drawn from either 

technique will be concordant. Lastly, we ranked the entire list of 22,811 genes for each 

mRNAseq technique and drug, and then analyzed their overlap via the rank-rank hypergeometric 

test (Fig. 5E-F). Each spot in the heatmap quantifies the statistical significance of overlap 

between the genes in the ranked list up to that point, starting from the top left corner, via Fisher’s 

exact test. To distinguish between up and down regulation, we signed the p-value accordingly, 

placing down-regulated genes with high statistical significance at the bottom of the list (Fig. 5E). 

As expected, the ranked lists for sorafenib-treated samples from conventional and 3’-DGE show 

large agreement, as indicated by the red color down the diagonal. The ranked lists for suninitib-

treated samples from conventional and 3’-DGE show much less agreement, also as expected for 

gene lists with little to no differential expression. Likewise, cross comparison between treatments 

and sequencing type also yield little agreement as expected. We conclude that conventional and 

3’-DGE mRNAseq techniques generate highly similar signatures of gene expression for both up 

and down-regulated genes.   
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Comparison of 3’-DGE and Conventional with An Independent Dataset 

 Can we expect the agreement between 3’-DGE and conventional mRNAseq results to be 

similar for other datasets? We attempted to answer this question by taking a similar experimental 

design approach with a different set of RNA, this time from induced pluripotent stem cell (iPSC) 

lines created from control individuals or those that had a mutation for and clinical presentation of 

spinal muscular atrophy (SMA), where slightly different random primed library preparation and 

sequencing approaches were employed (see Methods).  SMA is a childhood early onset motor 

neuron disease (Sareen et al. 2012; Fuller et al. 2015) where symptoms can be observed as early 

as 3 months or up to 2-3 years of age.  The disease is typically caused by mutations in the SMN1 

(Survival Motor Neuron 1) gene, however disease severity varies based on numbers of copies of 

the related SMN2 gene. As SMN genes control critical RNA biogenesis processes during early 

development (Fuller et al. 2015), we anticipate differential gene expression changes even at the 

iPSC stage without subsequent differentiation. For these analyses, two SMA subject clonal lines 

and three control lines, with varying numbers of growth replicates, were compared. Growth and 

disease replicates were combined for comparisons to generate the differentially expressed gene 

lists conventional mRNAseq and 3’DGEs. While this is not a traditional replicate approach for 

differential expression analysis, the mixed basis of the samples would only serve to increase 

sample-to-sample variability, and thus conclusions about consistency of differential expression 

can be considered as a lower bound that would only improve with other replication designs.  

First, we analyzed sensitivity to detect gene expression as a function of read depth. We 

observed similar results as before, with conventional having higher sensitivity, detecting ~15% 

more genes (Fig. 6A), albeit now with both techniques having a higher level of overall detection 

as compared to the previous dataset. This could be due to different RNA preparation techniques 
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used (TRIzol vs. Qiagen RNAeasy). We observed significant correlation between counts on a 

gene-by-gene level that again was greatly improved by normalizing conventional data by 

transcript lengths (Fig. 6B-C and Fig. S8). Because of the statistical power properties associated 

with UMI counting discussed above, it is not appropriate to look at strict FDR cutoffs to analyze 

the number of differentially expressed genes. Alternatively, we analyzed statistical significance 

(Fig. 6D) and log2 fold changes (Fig. 6E) for differential expression and found they were 

correlated well, and also similarly as before with sorafenib-treated samples. This leads to the 

resulting ranked gene signatures of differential expression again being highly concordant 

between the two techniques (Fig. 6F). Thus, we conclude that agreement reported here between 

3’-DGE and conventional approaches is likely to be seen across many sample types, as well as 

across variations of conventional random primed methods.  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 6, 2017. ; https://doi.org/10.1101/098905doi: bioRxiv preprint 

https://doi.org/10.1101/098905
http://creativecommons.org/licenses/by/4.0/


14 
 

Methods 

Cell Culture and RNA Isolation 

We used a commercially available cell line to compare the two sequencing methods. 

Detailed SOPs for culture and RNA isolation are available on our website (www.dtoxs.org) as 

DToxS SOP CE – 1.0: PromoCell Cardiomyocyte Subculture, DToxS SOP CE – 2.0: PromoCell 

Cardiomyocyte Plating for Drug Test, DToxS SOP CE – 4.0: Drug Treatment and Cell Lysis, 

and DToxS SOP A – 1.0: Total RNA Isolation.  

Briefly, primary adult human cardiomyocytes (PromoCell, Heidelberg, Germany; Cat: C-

12810, Lot: 3042901.2) were subcultured according to manufacturer’s instructions using 

antibiotic-free myocyte growth medium (PromoCell, Cat: C-22170) supplemented with a mix of 

5% fetal calf serum, 0.5 ng/ml EGF, 2 ng/ml FGF, and 5 μg/ml recombinant human insulin 

(PromoCell, Cat: C-39275). We differentiated fully confluent cells for four weeks under serum 

starvation and treated cells with DMSO vehicle (Control, CTRL), 1 μM sorafenib (SOR), or 0.1 

μM sunitinib (SUN) for 48 hours. Total RNA was extracted using TRIzol (Life Technologies, 

Cat: 15596018). RNA concentration was measured by Qubit 3.0 fluorometric quantitation using 

the high sensitivity RNA kit (Life Technologies, Cat: Q32852), and RNA quality was assessed 

by Fragment Analyzer using high sensitivity RNA analysis kit (Advanced Analytical 

Technologies, Cat: DNF-472). Only the RNA samples that have passed the quality control step 

with RNA integrity number (RIN) score of 7.0 or above were used. 200 ng of RNA for all 

samples were then transferred onto a skirted 96-well PCR plate (Eppendorf, Cat: 951020401) at 

a normalized concentration of 10 ng/μL. 

3’-DGE Library Preparation 
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The RNA-seq libraries were prepared according to the Single Cell RNA Barcoding and 

Sequencing method originally developed for single cell RNA-seq (SCRB-seq; (Soumillon et al. 

2014)) and adapted to extracted total RNA. Briefly, Poly(A)+ mRNA from extracted total RNA 

were converted to cDNA decorated with universal adapters, sample-specific barcodes and unique 

molecular identifiers (UMIs) using a template-switching reverse transcriptase. Decorated cDNA 

from multiple samples were then pooled, amplified and prepared for multiplexed sequencing 

using a modified transposon-based fragmentation approach that enriched for 3’ ends and 

preserved strand information. A detailed SOP is available at www.dtoxs.org (DToxS SOP A – 

6.0: High-throughput mRNA Seq Library Construction for 3' Digital Gene Expression (DGE)) 

Conventional Random Primed Library Preparation 

Conventional sequencing libraries were prepared using 200 ng of total RNA and the 

TruSeq RNA Library Prep Kit (Illumina, Cat: RS-122-2001) per manufacturer’s instructions, 

with mRNA was enriched via poly-A-selection using oligoDT beads.RNA was then thermally 

fragmented and converted to cDNA, adenylated for adaptor ligation and PCR amplified. Prior to 

sequencing, quality and concentration of the cDNA library was confirmed using Agilent 

Bioanalyzer and Qubit fluorometric quantitation. 

Sequencing using Illumina HiSeq Platform 

Both the random primed and 3’-DGE libraries were sequenced using the Illumina HiSeq 

2500 platform. cDNA libraries were loaded onto Illumina flowcells using the Illumina c-Bot, and 

conventional libraries were sequenced with 100 nucleotide paired-end reads per manufacturer’s 

instruction, whereas 3’-DGE used a custom paired end protocol with 26 bp on the first read, and 
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46 on the second. Detailed SOPs for the 3’-DGE sequencing are available on www.dtoxs.org as 

described above.  

iPSC Cell Culture, RNA Isolation and Conventional Sequencing with iPSC Data 

Human iPSCs were generated using episomal reprogramming and validated using quality 

control methods, including Pluritest, G-band karyotype analysis and Short Tandem Repeat 

identity test assays as described previously (Fuller et al. 2015). iPSCs were maintained in 6-well 

tissue culture plates coated with Corning Growth Factor Reduced Matrigel Matrix (Cat # 

354230).  iPSCs were passaged every 7 days or when the cultures reached 80-90% confluency 

using the StemPro EZPassaging Tool (Life Technologies, Cat # 23181010). To prepare cells for 

cell pellets, each iPSC line was seeded into two 6-well plates at a 1:6 dilution and allowed to 

reach ~80% confluency (approximately 1.5 to 2e6 cells per well). On the day of collection, any 

visible spontaneous differentiation was removed using a pipette tip. The spent media was then 

aspirated and the cells were rinsed with chilled PBS. 1ml of chilled PBS was added to each well 

and the cells were lifted gently from the plate using a Corning cell scraper (Cat # CC3010). Two 

wells from each plate were pooled together into a chilled 15ml conical and labeled as replicate 

#1.  This was repeated until three replicates were collected per sample. Each replicate was then 

evenly distributed into 5 chilled 0.5ml Eppendorf tubes. The Eppendorf tubes were labeled with 

the cell line name, passage number, collection date and replicate number. Cells were then 

pelleted by centrifuging each sample for 5 minutes at 1000 rpm. The PBS was aspirated and the 

cell pellets were then flash frozen by briefly submerging each tube in liquid nitrogen. The 

samples were sent for RNA preps and sequencing. Full details relating to Control and SMA cell 

lines are also available at http://lincsportal.ccs.miami.edu/dcic-portal/.  
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  Total RNA were isolated using the Qiagen RNeasy Kit and QIAshredder. RNA QC were 

analyzed on the Agilent 2100 Bioanalyzer which indicated that all RIN values were 10. RNA-

Seq libraries were made with 1 ug of RNA using the Illumina non-stranded TruSeq mRNA v2 

protocol. Libraries were quantified using the KAPA library quant kit and sequenced on the 

HiSeq 2500 using 100 cycles across three lanes to obtain paired-end reads 100 base pairs in 

length.  

Defining and Alignment to Reference Genome 

For the conventional method, we obtained the genome sequence file (hg19) from the 

UCSC website (http://hgdownload.cse.ucsc.edu/downloads.html#human). We created the gene 

annotation file by downloading a list of RefSeq genes from Table Browser 

(http://genome.ucsc.edu/cgi-bin/hgTables) and then converting it to the GTF format using 

genePredToGtf (http://hgdownload.cse.ucsc.edu/admin/exe). For 3’-DGE, we used a shortened 

version of hg19 limited to smaller regions around the 3’ ends of genes (available upon request). 

There are a common set of 22,081 genes which we used as a basis of comparison between the 

two techniques throughout the manuscript (Table S1). http://genome.ucsc.edu/cgi-bin/hgTables) 

and then converting it to the GTF format using genePredToGtf 

(http://hgdownload.cse.ucsc.edu/admin/exe). For 3’-DGE, we used a shortened version of hg19 

limited to smaller regions around the 3’ ends of genes (available upon request). There are a 

common set of 22,081 genes which we used as a basis of comparison between the two 

techniques throughout the manuscript (Table S1). We used STAR (Dobin et al. 2013) with the 

default parameter settings to align the conventional mRNAseq data (PromoCell) to the reference 

described above, and then counted the number of the sequence fragments uniquely aligned to 

each gene by the featureCounts program from a sequence alignment suite Subread using the 
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UCSC reference gene annotation. For 3’-DGE data, a custom python script is used (available 

upon request). First, reads are aligned using BWA, and counts of specifically or non-specifically 

aligned reads (i.e., aligning to one or more than one gene with high confidence) are calculated. 

Next, the number of distinct unique molecular identifier (UMI) sequences embedded in those 

aligned reads are counted, giving the UMI counts. 

Computational Downsampling of Sequencing Depth 

To compare datasets on an equivalent sequencing depth basis, we computationally 

removed read counts with an iterative algorithm (Fig. S4-S5). First, all genes with very low 

expression are removed (<4 read counts). Then, a particular gene is randomly selected with 

probability proportional to its count representation amongst all genes, and a read is removed 

from this gene. We removed UMI counts from the selected gene probabilistically, according to 

the ratio of UMI counts to read counts (always less than one, and a gene-specific estimate of 

PCR bias). The process is repeated using probabilities estimated at the first iteration until all read 

counts are removed. We performed the process 16 times for each sample to ensure the stochastic 

nature of removal did not affect our results (Fig. S6).  

Data Normalization 

For conventional data, we divided read counts by the average transcript length. These 

lengths were obtained from http://genome.ucsc.edu/cgi-bin/hgTables, by summing the length of 

all exons in a transcript into a transcript length, and then averaging this transcript length across 

all transcripts of each gene. 

Differential Expression Analysis 
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We performed differential expression analysis for the PromoCell data with edgeR 

(Robinson et al. 2009) starting with tables of counts for any technique. Differential expression 

analysis consists of the following steps within edgeR:  normalization by trimmed mean of M-

values (Robinson and Oshlack 2010), empirical Bayes estimation of sample dispersion (Chen et 

al. 2014), and exact test for negative-binomial sample comparison (Robinson and Smyth 2008). 

A detailed standard operating procedure (SOP) document is available at www.dtoxs.org, and all 

code is available upon request. 

Rank-rank hypergeometric test 

The significance of the overlap between two lists of differentially expressed genes 

(DEGs) was calculated using the rank-rank hypergeometric test (Plaisier et al. 2010). First, for 

all genes, we calculated the negative log10 of the p-value for differential expression (-log10p), and 

multiplied by negative one if a gene was downregulated. Genes were ranked by signed -log10p, 

placing the most significantly up-regulated genes at the top and the most significantly down-

regulated genes at the bottom of the list. The number of overlapping genes of the top x genes of 

one list and the top y genes of the other was counted at every 10th x-y combination, and Fisher's 

exact test was used to calculate significance of the overlap. If the overlap was greater than 

expected the right-tailed Fisher's Exact test was used, otherwise the left-tailed Fisher's exact test 

was used. The resulting heatmap of p-values from Fisher’s Exact text was visualized with the 

MATLAB function imagesc. 
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Figure 1. Schematic of Library Construction Differences between Conventional and 3’-DGE mRNA
Sequencing. BC: Barcode; UMI: Unique Molecular Identifier.
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Figure 2. Fidelity of Sequence Alignments in 3’-end Digital Gene Expression (3’-DGE) Method. For 
each of the 14,574 genes with greater than four counts (summed across all 16 samples), the proportion of 
reads aligned to only that one gene was calculated. This proportion is close to 1 for most genes, indicating 
reliable quantification. 
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Xiong, et al. Figure 3A

CTRL SOR SUN

Figure 3A. Sensitivity of Conventional (Conv) and 3’-end Digital Gene Expression (3’-DGE) mRNA
Sequencing Methods. Gene-wise reads are removed from every sample in a probability proportional to
the abundance of the gene in a sample, to generate a set of the number of identified genes over a range of
simulated read depths. The curves for individual replicate samples are shown with the thinner points,
showing in general low variability. The average is shown with the solid line.
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Table 1. The Best-Fit Parameter Values of a Michaelis-Menten Model to the Average Curves in Fig. 
3A. The function drm in the R package drc, using the fit function mm, was used. 

Xiong, et al. Table 1

Technology Treatment Km (reads) Vmax (genes)

Conv CTRL 49,719 12,905

Conv SOR 45,441 13,202

Conv SUN 50,902 13,099

3’-DGE CTRL 75,277 11,117

3’-DGE SOR 60,979 10,884

3’-DGE SUN 70,673 11,006
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Xiong, et al. Figure 3B

Figure 3B. Genes Identified in Conventional but not 3’-DGE, and Vice Versa. Each replicate from
both mRNAseq technologies were downsampled via read removal to a common read depth (2.8 million
reads per sample), and the differences in identified genes were analyzed. Most genes identified in
conventional but not 3’-DGE were shared across treatment conditions, and likewise for those identified by
3’-DGE but not conventional.
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Xiong, et al. Figure 4A

Figure 4A. Correlations of the Replicate Samples from the Conventional (Conv) Read Counts and
3’-end Digital Gene Expression (3’-DGE) Read Counts. The replicate samples obtained by the same
method correlate well with each other at each condition. Control (CTRL), Sorafenib (SOR), Sunitinib
(SUN).

Conv 3’-DGE
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Xiong, et al. Figure 4B-C

Figure 4B-C. Quantitative Gene-wise Comparison between 3’-end Digital Gene Expression (3’-
DGE) and Conventional Techniques. Datasets are downsampled to a common read depth of 2.8 million
reads, and then gene-by-gene comparisons are made via scatter plots. To generate a reduced UMI count
dataset, upon removal of a read count, UMI counts were removed with probability proportional to the
ratio between UMI counts and read counts for that gene (accounting for PCR bias). Density of points in
scatter plots is indicated by depth of color. Inset text box shows Pearson correlation. In all plots, data are
scaled so units are comparable. B. Scatterplots of UMI counts for 3’-DGE versus read counts for
conventional, without normalization by average transcript length. There is a general trend of agreement
but correlation is low for quantitative agreement. C. Scatterplots of UMI counts for 3’-DGE versus
transcript length-normalized read counts for conventional. Quantitative agreement is significantly
improved upon this normalization.

CTRL SOR SUNB
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Xiong, et al. Figure 4D

Figure 4D. Potential Biases of 3’-end Digital Gene Expression (3’-DGE) or Conventional
Techniques. We averaged data from all 16 read depth-normalized samples and defined lines that flank the
typical variance in the data to identify genes that have evidence of bias in quantification. Genes falling
outside of this range are reported in Tables S5-6.
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Figure 5A. Differential Expression Analysis. Control (CTRL) data are compared Sorafenib (SOR) or
Sunitinib (SUN) to identify differentially expressed genes (DEGs) using EdgeR for both conventional
(Conv) and 3’-end digital gene expression (3’-DGE) datasets. A gene is defined as differentially expressed
using a false discovery rate (FDR) cutoff of 0.1.
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Figure 5B. Comparison of Statistical Significance for the 3,136 Shared Differentially Expressed
Genes (DEGs) from Sorafenib-treated Samples in 3’-end Digital Gene Expression (3’-DGE) and
Conventional (Conv) Methods with FDR<0.1. The negative base-10 logarithm of the p-value for
differential expression is plotted for each technique, with depth of color indicating density of points.
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Figure 5C. Comparison of Statistical Significance for All Genes Identified from Sorafenib-treated
Samples by the 3’-end Digital Gene Expression (3’-DGE) and Conventional (Conv) Methods. The
negative base-10 logarithm of the p-value for differential expression is plotted for each technique, with
depth of color indicating density of points.
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Figure 5D. Comparison of Fold Change for All Genes Identified from Sorafenib-treated Samples by
the 3’-end Digital Gene Expression (3’-DGE) and Conventional (Conv) Methods. The log base two
fold-change is plotted for each technique, with depth of color indicating density of points.
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Figure 5E-F. Rank-Rank Hypergeometric Tests for Consistency of Differential Expression Ranking
and Gene Expression Signatures. E. All genes for which a p-value for differential expression was
calculated were first sorted into up or down regulated genes (as compared to CTRL), and then ranked by
statistical significance. The probability of overlap between two different such rank lists was calculated
with Fisher’s Exact Test (aka hypergeometric test), and visualized with a heatmap, for all combinations of
list cutoffs. F. Pairwise comparisons of SUN- and SOR-treated data for 3’-DGE and conventional. Only
SOR-treated samples show significant overlap in their ranked lists, as expected, because only SOR
induced large changes in gene expression. All other combinations have little evidence for statistical
similarity in identified gene expression signatures.
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Xiong, et al. Figure 6A

Figure 6A. Sensitivity of Conventional (Conv) and 3’-end Digital Gene Expression (3’-DGE) mRNA
Sequencing Methods in an Independent Dataset. Gene-wise reads are removed from every sample in a
probability proportional to the abundance of the gene in a sample, to generate a set of the number of
identified genes over a range of simulated read depths. The curves for individual replicate samples are
shown with the thinner points, showing in general low variability. The average is shown with the solid
line.
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Xiong, et al. Figure 6B-C

Figure 6B-C. Quantitative Gene-wise Comparison between 3’-end Digital Gene Expression (3’-
DGE) and for Independent Conventional Techniques. Density of points in scatter plots is indicated by
depth of color. Inset text box shows Pearson correlation. In all plots, data are scaled so units are
comparable. B. Scatterplots of UMI counts for DToxS’ 3’-DGE versus read counts for NeuroLINCS’
conventional, without normalization by average transcript length. CTRL or SMA refer to the genetic
status of the iPS cells (see Methods). C. Scatterplots of UMI counts for DToxS’ 3’-DGE versus transcript
length-normalized read counts for NeuroLINCS’ conventional.
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Figure 6D-E. Comparison of Statistical Significance (D) or Fold-Change (E) for All Genes Identified
from SMA Samples by DToxS’ 3’-end Digital Gene Expression (3’-DGE) and NeuroLINCS’
Conventional (Conv) Methods. (D) The negative base-10 logarithm of the p-value for differential
expression is plotted for each technique, with depth of color indicating density of points. (E) The log base
two fold-change is plotted for each technique, with depth of color indicating density of points.

Xiong, et al. Figure 6D-E

D E

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 6, 2017. ; https://doi.org/10.1101/098905doi: bioRxiv preprint 

https://doi.org/10.1101/098905
http://creativecommons.org/licenses/by/4.0/


Xiong, et al. Figure 6F

Figure 6F. Rank-Rank Hypergeometric Tests for Consistency of Differential Expression Ranking
and Gene Expression Signatures with an Independent Conventional Dataset. All genes for which a p-
value for differential expression was calculated were first sorted into up or down regulated genes (as
compared to CTRL), and then ranked by statistical significance. The probability of overlap between two
different such rank lists was calculated with Fisher’s Exact Test (aka hypergeometric test), and visualized
with a heatmap, for all combinations of list cutoffs. Shown here are lists from SMA vs. control for 3’-
DGE and conventional.
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Supplementary Figures
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Figure S1. The Workflow of Comparing Two mRNA Sequencing Methods: the 3’-end Digital Gene
Expression (3’-DGE) Method and the Conventional Random Primer-binding Method.
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Figure S2. Read Depth Across Multiple Samples for Conventional (Conv) and 3’-end Digital Gene 
Expression (3’-DGE) Methods. The total number of uniquely aligned reads is plotted for each sample 
across the three treatment conditions: control (DMSO-CTRL), Sorafenib (SOR), and Sunitinib (SUN)). 
All samples show consistent read depth.
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Figure S3. Relative Read Count Distributions for Conventional and 3’-DGE Methods. The mean 
read counts for each gene across the eight control samples, downsampled to a common read depth (2.8 
million per sample) was calculated, and for conventional, this value was divided by transcript length. The 
probability density was estimated by the density function of R package stats.
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Figure S4. Down-sampling Read Counts in 3’-end Digital Gene Expression (3’-DGE) and
Conventional (Conv) Sequencing Methods.
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Figure S5. Down-sampling Read Counts and Unique Molecular Identifier Counts for the 3’-Digital
Gene Expression (3’-DGE) Method.
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Xiong, et al. Figure S6

Figure S6. Variability in the Read Removal Process. Random read removal was performed 16
independent times, and the range of variability across those runs is not visible on this chart despite 16
different runs being plotted, indicating a highly reproducible simulation algorithm for read removal on the
level of identified genes.
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Xiong, et al. Figure S7

Figure S7. Sample-to-Sample Comparison between Two Techniques. Datasets are down-sampled to a
common read depth of 2.8 million reads, and then gene-by-gene comparisons are made via scatter plots.
To generate a reduced UMI count dataset, upon removal of a read count, UMI counts were removed with
probability proportional to the ratio between UMI counts and read counts for that gene (accounting for
PCR bias). Density of points in scatter plots is indicated by depth of color. Inset text box shows Pearson
correlation. In all plots, data are scaled so units are comparable. There are eight CTRL samples, four SOR
samples, and four SUN samples. All are biological replicates.
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Xiong, et al. Figure S8

Figure S8. Sample-to-Sample Comparison between 3’-end Digital Gene Expression (3’-DGE) and
Independent Conventional Techniques. Density of points in scatter plots is indicated by depth of color.
Inset text box shows Pearson correlation. In all plots, data are scaled so units are comparable. There are
four CTRL samples and four SMA samples. All are biological replicates.
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