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Abstract	
Optical motion capturing systems are expensive and require substantial dedicated space to be 
set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations 
however flexibility is required and the motion capturing system can only temporarily be placed. 
The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis 
promising results have been published. We here present a motion capturing system that is easy 
to set up, flexible with respect to the sensor locations and delivers high accuracy in gait 
parameters comparable to a gold standard motion capturing system (VICON). Further, we 
demonstrate that sensor setups which track the person only from one-side are less accurate and 
should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, 
especially step width, our system shows higher agreement with the VICON system than 
previous reports. 
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Introduction	
The Microsoft Kinect v2 sensor is a low-priced 
depth camera which was originally meant to be 
used for gaming in combination with the 
Microsoft Xbox One console. Recently, 
increasing interest in using the Kinect sensor 
for general purpose motion capturing (MoCap) 
of humans has emerged, especially for clinical 
and scientific motion analysis of gait [1–6]. Due 
to the low costs it was proposed to utilize the 
Kinect sensor as a cost-efficient alternative to 
expensive gold standard motion capturing 
systems [1, 7]. A similar attempt has been made 
using the first generation of the Kinect sensors 
(Kinect for Xbox 360) which was designed to 
be used with the Microsoft Xbox 360 console 
[3, 8–10]. However, the Kinect for Xbox 360 
relies on the recognition of reflected infrared 
patterns to acquire the depth information and 
great effort has been put into studying and 
reducing the interference of the patterns when 
using multiple sensors [11, 12]. In contrast to 
this, the Kinect v2 uses time of flight 
measurements, is less sensitive to interference 
with other sensors and provides a higher 
resolution. The term “time of flight” describes 
the method to determine the distance to an 
object by measuring the time a laser pulse needs 
to travel from the sensor to the object and back. 
The Kinect v2 sensor has a horizontal field of 
view of about 70 degrees and can cover 4.5 
meters in depth reliably. Due to the limited size 
of the tracking volume of the Kinect sensor, 
single sensor approaches were mostly 
constrained to examinations of body posture 
and balance during stance or of walking on a 
treadmill [2, 5, 6]. In order to cover a larger 
volume, setups with multiple Kinect sensors 
have been proposed [1, 3, 7, 13].  

With the Kinect v2 software development kit 
(SDK) Microsoft provides an easy way to 
access the different data streams of the sensor. 
The most important data streams for the 
purpose of motion tracking are the color, depth 
and skeleton streams. In a previous study it has 
been described how these streams can be 
utilized to spatially calibrate multiple sensors 
[14]. A more clinically motivated study 
examined successfully 10-meter walking using 

four Kinect v2 sensors. The sensors were lined 
up on the left side of the walking corridor. 
Based on the averaged joint position estimates, 
several gait parameters have been extracted and 
compared to a gold standard MoCap system [1]. 
The depth resolution of the Kinect v2 sensor, 
however, depends not only on the distance but 
also on the view angle from which a plane is 
measured [15]. In addition, the error of the joint 
position estimation algorithm increases with the 
view angle which is likely caused by partial 
self-occlusion [4]. Motion capturing from only 
one side using Kinect sensors, might therefore 
introduce biases and unnecessary inaccuracies 
in the estimation of joint positions. 

The aim of this study was to (1) develop a 
scalable motion tracking system based on 
Kinect v2 sensors, (2) to examine in how far 
one-sided tracking biases gait parameters and 
(3) to propose a camera setup which 
circumvents the potential drawbacks of one-
sided tracking. In order to evaluate the quality 
of our system, we conducted a statistical 
comparison of the tracking performance with a 
VICON MoCap system based on the gait 
parameters: step length, step width, step time, 
stride length and walking speed. Six Kinect v2 
sensors were used to cover a walking corridor 
of more than six meters. We put emphasis on a 
detailed description of the system since even 
though several Kinect-based MoCap systems 
have been described, no standard has been 
defined yet. 

Methods	
Kinect	Sensor	
Microsoft’s Kinect v2 provides five video 
related data streams [16]. Besides the color 
(1920x1080@30Hz) and infrared (512x424 
@30Hz) data streams, the Kinect provides 
depth images (512x424@30Hz), body index 
images (512x424@30Hz) and the skeleton 
information for every tracked person (25 
joints@30Hz). The sensors tracking volume is 
defined by the field of view (FOV, 70° 
horizontally, 60° vertically) and the range of 
depth sensing (0.5-4.5 meters). 

These data streams can be accessed using 
Microsoft’s software development kit (v2.0). 
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Color images are provided with 4 bytes per 
pixel (BGRA) and depth images with 2 bytes 
per pixel resolution. In order to distinguish 
tracked persons, the Kinect SDK assigns 
indices which are stored in body index images 
and take one byte per pixel. The joint positions 
are provided at a resolution of 4 bytes per 
coordinate (12 bytes per joint). Every frame 
contains a timestamp representing the local 
time of the computer. Besides the 
transformation between the pixel coordinate 
systems of the data streams (e.g., the color and 
depth data streams have different resolutions), 
the SDK can also be used to translate depth 
images into 3d point clouds (inverse 
perspective projection). This way it is possible 
to acquire the color values for every depth 
image pixel and display a colored 3d point 
cloud (Figure 2 A, B).  

According the Microsoft’s specifications each 
Kinect v2 sensor requires a dedicated USB 3.0 
controller. Additionally, even though Microsoft 
initially planned to support multiple Kinect 
sensors per computer, the current SDK version 
(v2.0) does not support this feature. Thus, each 
Kinect sensor has to be connected to a dedicated 
computer.  

Hardware	&	Software	Architecture	
Our hardware architecture consists of six 
Microsoft Kinect v2 sensors which are each 
plugged into a separate mini-computer (Zotac 
Zbox ID83 Plus, Intel Core i3 dual core 
2.5GHz, 8GB Ram, 256GB SATA-3 SSD, 
Windows 10 Pro) and a dedicated computer for 

control and monitoring (Figure 1). All 
computers are connected via a gigabit Ethernet 
network. In order to reduce network traffic 
while recording, we decided to store the data 
locally instead of transmitting the data directly 
to a remote computer. To this end, solid state 
drives have been used. These provide a higher 
write speed than conventional hard disk drives. 
We mounted the Kinect sensors on and strapped 
the mini-computers to tripods for a solid stance 
and flexible setup. As dedicated computer for 
controlling and monitoring the system, we used 
a laptop computer with a dedicated 3d graphics 
card for visualization. 

Based on this hardware architecture we 
implemented a client server software 
architecture (Figure 1) such that each mini-
computer (in the following called: client) runs 
the client software and the desktop computer (in 
the following called: server) runs the server 
software. Both components were implemented 
using C# in Microsoft’s .NET framework 
(v4.5). Communication between the server and 
its clients is based on the TCP/IP protocol and 
a custom-made software-level protocol which 
defines the format for the transfer of commands 
and recorded data.  

The Kinect data streams recorded by the clients 
had to be synchronized in time. To this end we 
initially synchronized the clocks of all clients 
with the server using Microsoft Windows’ time 
service. However, we noticed that, even when 
the computers’ clocks had been synchronized in 
this way, they differed by several hundreds of 

Figure 1: Connections between the Kinect sensors, Zotac mini computers running the client
software and the server computer in a setup with six Kinect sensors. 
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milliseconds and sometimes even by seconds. 
In order to synchronize the computer clocks 

more precisely, we used Greyware’s 
DomainTime II (Greyware Automation 
Products, Inc.) which implements the precision 
time protocol (PTP). PTP was designed for time 
critical applications, e.g. in industry, and allows 
to synchronize computers in a network with 
millisecond accuracy. We were thereby able to 
achieve a maximum difference of two 
milliseconds between the clocks of all involved 
computers. This difference has been monitored 
before and during every recording using 
Greyware’s monitoring software in order to 
ensure synchrony. The timestamps of the 
captured frames have then been used to align 
the data streams in time. 

Server	&	client	software	
The server software consists of several modules 
which are responsible for the data management, 
recording, live-view and spatial calibration of 
the system. The data management module 
structures the data hierarchically in projects, 
subjects, sessions and recordings. Additionally, 
it keeps track of the recorded data and its 
location. Since each client stores the data 
locally and sends it only on request to the server 
via Ethernet, the data management module also 
identifies and prevents data inconsistencies, 
such as incomplete or partial transmission.  

The recording module realizes the synchronous 
start and stop of recording for all clients.  Due 
to network transmission the clients might 
receive the commands at slightly different 
times. To counteract the resulting problem, first 
of all, each client is buffering the two most 
recent seconds of all data streams and secondly, 
when a recording is started, the transmitted 
command contains the server’s current 
timestamp. Thereby, even when the clients 
receive the start command at a slightly different 
time, they can compensate for this using the 
timestamp and buffered data. During recording 
the data is stored locally by each client using 
custom binary data formats. The stop procedure 
is implemented in a similar way in order to 
make sure that all clients record for the same 
duration. 

Within the live-view module, the overall 3d 
scene (merged point clouds of all clients, Figure 
2 A, B) and the depth images (Figure 2 C) can 

Figure 2: (A-B) Three-dimensional point
clouds of six Kinect sensors after spatial
calibration. Each point is represented as tiny
cube with the color of the corresponding the
pixel in the color image. The big colored cubes
indicate the Kinect sensors. The red, green and
blue lines attached to the colored boxes
(sensors) indicate the axes of local coordinate
system. Notice that the edge of the red coating
on the floor is very straight, which illustrates
the precise spatial calibration. (A) The marker
in the very back is the marker with id 1 and
represents the origin of the global coordinate
system which is indicated by the grid. (B) A
person standing in the tracking volume to
visualize the dimensions. (C) Screenshot of the
live depth images view. The tracked body is
highlighted. By walking through the tracking
volume one can easily identify blind spots. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 10, 2017. ; https://doi.org/10.1101/098863doi: bioRxiv preprint 

https://doi.org/10.1101/098863


  5 

be displayed. While the on-demand 
visualization of the overall 3d scene serves 
mere the purpose of illustration, displaying the 
depth images is helpful to facilitate the process 
of setting up the system. Tracked bodies are 
highlighted such that one can easily identify 
blind-spots in the tracking volume. Thereby, 
blind-spots and too little overlap of the sensors’ 
tracking volumes can be easily avoided when 
positioning and orienting the sensors. For the 3d 
visualization, every client transforms the depth 
images into 3d point clouds in real time using 
the Kinect SDK. The current point cloud can be 
requested by the server for visualization and 
spatial calibration (see Spatial calibration). In 
order to perform a reconstruction of the whole 
scene, the server requests the point cloud from 
every client, transforms these into the global 
coordinate system using the spatial calibration 
parameters (see Spatial calibration) and 
visualizes every point as small cube in an 
OpenGL viewport (Figure 2 A). Each cube is 
colored according to the corresponding pixel in 
the color image.  

Spatial	calibration	
The spatial calibration is equivalent to 
estimating the position and orientation of every 
Kinect sensor in the global coordinate system. 
Inspired by the work of Kowalski et al. [14], we 
use two-dimensional markers which can easily 

be detected in the color images captured by the 
Kinect sensor (see Figure 3 A). Using these 
markers, we defined the global coordinate 
system. In some setups however, the sensors 
might be so far away from each other, that not 
every sensor sees all markers. We extended 
their solution by a flexible concatenation of 
Euclidian transformations (e.g., rotations and 
translations) in order to overcome this problem. 
Thus, not every marker needs to be visible to 
every sensor and the spatial relation between 
the markers does not need to be known prior to 
calibration. The calibration procedure consists 
of six steps which are described in more detail 
in the following.  

The two-dimensional markers proposed by 
Kowalski et al. [14] consists of a salient shape 
(rectangle with a dent at the bottom) and a 
unique pattern of white squares in a 3x3 grid 
(Figure 3 A). In the first step, we find these 
shapes in the color image using the OpenTK 
library and then interpret the pattern as 
identification code (for details see Kowalski et 
al. [14]). Besides identifying the markers 
uniquely, the identification code also breaks the 
symmetry of the shape. In the second step, we 
use the point cloud to determine the 3d 
coordinates of the salient points (corners) 
belonging to the marker. While the third step 
consists only of the transmission of the 

Figure 3: (A) Makers used for the spatial calibration of the system. The shape is easily
detectable in the RGB image; the white squares in the center encode the marker id [14]. The
red circles indicate the salient points which have been used for defining the position and
orientation of the marker. (B) Graph illustrating the “sees / is seen” relation (edges) between
sensors (blue vertices) and markers (red vertices). For example, S3 cannot see M1 directly but
indirectly via M2 and S2. A second possibility is via M2 and S5. 
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information about the markers to the server, we 
apply a Procrustes analysis [17] to the 3d 
positions of the salient marker points in the 
fourth step. The result of the Procrustes 
analyses are estimates of the relative positions 
and orientations (Euclidian transformations) 
between the markers and sensors.  

The fifth step is to determine the position and 
orientation of every sensor relative to the 
marker with id 1. This marker can be placed 
anywhere in the tracking volume and defines 
the origin and directions of the axes. Since the 
Kinect sensor has a limited field of view and 
can only estimate depth values of about 4.5 
meters accurately, depending on the setup, the 
marker is not in the field of view of all sensors. 
Notice, that in the fourth step only the relative 
position and orientation between markers and 
sensors that are visible to each other have been 
determined. In order to tackle this problem, we 
developed an algorithm which is flexible with 
respect to the placement of the calibration 
markers. Our algorithm is based on the idea, 
that even if the marker that represents the origin 
is not visible to a certain sensor, the relative 
position and orientation could still be calculated 
as concatenation of the Euclidian 
transformations which express the relative 
positions and orientations of the other sensors 
and markers (Figure 3 B). For example, if 
sensor 1 sees the markers 1 and 2 but sensor 2 
sees only marker 2, the position and orientation 
of sensor 2 relative to marker 1 can be 
calculated using the relative position and 
orientation between the two sensors which can 
be determined using marker 2. In other words, 
marker 1 is indirectly visible to sensor 2. In 
order to find this concatenation of Euclidian 
transformations automatically, we use a 
bipartite undirected graph ܩ ൌ ሺܸ, ሻܧ  with 
ܸ	 ൌ ܯ	 ∪ 	ܵ ܯ , ∩ ܵ ൌ ∅  and ܧ ൌ ሼሺݏ,݉ሻ ∈
ܵ ൈ ,ܯ ሺ݉, ሻݏ ∈ ܯ ൈ ܵ		|	“sensor	s	sees		
marker	m"ሽ  where ܯ  denotes the set of all 
markers and ܵ the set of all sensors (Figure 3 
B). Thus, we can verify that every sensor can 
see the origin (in-)directly by evaluating 
whether the graph is connected. Furthermore, 
the position and orientation of every sensor 
relative to the origin can be determined by 
finding a path between the two respective nodes 

in the graph (see Supplementary Material for 
details), because every path in the graph 
describes a concatenation of Euclidian 
transformations. In the case that there are 
multiple paths, we use the shortest one, because 
every transformation is based on an estimation 
that includes an estimation error and thus 
reduces the accuracy of the final estimate. 

Having hereby determined a coarse estimate of 
the sensor positions and orientations relative to 
the origin (see Supplementary Material for 
details), we perform a refinement using the 
iterative closest point method in the sixth step 
(see [14] for details). Using these refined 
estimates, we can merge the 3d scenes (Figure 
2 A, B) and Kinect skeletons in the global 
coordinate system.  

Evaluation	of	the	gait	analysis	system	
In order to evaluate the quality of the developed 
MoCap system we compared gait parameters 
measured by our system to measurements 
gathered using a VICON system (Vicon Motion 
Systems Ltd). VICON motion capturing 
systems are seen as gold standard in optical gait 
analysis [18]. We operated both systems in 
parallel, allowing us to compare the two 
systems based on individual steps. 

Subjects	and	task	
We recorded 10 healthy subjects performing a 
7-meters walk at comfortable speed ten times. 
Subjects were wearing tight clothes and normal 
shoes without heels. Subjects’ age ranged from 
18 to 35 years. All subjects gave written 
informed consent prior to participation. The 
experimental procedure was approved by the 
local ethical review board of the University 
Clinic in Tuebingen.  

VICON	motion	capturing	system	
As ground truth for the accuracy evaluation of 
our system we used a VICON MX motion 
capture system with 10 cameras. The VICON 
system is an optical tracking system which 
tracks three-dimensional movement trajectories 
of reflective markers with up to 1mm accuracy. 
We used this system to track 12 markers 
attached to the hip, legs and feet according to 
VICON’s Plugin-Gait marker-set for lower 
body measurements at a temporal resolution of 
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120 Hz. Our VICON setup is able to track about 
6 meters in length with high precision. Marker 
trajectories were recorded and processed using 
the commercial software Nexus (v2.2, Vicon 
Motion Systems Ltd).  

Kinect	sensor	setup	for	gait	analysis	
Six Kinect sensors were arranged as an avenue 
(Figure 4) in order to cover the tracking volume 
of the VICON system. We placed the sensors 
pairwise in rows along the walking direction for 
two reasons: (1) reduction of self-occlusions of 
the tracked person and (2) more accurate 
tracking. The theoretical length of the tracking 
volume is about 9 meters of which we used the 
overlapping 6 meters with the VICON setup. 

We noticed during initial tests of our system 
that the Kinect skeleton fitting algorithm 
depends heavily on the view angle from which 
the sensor tracks the body (Figure 5 A, B, see 
Supplementary Material). A similar finding has 
previously been reported [4], however the cause 
of the inaccuracy had not been examined in 
detail before. Tracking a person only from one 
side, e.g. from the left side, could degrade the 
tracking precision and potentially bias the 
skeleton fitting. Additionally, when tracking a 
walking person only from one side, the leg of 
the opposite body half is periodically occluded 
during the gait cycle. In these situations, the 
Kinect skeleton fitting algorithm initially tries 
to infer the position of the occluded joints and 

if that fails the respective joints are labeled as 
untracked. For the usual application of the 
Kinect sensor in gaming this is not an issue, 
since the accuracy is less important. However, 
for gait analysis, we do not want to rely on the 
inferred joint positions or biased skeleton fits. 
Therefore, we ignore joint positions which are 
labeled as untracked and record the person from 
two sides which allows us to correct biases and 
to reduce self-occlusions.  

We also made sure that the tracking volumes of 
two rows overlap by about two meters along the 
walking path (Figure 4). The Kinect pose 
estimation algorithm needs some time to 
recognize a person that enters the volume. 
Hence, we had to make sure that the sensors in 
the next row are already tracking the person 
when s/he is about to leave the tracking volume 
of the previous sensor pair. We empirically 
estimated that an overlap of the tracking 
volumes of about two meters is sufficient for 
normal walking speed. Thus, the sensor pairs 
were placed 2.5 meters apart along the walking 
path. Within each row the sensors were rotated 
inwards by about 35 degrees and placed two 
meters apart which provides plenty of width for 
walking in the corridor (Figure 4).  

Data	analysis	
Before being able to compare the performance 
of both tracking systems we had to pre-process 

Figure 4: Arrangement of the Kinect sensors illustrating the overlapping tracking volumes.
Sensors were arranged using this pattern but then spatially calibrated to achieve high
precision. The theoretical length of the tracking volume in walking direction using this setup is
about 9 meters. The Kinect sensors were arranged in a way ensuring that the VICON tracking
volume was completely covered. 
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the data. First, we had to integrate the skeleton 
information of the different Kinect sensors. 
Secondly, we had to extract the gait-features 
from both data sets (VICON and Kinect).  

Integrating	 the	 information	gathered	by	
different	Kinect	sensors		
The information gathered from the different 
Kinect sensors was integrated in space and 
time. Integration in space was performed using 
the Euclidian transformations that were 
computed as result of the spatial calibration. 
The clocks of all involved computers were 
synchronized using the PTP protocol, which 
guarantees that frames with the same timestamp 
were captured at approximately the same time. 
However, the Kinect sensor captures frames at 
a slightly varying frequency of about 30 Hz. We 
resampled the recordings with a fixed sampling 
rate of 30 Hz using linear interpolation. Since 
we do not have any information about the 
differences in sensor noise, we weighted all 
sensors equally and calculated the average 
across all skeletons tracked by the different 
sensors for every sample. Untracked or inferred 
joint positions were considered as missing 
values. The result of this integration is a 

spatially averaged skeleton across time. For the 
subsequent analysis, this procedure was 
performed once using all Kinect sensors (left 
and right) and once using only the Kinect 
sensors tracking the person from the left. 
Subsequently, we filtered the three-dimensional 
joint trajectories in time for both systems. The 
resulting three-dimensional Kinect skeleton 
trajectories are exemplified in Figure 5 C. 

Analyzed	gait	features	
In order to compare the tracking accuracy of 
gait, we extracted five parameters from the two 
datasets (VICON and Kinect) independently: 
walking speed, step length, stride length, step 
width and step time. To this end we examined 
individual steps by first identifying foot 
placements (Figure 6) in each recording. In 
order to identify the foot placements we 
determined the events when one foot passes the 
other in walking direction (see Figure 7). These 
events are well-defined and easy to detect by 
searching for the intersections of the ankle 
trajectories (black crosses in Figure 7). 
Subsequently, the stride length was calculated 
as the distance between subsequent foot 
placements of the same foot [19]. The step time 

Figure 5: (A, B) Three-dimensional reconstruction of the body surface and the corresponding
skeleton reconstruction using two sensors. The surface was estimated based on the 3d point
clouds using the marching cubes algorithm in MeshLab [22]. Surface areas tracked by only
one of the two sensors are highlighted in red (right) and blue (left). Corresponding Kinect
skeleton joint positions estimates of the two sensors are shown as red and blue dots. The
spatially averaged skeleton is indicated as black stick figure. (B) Magnification of the left lower
leg. Notice, that the joint positions estimates of the left sensor (blue) are closer to the surface
which is only tracked by the left sensor (blue), correspondingly for the joint positions estimates
of the right sensor. (C) Averaged skeleton and joint position trajectories during walking
obtained using six sensors. 
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and length describe the time passed, and the 
distance between the two feet in walking 
direction, whereas the step width describes the 
lateral distance between the feet, at the time of 
a foot placement (Figure 6). The walking speed 
was determined by dividing the sum of all step 
lengths by the sum of all step times within each 
recording. Since the first step is usually 
significantly smaller due to the necessary 
acceleration, we asked subject to begin walking 
with the left foot and then excluded the first step 
on the left as well as the first stride on the right 
side.  

Quantitative	comparison	of	 the	 tracking	
results	
The agreement between the Kinect-based gait 
analysis system and the VICON system has 
been evaluated using Pearson’s correlation 
coefficient, Bland-Altman’s method for 
assessing the agreement between two clinical 
measurement methods [20] and the intraclass 
correlation coefficient for absolute agreement 
(ICC(A,1)) on three levels of detail: (1) single 
steps/strides left and right, (2) averaged 
steps/strides left and right per subject and (3) 
average steps/strides per subject (pooled over 
left and right steps/strides). Bland-Altman’s 
method is primarily a graphical analysis. 

However, it provides three well-interpretable 
parameters: (1) bias (average difference 
between measurement methods), (2) 
reproducibility coefficient (RPC, standard 
deviation of the difference between the 
measurement methods) and (3) coefficient of 
variation (CV, standard deviation of the 
difference between the measurement methods 
divided by the average measurement) in 
percent. While a non-zero bias indicates a 
systematic deviation, the RPC represents the 
overall variability between the two methods. 
The CV quantifies the variability in terms of the 
average measurement value and is therefore 
better suited when comparing measures with 
different mean values. ICC(A,1) takes values 
between zero and one, where one is perfect 
agreement. Following [21], we classified its 
value according to the categories: poor (0-0.4), 
fair (0.4-0.59), good (0.6-0.74) and excellent 
(0.75-1.0) absolute agreement.  

Motivated by the observation that the joint 
positions measured by the Kinect sensors 
depend on the view angle, we performed two 
gait analyses for the Kinect system: (1) using 
only the sensors from the left side in walking 
direction (one-sided) and (2) using all sensors 
(two-sided). The resulting gait parameters were 

Figure 6: Illustration of the analyzed spatial gait parameters. Subjects were asked to always
start walking with their left foot. The first step length left and first stride length right (gray)
were excluded from the analysis, since these are generally shorter than the steps during actual
walking (acceleration phase). Subjects did not stop at the end of the track volume (finish) so
that there was no slowing down. Depending on the subjects’ individual step lengths there might
be an unequal number of left and right steps. Parameters are assigned to the left or right foot
depending on which foot was last placed on the floor, e.g. the first step length and step width
are assigned to the left foot.  
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separately compared to those measured using 
the VICON system. Instead of recording every 
subject twice, we used the same recordings but 
reconstructed the skeleton using either only the 
left Kinect sensors or all of them. Since the step 
time and walking speed do not depend on the 
view angle, we compared the Kinect and 
VICON measurements of these parameters 
without distinguishing between one- and two-
sided Kinect tracking.  

Results		
Agreement	of	temporal	gait	parameters	
The summary and agreement statistics of the 
view angle independent gait parameters, 
walking speed and step time, are listed in Table 
1. For both measures the intraclass correlation 
coefficients for absolute agreement ICC(A,1) 
are excellent on all detail levels. Best agreement 
has been found for the averaged step time with 
an ICC(A,1) close to one, zero bias and RPC 
close to zero. High agreement was also found 
for the step time on the other detail levels 
(single step times, subjects’ average step times 
left/right). Despite excellent agreement for the 
walking speed according to the intraclass 
correlation coefficient for absolute agreement, 
we observe a small bias of 0.53cm/s. Overall, 

these results indicate excellent agreement 
between the evaluated Kinect system and 
VICON in the temporal gait parameters. 

Agreement	 of	 spatiotemporal	 gait	
parameters	using	one‐sided	Kinect	setup	
We have listed the summary and agreement 
statistics for the comparison of the one-sided 
Kinect tracking and VICON in Table 2. For the 
averages across subjects and feet in step length, 
stride length, and step width we find excellent 
agreements. On the single steps level, we found 
that the agreement for the right step length and 
width is worse than for the left side, suggesting 
overall less precise measurements of the right 
body half. The worst agreement is found for the 
step width on the right (step width R) with an 
ICC(A,1) of 0.297, rather large bias of 2.68 cm 
and a CV of about 50%. Similarly, the subjects’ 
average step width on the right (AV step width 
R) shows only fair agreement ICC(A,1) = 0.452 
with a similarly large bias as for the single steps 
(2.66 cm). Overall, the analysis shows that the 
agreement for the right body half is worse than 
for the left, when tracking only from the left 
side. Even though the ICC for the averaged step 
width across feet indicates excellent agreement, 
the agreement is not as good as for the step and 

Figure 7: Foot events (black crosses) based on the ankle trajectories, here exemplified using
the Kinect skeleton averaged across all sensors. Using the same procedure foot events were
extracted from the VICON data. Top: Snapshots of the body posture during walking, bottom:
ankle position of the left (red) and right (blue) foot in walking direction. 
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stride length, indicating that the inference of the 
step width is less precise.  

Agreement	 of	 spatiotemporal	 gait	
parameters	using	two‐sided	Kinect	setup	
The statistical comparison of the two-sided 
Kinect tracking with the VICON results is 
shown in Table 3. Overall the agreement is 
much better than for one-sided Kinect tracking. 
All but one measure (AV step width R) reach 
good agreement and most show excellent 
agreement. On the level of single steps, 
specifically the agreement in step width is much 
higher than for one-sided tracking (ICC(A,1) is 
about 0.66 for both sides instead of 0.49 for the 
left and 0.29 right side). Additionally, the 
average step width (AV Step width AVG) is 
much less biased (0.39 cm vs. 0.66 cm) and 
shows an agreement more similar to the other 
measures (ICC(A,1) = 0.910). These results 
demonstrate the gain in precision due to two-
sided tracking. 

Discussion	
We have described an improved motion 
capturing system based on multiple Kinect v2 
sensors in the context of gait analysis. The 
importance of spatial and temporal calibration 
has been emphasized. Further, we have 
demonstrated that the human pose estimation 
algorithm of the Kinect sensor depends on the 
view angle and how self-occlusions might lead 
to biased joint position estimates. The presented 
gait analysis system has successfully been used 
to record ten healthy subjects while walking. 
Recordings have concurrently been performed 
with a VICON motion capturing system for 
quantitative comparison. Gait parameters have 
been extracted from both recordings 
independently. Agreement with the VICON 
system has been statistically examined for one-
sided and two-sided Kinect tracking, revealing 
much better agreement for two-sided Kinect 
tracking. Using two-sided tracking we also 
reach better agreements in step width with the 
gold standard than previously reported Kinect 
systems [1]. 

Kinect	 skeleton	 tracking	 is	 sensitive	 to	
view	angle	
To our knowledge, the most detailed report 
concerning the accuracy of joint position 
estimation using the Kinect v2 sensor in 
comparison to another motion capturing system 
is provided by Wang et al [4]. In addition to 
comparing different body poses (sitting and 
standing), they also examined the influence of 
the view angle (0°, 30° and 60°) and showed 
that the joint positions of the turned-away body 
half are less accurate. They pointed out that the 
likely cause for the decreased accuracy is the 
increasing occlusion of one body half by the 
other (self-occlusion) with increasing view 
angle. In order to examine the influence of self-
occlusions and view angle dependence in a 
single recording, we recorded a person during 
the double support phase with our gait analysis 
system using two sensors and opposite view 
angles (Figure 5). Based on this recording we 
reproduced Wang et al’s finding and, further, 
demonstrated that the joint positions are biased 
towards the surface area that is visible to the 
respective sensor (Supplementary Material). 
Hence, we verified Wang et al’s hypothesis that 
the decreased accuracy is caused by self-
occlusions [4]. As consequence, the extracted 
gait parameters based on one-sided tracking 
might not only be less accurate but biased 
depending on the view angle of the sensors.  

Two‐sided	 Kinect	 tracking	 improves	
overall	accuracy	
During the gait cycle the left leg partially or 
completely occludes the right leg every now 
and then when placing the sensors only on the 
left side. Depending on the view angle of the 
sensors this might happen exactly when the two 
feet have maximum distance (double support 
phase). Since this event is easily identifiable in 
the time series of the foot positions, this is 
exactly the phase of the gait cycle which is 
commonly used to determine the step length 
and width as well as the stride length. 
Inaccuracies in the joint position estimates 
therefore propagate directly into the respective 
gait parameters. This is well captured by the 
agreement statistics of the one-sided Kinect 
setup with VICON. Specifically, for the step 
length and step width on the right side the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 10, 2017. ; https://doi.org/10.1101/098863doi: bioRxiv preprint 

https://doi.org/10.1101/098863


  12 

agreement with the VICON system is much 
lower than for those on the left side which are 
not affected by occlusions (see Table 2). The 
stride length is affected by occlusions on any 
side, because every stride consists of 
subsequent left and right steps. Gold standard 
motion capturing systems, like VICON, 
commonly track the person from all sides, 
minimizing the amount of self-occlusions due 
to diverse view angles and multiplicity of 
sensors. In our two-sided Kinect setup, we 
increased the number of view angles and 
thereby decreased the possibility of self-
occlusions in comparison to one-sided setups. 
The effect is prominent when comparing the 
agreement statistics of the two setups. Both 
analyses are based on the very same recordings 
and differ only in the sensors that have been 
used for the reconstruction of the skeleton. 
Consequently, the agreement with the VICON 
system is for the two-sided setup better than for 
the one-sided setup (compare Table 2 and Table 
3). Additionally, we do not observe the strong 
imbalance of agreements for steps on the left 
and right side anymore. Unfortunately, Geerse 
et al. [1] and Mentiplay et al. [2] did not report 
separate agreement statistics for the left and 
right steps. In most parameters (subjects’ 
average step length and stride length, averaged 
across feet, walking speed) our system reaches 
similar agreement with the gold standard as 
other Kinect-based systems [1, 2]. However, 
especially for the step width and time our 
system provides better results.  

Precise	 temporal	 synchronization	 is	
essential	for	overall	accuracy	
Previously reported gait analysis systems based 
on multiple Kinect sensors are often quite 
unspecific with respect to the technical details 
of the temporal synchronization of the sensors. 
Since the Kinect v2 sensor requires a separate 
USB 3.0 controller and the current version of 
the Kinect SDK (v2.0) does not support 
multiple Kinect sensors, most setups use 
dedicated computers, one for each sensor, just 
like we do. However, it is known that internal 
clocks of computers do not run in synchrony 
and even once synchronized the clocks diverge 
rather quickly. For this purpose, time 
synchronization protocols have been 

developed. Probably the best known one is the 
network time protocol (NTP) which is for 
example used by the Windows time service to 
synchronize the local clock of a computer with 
a remote clock, also known as time server. PTP 
in contrast is used to synchronize computers in 
local networks with high precision, for example 
in distributed control scenarios. Using 
commercial software that implements PTP, we 
have ensured steady synchrony between all 
involved computers before and during the 
recordings. One might imagine, that even slight 
phase shifts due to an asynchrony of the clients 
lead to inaccuracies when averaging across the 
data received from different clients. 
Specifically, since gait is to a large extent 
described by a periodic function, averaging 
over different phase shifts leads to smoothing in 
time and space and, ultimately, to reduced 
temporal resolution. The gait parameters (step 
time, length and width as well as the stride 
length) are consequently less accurate in 
comparison to a gold standard system which 
ensures high temporal resolution. We believe 
that the careful way to calibrate our system not 
only in space but also in time contributes to the 
high agreement of our system with the VICON 
system. 

Scalability	of	the	system	
The presented system can easily be scaled up 
using a larger number of Kinect sensors. To our 
knowledge, so far only systems with up to four 
Kinect sensors have been published [1, 14] 
(also see [18]). In contrast, we have shown that 
our system is able to utilize six Kinect sensors 
for tracking people during walking. Since we do 
not transmit any data in real-time while 
recording, the network traffic is limited to 
maintaining the TCP/IP connections between 
the server and clients and synchronizing the 
computers. Even though there are currently no 
obvious limitations in scalability, the maximum 
number of clients needs to be evaluated.  

Conclusions	
We have shown that multiple Kinect v2 sensors 
can be used for accurate analysis of human gait. 
Important is the spatiotemporal calibration of 
the system as well as the sensor placement. 
Tracking from both sides leads to more accurate 
and less biased gait parameters which leads to 
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excellent agreement with the VICON motion 
capturing system for the gait parameters step 
length, step width, step time, stride length and 
walking speed. The presented spatial 
calibration algorithm allows flexible sensor 
placement which makes fast and easy setup in 
diverse scenarios possible. We have shown that 
our system in combination with a two-sided 
setup of sensors provides better statistical 
agreement with a gold standard MoCap system 
than previously reported systems [1, 2]. Besides 
the application for clinical and scientific gait 
analysis, the presented motion tracking system 
might also be useful for the realization of virtual 
reality setups in combination with head-
mounted displays such as the Oculus Rift 
(Oculus VR, LLC.) or HTC Vive (HTC 
Corporation). 
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Tables	
Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1) 
 Mean ± SD Mean ± SD R P N Bias RPC CV (%)  

AV Walking Speed (cm/s) 123.06 ±14.26 122.53 ±14.50 1.000 <0.001 10 0.53 0.80 0.33 0.999 
Step time L (s) 0.60 ±0.07 0.61 ±0.07 0.927 <0.001 267 ‐0.00 0.05 4.49 0.924 
Step time R (s) 0.60 ±0.07 0.60 ±0.07 0.927 <0.001 281 0.00 0.05 4.38 0.925 
AV step time L (s) 0.60 ±0.07 0.61 ±0.07 0.979 <0.001 10 ‐0.01 0.03 2.29 0.978 
AV step time R (s) 0.60 ±0.06 0.60 ±0.06 0.976 <0.001 10 0.00 0.03 2.33 0.976 
AV step time AVG (s) 0.60 ±0.06 0.60 ±0.07 1.000 <0.001 10 0.00 0.00 0.23 1.000 

Table 1: Summary and agreement statistics for the view angle independent gait parameters walking speed and step time. Abbreviations. RPC: 
reproducibility coefficient (1.96*SD); CV: coefficient of variation (SD of mean values in %); ICC(A,1): intraclass correlation coefficient for absolute 
agreement. Subject averages across steps (AV) and sides (AVG) are reported for comparison with previous publications. Measures in bold can be 
compared to previously reported systems [1, 2]. 
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Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1) 
 Mean ± SD Mean ± SD R P N Bias RPC CV (%)  

Stride length L (cm) 145.95 ±11.08 145.36 ±8.49 0.786 <0.001 267 0.59 13.43 4.71 0.758 
Stride length R (cm) 146.27 ±10.22 147.04 ±9.01 0.923 <0.001 187 ‐0.78 7.77 2.70 0.913 
Step length L (cm) 72.85 ±6.18 73.95 ±5.36 0.667 <0.001 267 ‐1.10 9.34 6.49 0.649 
Step length R (cm) 73.40 ±8.36 71.67 ±4.48 0.538 <0.001 281 1.73 13.81 9.72 0.434 
Step width L (cm) 10.02 ±4.69 11.51 ±3.15 0.569 <0.001 267 ‐1.49 7.62 36.13 0.493 
Step width R (cm) 14.58 ±7.33 11.91 ±2.97 0.475 <0.001 281 2.68 12.69 48.88 0.297 
AV stride length L (cm) 146.30 ±8.70 145.66 ±7.98 0.997 <0.001 10 0.64 1.90 4.71 0.991 
AV stride length R (cm) 146.16 ±8.94 146.95 ±8.43 0.994 <0.001 10 ‐0.79 2.15 2.70 0.989 
AV stride length AVG (cm) 146.24 ±8.75 146.20 ±8.17 0.998 <0.001 10 0.04 1.53 0.53 0.996 
AV step length L (cm) 72.97 ±4.17 74.10 ±5.13 0.939 <0.001 10 ‐1.13 3.69 2.56 0.900 
AV step length R (cm) 73.36 ±5.12 71.67 ±3.60 0.898 <0.001 10 1.69 4.84 3.40 0.799 
AV step length AVG (cm) 73.19 ±4.40 72.82 ±3.96 0.996 <0.001 10 0.36 1.12 0.78 0.988 
AV step width L (cm) 10.03 ±2.67 11.55 ±1.85 0.750 0.01 10 ‐1.52 3.47 16.39 0.591 
AV step width R (cm) 14.57 ±2.44 11.91 ±1.74 0.845 0.002 10 2.66 2.63 10.13 0.452 
AV step width AVG (cm) 12.39 ±2.15 11.73 ±1.76 0.944 <0.001 10 0.66 1.49 6.30 0.882 

Table 2: Summary and agreement statistics for spatiotemporal gait parameters using Kinect tracking from the left side (one-sided). Notice, the 
difference in agreement between the left and right body half for the step width and step length. Abbreviations: RPC: reproducibility coefficient 
(1.96*SD); CV: coefficient of variation (SD in % of the mean value); ICC(A,1): intraclass correlation coefficient for absolute agreement. Subject 
averages across steps (AV) and sides (AVG) are reported for comparison with previous publications. Measures in bold can be compared to previously 
reported systems [1, 2].  
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Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1) 
 Mean ± SD Mean ± SD R P N Bias RPC CV (%)  

Stride length L (cm) 146.08 ±8.65 145.36 ±8.49 0.970 <0.001 267 0.71 4.16 1.46 0.966 
Stride length R (cm) 146.53 ±9.47 147.04 ±9.01 0.973 <0.001 187 ‐0.52 4.32 1.50 0.970 
Step length L (cm) 74.36 ±5.16 73.95 ±5.36 0.833 <0.001 267 0.41 5.97 4.11 0.830 
Step length R (cm) 72.01 ±5.35 71.67 ±4.48 0.817 <0.001 281 0.34 6.05 4.30 0.803 
Step width L (cm) 9.94 ±3.88 11.51 ±3.15 0.757 <0.001 267 ‐1.57 4.98 23.70 0.675 
Step width R (cm) 14.15 ±3.47 11.91 ±2.97 0.817 <0.001 281 2.24 3.94 15.42 0.650 
AV stride length L (cm) 146.37 ±7.93 145.66 ±7.98 0.999 <0.001 10 0.71 0.71 0.25 0.995 
AV stride length R (cm) 146.43 ±8.66 146.95 ±8.43 0.999 <0.001 10 ‐0.53 0.75 0.26 0.997 
AV stride length AVG (cm) 146.40 ±8.23 146.20 ±8.17 0.999 <0.001 10 0.20 0.55 0.19 0.999 
AV step length L (cm) 74.48 ±4.11 74.10 ±5.13 0.967 <0.001 10 0.38 3.05 2.09 0.946 
AV step length R (cm) 71.99 ±4.39 71.67 ±3.60 0.927 <0.001 10 0.32 3.36 2.38 0.914 
AV step length AVG (cm) 73.20 ±4.01 72.82 ±3.96 0.999 <0.001 10 0.38 0.35 0.24 0.995 
AV step width L (cm) 9.97 ±2.64 11.55 ±1.85 0.842 0.002 10 ‐1.58 2.88 13.67 0.649 
AV step width R (cm) 14.16 ±2.18 11.91 ±1.74 0.845 0.002 10 2.24 2.29 8.98 0.505 
AV step width AVG (cm) 12.13 ±2.08 11.73 ±1.76 0.936 <0.001 10 0.39 1.48 6.35 0.910 

Table 3: Summary and agreement statistics for spatiotemporal gait parameters using Kinect tracking from the left and right side (two-sided). Notice 
in comparison to Table 2, that the difference in agreement between the left and right body half for the step width and step length is reduced. 
Abbreviations: RPC: reproducibility coefficient (1.96*SD); CV: coefficient of variation (SD in % of the mean value); ICC(A,1): intraclass correlation 
coefficient for absolute agreement. Subject averages across steps (AV) and sides (AVG) are reported for comparison with previous publications. 
Measures in bold can be compared to previously reported systems [1, 2]. 

	

w
as not certified by peer review

) is the author/funder. A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

T
he copyright holder for this preprint (w

hich
this version posted January 10, 2017. 

; 
https://doi.org/10.1101/098863

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/098863

