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Summary 1 

The expression of integral membrane proteins (IMPs) remains a major bottleneck in the 2 
characterization of this important protein class. IMP expression levels are currently unpredictable, which 3 
renders the pursuit of IMPs for structural and biophysical characterization challenging and inefficient. 4 
Experimental evidence demonstrates that changes within the nucleotide or amino-acid sequence for a 5 
given IMP can dramatically affect expression; yet these observations have not resulted in generalizable 6 
approaches to improved expression. Here, we develop a data-driven statistical predictor named 7 
IMProve, that, using only sequence information, increases the likelihood of selecting an IMP that 8 
expresses in E. coli. The IMProve model, trained on experimental data, combines a set of sequence-9 
derived features resulting in an IMProve score, where higher values have a higher probability of success. 10 
The model is rigorously validated against a variety of independent datasets that contain a wide range of 11 
experimental outcomes from various IMP expression trials. The results demonstrate that use of the 12 
model can more than double the number of successfully expressed targets at any experimental scale. 13 
IMProve can immediately be used to identify favorable targets for characterization. 14 

Introduction 15 

The biological importance of integral membrane proteins (IMPs) motivates structural and 16 
biophysical studies that require large amounts of purified protein at considerable cost. Only a small 17 
percentage can be produced at high-levels resulting in IMP structural characterization lagging far behind 18 
that of soluble proteins; IMPs currently constitute less than 2% of deposited atomic-level structures 1. To 19 
increase the pace of structure determination, the scientific community created large government-funded 20 
structural genomics consortia facilities, like the NIH-funded New York Consortium on Membrane 21 
Protein Structure (NYCOMPS)2. For this representative example, more than 8000 genes, chosen based 22 
on characteristics hypothetically related to success, yielded only 600 (7.1%) highly expressing proteins 3 23 
resulting to date in 34 (5.6% of expressed proteins) unique structures (based on annotation in the RCSB 24 
PDB 4). This example highlights the funnel problem of structural biology, where each stage of the 25 
structure pipeline eliminates a large percentage of targets compounding into an overall low rate of 26 
success 5. With new and rapidly advancing technologies like cryo-electron microscopy, serial 27 
femtosecond crystallography, and micro-electron diffraction, we expect that the latter half of the funnel, 28 
structure determination, will increase in success rate 6–8. However, IMP expression will continue to limit 29 
targets accessible for study 9. 30 

Tools for improving the number of expressed IMPs are needed. While significant work has 31 
shown promise on a case-by-case basis, e.g. growth at lower temperatures, codon optimization 10, and 32 
regulating transcription 11, a generalizable solution remains elusive. Currently, each target must be 33 
addressed individually as the conditions that were successful for a previous target seldom carry over to 34 
other proteins, even amongst closely related homologs 5,12. For individual cases, simple changes can 35 
have dramatic effects on the amount of expressed proteins 13,14. Considering the scientific value of IMP 36 
studies, it is surprising that there are no methods that can provide solutions for improved expression 37 
outcomes with broad applicability across protein families and genomes. 38 

There are currently no approaches available that can decode sequence-level information for 39 
predicting IMP expression; yet it is common knowledge that sequence changes which alter overall 40 
biophysical features of the protein and mRNA transcript can measurably influence IMP biogenesis. 41 
While physics-based approaches which have proven successful in correlating integration efficiency and 42 
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expression 12,15, that and other work revealed that simple application of specific ‘sequence features’, 43 
such as the positive-inside rule, are inadequate to predict IMP expression 16,17. For the positive-inside 44 
rule, as an example, this contrasts evidence that the number of positive-charges on cytoplasmic loops is 45 
known to be an important determinant of IMP biogenesis 18,19. The reasons for this failure to connect 46 
sequence to expression likely lie in the complex underpinnings of IMP biogenesis, where the interplay 47 
between many sequence features at both the protein and nucleotide levels must be considered. 48 
Optimizing for a single sequence feature likely diminishes the beneficial effect of other features (e.g. 49 
increasing positive residues on internal loops might diminish favorable mRNA properties). Without 50 
accounting for the broad set of sequence features related to IMP expression, it is impossible to predict 51 
differences in expression. 52 

Development of a low-cost, computational resource that significantly and reliably predicts 53 
improved expression outcomes would transform the study of IMPs. Attempts to develop such algorithms 54 
have so far failed. Several examples, Daley, von Heijne, and coworkers 10,16,17 as well as NYCOMPS, 55 
were unable to use experimental expression data sets to train models that returned any predictive 56 
performance (personal communication). This is not surprising, given the difficulty of expressing IMPs 57 
and the limits in the knowledge of the sequence features that drive expression. In other contexts, 58 
statistical tools based on sequence have been shown to work; for example, those developed to predict 59 
soluble protein expression and/or crystallization propensities 20–22. Such predictors are primarily based 60 
on available experimental results from the Protein Structure Initiative 23,24. While collectively these 61 
methods have supported significant advances in biochemistry, none of the models are able to predict 62 
IMP outcomes due to limitations inherent in the model development process. As IMPs have an 63 
extremely low success rate, they are either explicitly excluded from the training process or are implicitly 64 
down-weighted by the statistical model (for representative methodology see 25). Consequently, none 65 
have successfully been able to map IMP expression to sequence. 66 

Here, we demonstrate for the first time that it is possible to predict IMP expression directly from 67 
sequence. The resulting predictor allows one to enrich expression trials for proteins with a higher 68 
probability of success. To connect sequence to prediction, we develop a statistical model that maps a set 69 
of sequences to experimental expression levels via calculated features—thereby simultaneously 70 
accounting for the many potential determinants of expression. The resulting IMProve model allows 71 
ranking of any arbitrary set of IMP sequences in order of their relative likelihood of successful 72 
expression. The IMProve model is extensively validated against a variety of independent datasets 73 
demonstrating that it can be used broadly to predict the likelihood of expression in E. coli of any IMP. 74 
With IMProve, we have built a way for more than two-fold enrichment of positive expression outcomes 75 
relative to the rate attained from the current method of randomly selecting targets. We highlight how the 76 
model informs on the biological underpinnings that drive likely expression. Finally, we provide direct 77 
examples where the model can be used for a typical researcher. Our novel approach and the resulting 78 
IMProve model provide an exciting paradigm for connecting sequence space to complex experimental 79 
outcomes. 80 

Results 81 

For this study, we focus on heterologous expression in E. coli, due to its ubiquitous use as a tool 82 
for expression across the spectrum of the membrane proteome. For example, 43 of the 216 unique 83 
eukaryotic IMP structures were solved using protein expressed in E. coli (based on annotation in the 84 
RCSB PDB 4). Low cost and low barriers for adoption highlight the utility of E. coli as a broad tool if 85 
the expression problem can be overcome. 86 
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Development of a computational model trained on E. coli expression data 87 
A key component of any data-driven statistical model is the choice of dataset used for training. 88 

Having searched the literature, we identified two publications that contained quantitative datasets on the 89 
IPTG-induced overexpression of E. coli polytopic IMPs in E. coli. The first set, Daley, Rapp et al., 90 
contained activity measures, proxies for expression level, from C-terminal tags of either GFP or PhoA 91 
(alkaline phosphatase)16. The second set, Fluman et al., used a subset of constructs from the first and 92 
contained a more detailed analysis utilizing in-gel fluorescence to measure folded protein 26 (see 93 
Methods 4c). The expression results strongly correlated (Spearman’s ρ = 0.73) between the two datasets 94 
demonstrating that normalized GFP activity was a good measure of the amount of folded IMP (Fig. 1A 95 
and 26,27). The experimental set-up employed multiple 96-well plates over multiple days resulting in 96 
pronounced variability in the absolute expression level of a given protein between trials. Daley, Rapp et 97 
al. calculated average expression levels by dividing the raw expression level of each protein by that of a 98 
control protein on the corresponding plate.  99 

To successfully map sequence to expression, we additionally needed to derive numerical features 100 
from a given gene sequence that are empirically related to expression. Approximately 105 sequence 101 
features from protein and nucleotide sequence were calculated for each gene using custom code together 102 
with published software (codonW 28, tAI 29, NUPACK 30, Vienna RNA 31, Codon Pair Bias 32, Disembl 103 
33, and RONN 34). Relative metrics (e.g. codon adaptation index) are calculated with respect to the E. 104 
coli K-12 substr. MG1655 35 quantity. The octanol-water partitioning 36, GES hydrophobicity 37, ∆G of 105 
insertion 38 scales were employed as well. Transmembrane segment topology was predicted using 106 
Phobius constrained for the training data and Phobius for all other datasets 39. Two RNA secondary 107 
structure metrics were prompted in part by Goodman, et al. 40. Supplementary Table 1 includes a 108 
detailed description of each feature. All features are calculated solely from the coding region of each 109 
gene of interest excluding other portions of the open reading frame and plasmid (e.g. linkers and tags, 5′ 110 
untranslated region, copy number). 111 

Fitting the data to a simple linear regression provides a facile method for deriving a weight for 112 
each feature. However, using the set of sequence features, we were unable to successfully fit a linear 113 
regression using the normalized GFP and PhoA measurements reported in the Daley, Rapp et al. study. 114 
Similarly, using the same feature set and data, we were unable to train a standard linear Support Vector 115 
Machine (SVM) to predict the expression data either averaged or across all plates (see Supplementary 116 
Table 1; Methods 2,3). Due to the attempts by others to fit this data, this outcome may not be surprising 117 
and suggested that a more complex analysis was required. 118 

We hypothesized that training on relative measurements across the entire dataset introduced 119 
errors that were limiting. To address this, we instead only compare measurements within an individual 120 
plate, where differences between trials are less likely to introduce errors. To account for this, a 121 
preference-ranking linear SVM algorithm (SVMrank 41) was chosen (see Methods 4b). Simply put, the 122 
SVMrank algorithm determines the optimal weight for each sequence feature to best rank the order of 123 
expression outcomes within each plate over all plates, which results in a model where higher expressing 124 
proteins have higher scores. The outcome is identical in structure to a multiple linear regression, but 125 
instead of minimizing the sum of squared residuals, the SVM cost function accounts for the plate-wise 126 
constraint specified above. In practice, the process optimizes the correlation coefficient Kendall’s τ (Eq. 127 
1) to converge upon a set of weights. 128 

 129 

  𝜏kendall = 	
#	correctly	ordered	pairs	3	#	swapped	pairs

#	total	pairs
 (1) 130 

 131 
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Various metrics summarize the accuracy with which the model fits the input data (Fig. 1B-E). 132 
The SVMrank training metric shows varying agreement for all groups (i.e., τkendall > 0) (Fig. 1B). For 133 
individual genes, activity values normalized and averaged across trials were not directly used for the 134 
training procedure (see Methods 4a); yet one would anticipate that scores for each gene should broadly 135 
correlate with the expression average. Indeed, the observed normalized activities positively correlate 136 
with the score (dubbed IMProve score for Integral Membrane Protein expression improvement) output 137 
by the model (Fig. 1C, ρ > 0). Since SVMrank transforms raw expression levels within each plate to ranks 138 
before training, there is no expectation or guarantee that magnitude differences in expression level 139 
manifest in magnitude differences in score. As a result, Spearman’s ρ, a rank correlation coefficient 140 
describing the agreement between two ranked quantities, is better suited for quantifying correlation over 141 
more common metrics like the R2 of a regression and Pearson’s r. 142 

For a more quantitative approach to assessing the IMProve model’s success within the training 143 
data, we turn to the Receiver Operating Characteristic (ROC). ROC curves quantify the tradeoff between 144 
true positive and false positive predictions across the numerical scores output from a predictor. This is a 145 
more reliable assessment of prediction than simply calculating accuracy and precision from a single, 146 
arbitrary score threshold 42. The figure of merit that quantifies a ROC curve is the Area Under the Curve 147 
(AUC). Given that the AUC for a perfect predictor corresponds to 100% and that of a random predictor 148 
is 50% (Fig. 1D, grey dashed line), an AUC greater than 50% indicates predictive performance of the 149 
model (percentage signs hereafter omitted) (see Methods 5 and 42). Here, the ROC framework will be 150 
used to quantitatively assess the ability of our model to predict the outcomes within the various datasets. 151 

The training datasets are quantitative measures of activity requiring that an activity threshold be 152 
chosen that defines positive or negative outcomes. For example, ROC curves using two distinct activity 153 
thresholds, at the 25th or 75th percentile of highest expression, are plotted with their calculated AUC 154 
values (Fig. 1D). While both show that the model has predictive capacity, a more useful visualization 155 
would consider all possible activity thresholds. For this, the AUC value for every activity threshold is 156 
plotted showing that the model has predictive power regardless of an arbitrarily chosen expression 157 
threshold (Fig. 1E). In total, the analysis demonstrates that the model can rank expression outcomes 158 
across all proteins in the training set. Interestingly, for PhoA-tagged proteins the model is progressively 159 
less successful with increasing activity. The implications for this are discussed later (see Fig. 2G below). 160 

Demonstration of prediction against an independent large expression dataset  161 
While the above analyses show that the model successfully fits the training data, we assess the 162 

broader applicability of the model outside the training set based on its success at predicting the outcomes 163 
of independent expression trials from distinct groups and across varying scales. The first test considers 164 
results from NYCOMPS, where 8444 IMP genes entered expression trials, in up to eight conditions, 165 
resulting in 17114 expression outcomes (Fig. 2A) 2. The majority of genes were attempted in only one 166 
condition (Fig. 2B), and, importantly, outcomes were non-quantitative (binary: expressed or not 167 
expressed) as indicated by the presence of a band by Coomassie staining of an SDS-PAGE gel after 168 
small-scale expression, solubilization, and nickel affinity purification 3. For this analysis, the 169 
experimental results are either summarized as outcomes per gene or broken down as raw outcomes 170 
across defined expression conditions. For outcomes per gene, we can consider various thresholds for 171 
considering a gene as positive based on NYCOMPS expression success (Fig. 2B). The most stringent 172 
threshold only regards a gene as positive if it has no negative outcomes (“Only Positive”, Fig. 2B, red). 173 
Since a well expressing gene would generally advance in the NYCOMPS pipeline without further small-174 
scale expression trials, this positive group likely contains the best expressing proteins. A second 175 
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category comprises genes with at least one positive and at least one negative trial (“Mixed”, Fig. 2B, 176 
blue). These genes likely include proteins that are more difficult to express. 177 

ROCs assess predictive power across these groups (Fig. 2C). IMProve scores markedly 178 
distinguish genes in the most stringent positive group (Only Positive) from all other genes (AUC = 67.1) 179 
(Fig. 2C red). A permissive threshold considering genes as positive with at least one positive trial (Only 180 
Positive plus Mixed genes) shows moderate predictive power (Fig. 2C pink, AUC = 59.7). If instead the 181 
Mixed genes are considered alone (excluding the Only Positive), the model very weakly distinguishes 182 
the mixed group from Only Negative genes (Fig. 2C dashed blue, AUC = 53.5). This likely supports the 183 
notion that this pool largely consists of more difficult-to-express genes. For further analysis of 184 
NYCOMPS, we focus on the Only Positive pool as this likely represents the pool of best expressing 185 
proteins. 186 

The predictive power of the IMProve model can be assessed by a variety of additional metrics. 187 
This can be qualitatively visualized as a histogram of the IMProve scores for genes separated by 188 
expression success (Only Positive, red; Mixed, blue; Only Negative, grey) (Fig. 2D). Visually, the 189 
distribution of the scores for the Only Positive group is shifted to a higher score relative to the Only 190 
Negative and Mixed groups. The dramatic increase in the percentage of Only Positive genes as a 191 
function of increasing IMProve score (overlaid as a brown line) further emphasizes this. A major aim of 192 
this work is to enrich the likelihood of choosing positively expressing proteins. The positive predictive 193 
value (PPV, true positives ÷ predicted positives) becomes a useful metric for positive enrichment as it 194 
conveys the degree of improved prediction over the experimental baseline of the dataset. The PPV of the 195 
model is plotted as a function of the percentile of the IMProve score for the Only Positive group (Fig. 196 
2E). In the figure, the experimental baseline, all are predicted positive (PPV = 11.1%), is represented by 197 
a dashed line; therefore, a relative increase reflects the predictive power of the algorithm. For example, 198 
considering the top fourth of genes by IMProve score (75th percentile, IMProve score = -0.2, PPV = 199 
20%) shows that the algorithm increases the positive outcomes by 9% over baseline (1.82 fold change). 200 
Higher score cut-offs would have even higher increases in positive outcomes. For further illustration, we 201 
plot the fold-change in PPV across all thresholds (Fig. 2F). 202 

We next confirm the ability of the IMProve model to predict within plasmids or sequence space 203 
distinct from those within the limited training set. For an overfit model, one might expect that only the 204 
subset of targets which most closely mirror the training data would show strong prediction. On the 205 
contrary, the model shows consistent performance throughout each of the eight distinct experimental 206 
conditions tested (Fig. 2G and Supplementary Table 2). One may also consider that the small size of the 207 
training set limited the number of protein folds sampled and, therefore, limited the number of folds that 208 
could be predicted by the model. To test this, we consider the performance of the model with regards to 209 
protein homology families, as defined by Pfam family classifications 43. The 8444 genes in the 210 
NYCOMPS dataset fall into 555 Pfam families (~15% not classified). To understand whether the 211 
IMProve score is biased towards families present in the training set, we separate genes in the 212 
NYCOMPS dataset into either within the 153 Pfam families found in the training set or outside this pool 213 
(i.e. not in the training set). Satisfyingly, there is no significant difference in AUC at 95% confidence 214 
between these groups (68.2 versus 67.2) (Fig. 2H). Combined, this highlights that the model is not 215 
sensitive to the experimental design of the training set and predicts broadly across different vector 216 
backbones and protein folds. 217 

The ability to predict the experimental data from NYCOMPS allows returning to the question of 218 
alkaline phosphatase as a metric for expression. For the training set, proteins with C-termini in the 219 
periplasm show less consistent fitting by the model (Fig. 1, orange). To assess the generality of this 220 
result, the NYCOMPS outcomes are split into pools for either cytoplasmic or periplasmic C-terminal 221 
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localization and AUCs are calculated for each. There are no significant differences in predictive capacity 222 
across all conditions (Fig. 2G, green vs. orange) irrespective of whether the tag is at the N- or C-223 
terminus. This demonstrates that the IMProve model is applicable for all topologies. 224 

At this point, it is useful to consider the potential improvement in the number of positive 225 
outcomes by using the IMProve model. NYCOMPS tested about a tenth of the 74 thousand possible 226 
IMPs from the 98 genomes of interest for expression 2. Had NYCOMPS tested the same number of 227 
genes from this pool, but selected to have an IMProve score greater than 0.5 (at the 91st percentile (Fig. 228 
2D, yellow line)), they would have increased their positive pool of 934 by an additional 1207 proteins. 229 
This represents a more than two-fold improvement in the return on investment and is a clear benchmark 230 
of success for the IMProve model. 231 
 232 

Further demonstration of prediction against small-scale independent datasets  233 
The NYCOMPS example demonstrates the predictive power of the model across the broad range 234 

of sequence space encompassed by that dataset. Next, the performance of the model is tested against 235 
relevant subsets of sequence space (e.g. a family of proteins or the proteome from a single organism), 236 
which are reminiscent of laboratory-scale experiments that precede structural or biochemical analyses. 237 
While a number of datasets exist 5,44–55, we identified seven for which complete sequence information 238 
could be obtained to calculate all the necessary sequence features 44–50. 239 

To understand the predictive performance within each of the small-scale datasets, we analyze the 240 
predictive performance of the model and highlight how the model could have been used to streamline 241 
those experiments. The clear predictive performance within the large-scale NYCOMPS dataset (Fig. 2) 242 
serves as a benchmark of expected performance at the scale of the experimental efforts for an individual 243 
lab (Fig. 3A). As targets within the various datasets were tested only one or a few times, experimental 244 
variability within each set could play a large-role on the outcomes noted. Therefore, we summarize 245 
positives within each dataset as those genes with the highest level of outcome as reported by the original 246 
authors as this outcome is likely most robust to such variability (e.g. seen via Coomassie Blue staining 247 
of an SDS-PAGE gel). To be complete, we have plotted and considered predictive performance across 248 
all possible outcomes as well (Fig. 3B-D, Supplementary Fig. 1). 249 

The performance of the IMProve model for each of the small-scale datasets is consistent with 250 
that seen for the NYCOMPS dataset (Fig. 3A). This is most directly indicated by a mean AUC across all 251 
datasets of 65.6, highlighting the success across the varying scales. While the overall positive rate is 252 
different for each dataset, considering a cut-off in IMProve score, e.g. the top 50% or 10% of targets 253 
ranked by score, would have resulted in a greater percentage of positive outcomes. On average, ~70% of 254 
positives are captured within the top half of scores. Similarly, for the top 10% of scores, on average over 255 
20% of the positives are captured. Simply put, for one tenth of the work one would capture a significant 256 
number of the positive outcomes within the pool of targets in each dataset. 257 

For broader consideration, one can consider the fold change in positive rate by selecting targets 258 
informed by IMProve scores. Using the data available, only testing proteins within the top 10% of scores 259 
would result in an average fold change of 2.0 in the positive rate (i.e. twice as many positively expressed 260 
proteins). As positive rate is a bounded quantity (maximum is 100%), the possible fold change is 261 
bounded as well and becomes relative to the overall positive rate when considering various cut-offs (e.g. 262 
for T. maritima the maximum fold-change is 15.4 while for archaeal transporters it is 3.3). Taking the 263 
average maximum possible fold change (7.5), the IMProve model achieves nearly a third of the possible 264 
improvement in positive rate compared to a perfect predictor. 265 
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Since IMProve model was trained on quantitative expression outcomes, we also expect that it 266 
captures quantitative trends in expression, i.e. a higher score translates to greater amount of expressed 267 
protein. While the NYCOMPS results are consistent with this (Fig. 2b), of the various data sets, only the 268 
expression of archaeal transporters presents quantitative expression outcomes for consideration. For this 269 
dataset, 14 archaeal transporters were chosen based on their homology to human proteins 44 and tested 270 
for expression in E. coli; total protein was quantified in the membrane fraction by Coomassie Blue 271 
staining of an SDS-PAGE gel. Here, the majority of the expressing proteins fall into the higher half of 272 
the IMProve scores, 7 out of 9 of those with multiple positive outcomes (Fig. 3B). Strikingly, 273 
quantification of the Coomassie Blue staining highlights a clear correlation with the IMProve score 274 
where the higher expressing proteins have higher scores (Fig. 3C). 275 

A final test considers the ability of the model to predict expression in hosts other than E. coli. 276 
The expression trials of 101 mammalian GPCRs in bacterial and eukaryotic systems 47 provides a data 277 
set for considering this question. For this experiment, trials in E. coli clearly follow the trend that 278 
IMProve can predict within this group of mammalian proteins (AUC = 77.7) (Fig. 3A & Supplementary 279 
Fig. 1A,B). However, the expression of the same set of proteins in P. pastoris fails to show any 280 
predictive performance (AUC = 54.8) (Supplementary Fig. 1A,B). This lack of predictive performance 281 
in P. pastoris suggests that the parameterization of the model, calibrated for E. coli expression, requires 282 
retraining to generate a different model that captures the distinct interplay of sequence parameters in 283 
other hosts. 284 

Biological importance of various sequence features 285 
Considering the success of IMProve, one might anticipate that biological properties driving 286 

prediction may provide insight into IMP biogenesis and expression. Using a proof-of-concept linear 287 
model allowed for a straightforward and useful predictor. With a linear model, as employed here, 288 
extracting the importance of each feature is ordinarily straightforward; assuming features are distributed 289 
identically and independently (“i.i.d.”), the weight assigned to each feature should correspond to its 290 
relative importance. However, in our case, the input features do not satisfy these conditions and 291 
significant correlation exists between individual features (Supplementary Fig. 2). As a result, during the 292 
training procedure, unequal weight is placed across correlating features that represent the same 293 
underlying biological property, thereby, complicating the process of determining the biological 294 
underpinnings of the IMProve score. For example, the importance of transmembrane segment 295 
hydrophobicity for membrane partitioning is distributed between several features: among these the 296 
average ΔGinsertion 38 of TM segments has a positive weight whereas average hydrophobicity, a 297 
correlating feature, has a negative weight (Supplementary Table 1, Supplementary Fig. 2). As many 298 
features are correlated; conclusive information cannot be obtained simply using weights of individual 299 
features to interpret the relative importance of their underlying biological phenomena. We address this 300 
complication by coarsening our view of the features to two levels: First, we analyze features derived 301 
from protein versus those derived from nucleotide sequence, and then we look more closely at features 302 
groups after categorizing by biological phenomena.   303 

The coarsest view of the features is a comparison of those derived from protein sequence versus 304 
those derived from nucleotide sequence. The summed weight for protein features is around zero, 305 
whereas for nucleotide features the summed weight is slightly positive suggesting that in comparison 306 
these features may be more important to the predictive performance of the model (Fig. 4A). Within the 307 
training set, protein features more completely explain the score both via correlation coefficients (Fig. 308 
4B) as well as through ROC analysis (Fig. 4C). However, comparison of the predictive performance of 309 
the two subsets of weights shows that the nucleotide features alone can give similar performance to the 310 
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full model for the NYCOMPS dataset (Fig. 4D). Within the small-scale datasets investigated, using only 311 
protein or nucleotide features shows no significant difference in predictive power at 95% confidence 312 
(Fig. 4E). In general, this suggests that neither protein nor nucleotide features are uniquely important for 313 
IMP expression. However, within the context of the trained model, nucleotide features are critical for 314 
predictive performance for a large and diverse dataset such as NYCOMPS. This finding corroborates 315 
growing literature that the nucleotide sequence holds significant determinants of biological processes 316 
40,26,56–58. 317 

We next collapse conceptually similar features into biological categories that allow us to infer 318 
the phenomena that drive prediction. Categories are chosen empirically (e.g. the hydrophobicity group 319 
incorporates sequence features such as average hydrophobicity, maximum hydrophobicity, ΔGinsertion, 320 
etc.), which results in a reduction in overall correlation (Supplementary Fig. 3A). The full category list is 321 
provided in Supplementary Table 1. To visualize the importance of each category, the collapsed weights 322 
are summarized in Supplementary Fig. 3B, where each bar contains individual feature weights within a 323 
category. Features with a negative weight are stacked to the left of zero and those with a positive weight 324 
are stacked to the right. A red dot represents the sum of all weights, and the length of the bar gives the 325 
total absolute value of the combined weights within a category. Ranking the categories based on the sum 326 
of their weight suggests that some categories play a more prominent role than others. These include 327 
properties related to transmembrane segments (hydrophobicity and TM size/count), codon pair score, 328 
loop length, and overall length/pI. 329 

To explore the role of each biological category in prediction, the performance of the model is 330 
assessed using only features within a given category. First, the strength of the correlation coefficients for 331 
given categories within the training set suggests the relative utility of each category for prediction. 332 
(Supplementary Fig. 3C, as in Fig. 4B). Examples of categories with high correlation coefficients are 5’ 333 
Codon Usage, Length/pI, Loop Length, and SD-like Sites. To verify their importance for prediction, we 334 
consider the AUC for prediction using each feature category for the NYCOMPS dataset (Supplementary 335 
Fig. 3D). In this analysis, only Length/pI shows some predictive power. Overall, the analysis of the 336 
training and large-scale testing dataset shows that no feature category independently drives the predictor. 337 
Excluding each individually does not significantly affect the overall predictive performance, except for 338 
Length/pI (data not shown). Sequence length composes the majority of the weight within this category 339 
and is one of the highest weighted features in the model (Supplementary Fig. 3A). This is consistent 340 
with the anecdotal observation that larger IMPs are typically harder to express. However, this parameter 341 
alone would not be useful for predicting within a smaller subset, like a single protein family, where there 342 
is little variance in length (e.g. Fig. 3,5). One might develop a predictor that was better for a given 343 
protein family under certain conditions with a subset of the entire features considered here; yet this 344 
would require a priori knowledge of the system, i.e. which sequence features were truly most important, 345 
and would preclude broad generalizability as shown for the IMProve model. 346 
 347 
Usage of the IMProve model for IMP expression 348 

We illustrate the IMProve model’s ability to identify promising homologs within a protein 349 
family by considering subsets of the broad range of targets tested by NYCOMPS. First, we consider two 350 
examples for protein families that do not have associated atomic resolution structures: copper resistance 351 
proteins (CopD, PF05425) and short-chain fatty-acid transporters (AtoE, PF02667). In the first two rows 352 
of Fig. 5A, genes from the two families are plotted by IMProve score and colored by experimental 353 
outcome. In both cases, as indicated by the AUCs of 88.2 and 80.7 (Fig. 5A), the model excels at 354 
predicting these families and provides a clear score cut-off to guide target selection for future expression 355 
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experiments. For example, we expect that CopD homologs with IMProve scores above -1 will have a 356 
higher likelihood of expressing over other homologs. 357 

We have calculated predictive performance for each Pfam found in the NYCOMPS data which 358 
allows us to provide considerations for future experiments (Supplementary Table 3). In particular, we 359 
highlight three families with many genes tested, multiple experimental trials and a spread of outcomes: 360 
voltage-dependent anion channels (PF03595), Na/H exchangers (PF00999), and glycosyltransferases 361 
(PF00535). For these, a very clear IMProve score cut-off emerges from the experimental outcomes 362 
(dashed line in Fig. 5A). Strikingly, for these families the IMProve model clearly ranks the targets with 363 
Only Positive outcomes (red) at higher scores, again suggesting a preference for the best expressing 364 
proteins (see Fig. 2 and 3). Similarly, many more families within NYCOMPS are predicted with high 365 
statistical confidence (Supplementary Table 3); we provide a subset as Fig. 5B. For these, if only genes 366 
in the top 50% of IMProve score were tested, 81% of the total positives would be captured. As noted 367 
before, this is a dramatic increase in efficiency. Excitingly, many of these families remain to be resolved 368 
structurally. Considering these results with the broader experimental data sets (Fig. 3), no matter the 369 
number of proteins one is willing to test, the IMProve model enables selecting targets with a high 370 
probability of expression success in E. coli. 371 

Sequence optimization for expression 372 
The predictive performance of the model implies that the features defined here provide a coarse 373 

approximation of the fitness landscape for IMP expression. Attempting to optimize a single feature by 374 
modifying the sequence will likely affect the resulting score and expression due to changes in other 375 
features. Fluman, et al. provides an illustrative experiment 26. For that work, it was hypothesized that 376 
altering the number of Shine-Dalgarno (SD)-like sites in the coding sequence of a IMP would affect 377 
expression. To test this, silent mutations were engineered within the first 200 bases of three proteins 378 
(genes ygdD, brnQ, and ybjJ from E. coli) to increase the number of SD-like sites with the goal of 379 
improving expression. Expression trials demonstrated that only one of the proteins (BrnQ) had improved 380 
expression of folded protein. While the number of SD-like sites alone does not correlate, only 1 out of 3, 381 
the resulting changes in the IMProve score correlate with the changes in measured expression, 3 out of 3 382 
(Fig. 5C). The IMProve model’s ability to capture the outcomes in this small test case illustrates the 383 
utility of integrating the contribution of the numerous parameters involved in IMP biogenesis.  384 

Discussion 385 
Here, we have demonstrated a statistically driven predictor, IMProve, that decodes from 386 

sequence the sum of biological features that drive expression, a feat not previously possible 10,17. The 387 
current best practice for characterization of an IMP target begins with the identification and testing of 388 
multiple homologs or variants for expression. The predictive power of IMProve enables this by 389 
providing a low barrier-to-entry method to enrich more than two-fold the positive outcomes from such 390 
expression. IMProve allows for the prioritization of targets to test for expression making more optimal 391 
use of limited human and material resources. For groups with small scale projects such as individual 392 
labs, this means that for the same cost one would double the success rate. For large scale groups, such as 393 
companies or consortia, IMProve can reduce by half the cost required to obtain the same number of 394 
positive results. We provide the current predictor as a web service where scores can be calculated, and 395 
the method, associated data, and suggested analyses are publically available to catalyze progress across 396 
the community (clemonslab.caltech.edu). 397 
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Having shown that IMP expression can be predicted, the generalizability of the model is 398 
remarkable despite several known limitations. Using data from a single study for training precludes 399 
including certain variables that empirically influence expression such as the features corresponding to 400 
fusion tags and the context of the protein in an expression plasmid, e.g. the 5' untranslated region, for 401 
which there was no variation in the Daley, Rapp, et al. dataset. Moreover, using a simple proof-of-402 
concept linear model allowed for a straightforward and robust predictor; however, intrinsically it cannot 403 
be directly related to the biological underpinnings. While we can extract some biological inference, a 404 
linear combination of sequence features does not explicitly reflect the reality of physical limits for host 405 
cells. To some extent, constraint information is likely encoded in the complex architecture of the 406 
underlying sequence space (e.g. through the genetic code, TM prediction, RNA secondary structure 407 
analyses). Future statistical models that improve on these limitations will likely hone predictive power 408 
and more intricately characterize the interplay of variables that underlie IMP expression in E. coli and 409 
other systems. 410 

A perhaps surprising outcome of our results is the demonstration of the quantitatively important 411 
contribution of the nucleotide sequence as a component of the IMProve score. This echoes the growing 412 
literature that aspects of the nucleotide sequence are important determinants of protein biogenesis in 413 
general 40,26,56–58. While one expects that there may be different weights for various nucleotide derived 414 
features between soluble and IMPs, it is likely that these features are important for soluble proteins as 415 
well. An example of this is the importance of codon optimization for soluble protein expression, which 416 
has failed to show any general benefit for IMPs 10. Current expression predictors that have predictive 417 
power for soluble proteins have only used protein sequence for deriving the underlying feature set 59,60. 418 
Future prediction methods will likely benefit from including nucleotide sequence features as done here.  419 

The ability to predict phenotypic results using sequence based statistical models opens a variety 420 
of opportunities. As done here, this requires a careful understanding of the system and its underlying 421 
biological processes enumerated in a multitude of individual variables that impact the stated goal of the 422 
predictor, in this case enriching protein expression. As new features related to expression are discovered, 423 
future work will incorporate these leading to improved models. This can include features derived from 424 
other approaches such as the integration efficiency derived from coarse-grained molecular dynamics 425 
12,15. Based on these results, expanding to new expression hosts such as eukaryotes seems entirely 426 
feasible, although a number of new features may need to be considered, e.g. glycosylation sites and 427 
trafficking signals. Moreover, the ability to score proteins for expressibility creates new avenues to 428 
computationally engineer IMPs for expression. The proof-of-concept described here required significant 429 
work to compile data from genomics consortia and the literature in a readily useable form. As data 430 
becomes more easily accessible, broadly leveraging diverse experimental outcomes to decode sequence-431 
level information, an extension of this work, is anticipated. 432 
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Online Methods 455 

Sequence mapping & retrieval and feature calculation was performed in Python 2.7 62 using 456 
BioPython 63 and NumPy 64; executed and consolidated using Bash (shell) scripts; and parallelized 457 
where possible using GNU Parallel 65. Data analysis and presentation was done in R 66 within RStudio 67 458 
using magrittr 68, plyr 69, dplyr 70, asbio 71, and datamart 72 for data handling; ggplot2 73, ggbeeswarm 74, 459 
GGally 75, gridExtra 76, cowplot 77, scales 78, viridis 79, and RColorBrewer 80,81 for plotting; multidplyr 82 460 
with parallel 66 and foreach 83 with iterators 84 and doMC 85/doParallel 86 for parallel processing; and 461 
roxygen2 87 for code organization and documentation as well as other packages as referenced. 462 
 463 
1. Collection of data necessary for learning and evaluation 464 
E. coli Sequence Data – The nucleotide sequences from 16 were deduced by reconstructing forward and 465 
reverse primers (i.e. ~20 nucleotide stretches) from each gene in Colibri (based on EcoGene 11), the 466 
original source cited and later verified these primers against an archival spreadsheet provided directly by 467 
Daniel Daley (personal communication). To account for sequence and annotation corrections made to 468 
the genome after Daley, Rapp, et al.’s work, these primers were directly used to reconstruct the 469 
amplified product from the most recent release of the E. coli K-12 substr. MG1655 genome 35 (EcoGene 470 
3.0; U00096.3). Although Daniel Daley mentioned that raw reads from the Sanger sequencing runs may 471 
be available within his own archives, it was decided that the additional labor to retrieve this data and 472 
parse these reads would not significantly impact the model. The deduced nucleotide sequences were 473 
verified against the protein lengths given in Supplementary Table 1 from 16. The plasmid library tested 474 
in 26 was provided by Daniel Daley, and those sequences are taken to be the same. 475 

 476 
E. coli Training Data – The preliminary results using the mean-normalized activities echoed the 477 
findings of 16 that these do not correlate with sequence features either in the univariate sense (many 478 
simple linear regressions, Supplementary Table 1 16) or a multivariate sense (multiple linear regression, 479 
data not shown). This is presumably due to the loss of information regarding variability in expression 480 
level for given genes or due to the increase in variance of the normalized quantity (See Methods 4a) due 481 
to the normalization and averaging procedure. Daniel Daley and Mikaela Rapp provided spreadsheets of 482 
the outcomes from the 96-well plates used for their expression trials and sent scanned copies of the 483 
readouts from archival laboratory notebooks where the digital data was no longer accessible (personal 484 
communication). Those proteins without a reliable C-terminal localization (as given in the original 485 
work) or without raw expression outcomes were not included in further analyses. 486 

Similarly, Nir Fluman also provided spreadsheets of the raw data from the set of three expression 487 
trials performed in 26. 488 

 489 
New York Consortium on Membrane Protein Structure (NYCOMPS) Data – Brian Kloss, Marco 490 
Punta, and Edda Kloppman provided a dataset of actions performed by the NYCOMPS center including 491 
expression outcomes in various conditions 2,3. The protein sequences were mapped to NCBI GenInfo 492 
Identifier (GI) numbers either via the Entrez system 88 or the Uniprot mapping service89. Each GI 493 
number was mapped to its nucleotide sequence via a combination of the NCBI Elink mapping service 494 
and the “coded_by” or “locus” tags of Coding Sequence (CDS) features within GenBank entries. 495 
Though a custom script was created, a script from Peter Cock on the BioPython listserv to do the same 496 
task via a similar mapping mechanism was found 90. To confirm all the sequences, the TargetTrack 23 497 
XML file was parsed for the internal NYCOMPS identifiers and compared for sequence identity to those 498 
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that had been mapped using the custom script; 20 (less than 1%) of the sequences had minor 499 
inconsistencies and were manually replaced. 500 
 501 
Archaeal transporters Data – The locus tags (“Gene Name” in Table 1) were mapped directly to the 502 
sequences and retrieved from NCBI 44. Pikyee Ma and Margarida Archer clarified questions regarding 503 
their work to inform the analysis. 504 
 505 
GPCR Expression Data – Nucleotide sequences were collected by mapping the protein identifiers 506 
given in Table 1 from 47 to protein GIs via the Uniprot mapping service 89 and subsequently to their 507 
nucleotide sequences via the custom mapping script described above (see NYCOMPS). The sequence 508 
length and pI were validated against those provided. Renaud Wagner assisted in providing the 509 
nucleotide sequences for genes whose listed identifiers were unable to be mapped and/or did not pass the 510 
validation criteria as the MeProtDB (the sponsor of the GPCR project) does not provide a public 511 
archive.  512 
 513 
Helicobacter pylori Data – Nucleotide sequences were retrieved by mapping the locus tags given in 514 
Supplemental Table 1 from 48 to locus tags in the Jan 31, 2014 release of the H. pylori 26695 genome 515 
(AE000511.1). To verify sequence accuracy, sequences whose molecular weight matched that given by 516 
the authors were accepted. Those that did not match, in addition to the one locus tag that could not be 517 
mapped to the Jan 31, 2014 genome version, were retrieved from the Apr 9, 2015 release of the genome 518 
(NC_000915.1). Both releases are derived from the original sequencing project 91. After this curation, all 519 
mapped sequences matched the reported molecular weight. 520 

In this data set, expression tests were performed in three expression vectors and scored as 1, 2, or 521 
3. Two vectors were scored via two methods. For these two vectors, the two scores were averaged to 522 
give a single number for the condition making them comparable to the third vector while yielding 2 523 
additional thresholds (1.5 and 2.5) result in the 5 total curves shown (Supplementary Fig. 2B). 524 
 525 
Mycobacterium tuberculosis Data – The authors note using TubercuList through GenoList 92, therefore, 526 
nucleotide sequences were retrieved from the archival website based on the original sequencing project 527 
93. The sequences corresponding to the identifiers and outcomes in Table 1 from 46 were validated 528 
against the provided molecular weight . 529 
 530 
Secondary Transporter Data – GI Numbers given in Table 1 from 50 were matched to their CDS entries 531 
using the custom mapping script described above (see NYCOMPS). Only expression in E. coli with 532 
IPTG-inducible vectors was considered. 533 
 534 
Thermotoga maratima Data – Gene names given in Table 1 94 were matched to CDS entries in the Jan 535 
31, 2014 release of the Thermotoga maritima MSB8 genome (AE000512.1), a revised annotation of the 536 
original release 95. The sequence length and molecular weight were validated against those provided. 537 
 538 
Pseudomonas aeruginosa Data – Outcomes in Additional file 1 45 were matched to coding sequences 539 
provided by Constance Jeffrey. 540 
 541 
Shine-Dalgarno-like mutagenesis Data – Folded protein is quantified by densitometry measurement 542 
96,97 of the relevant band in Figure 6 of 26. Relative difference is calculated as is standard: 543 
 544 
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metric6789:8 − metric<=>?8@AB
1
2 metric6789:8 − metric<=>?8@AB

 545 

 546 
 547 
2. Details related to the calculation of sequence features 548 

Transmembrane segment topology was predicted using Phobius Constrained for the training data 549 
and Phobius for all other datasets 39. We were able to obtain the Phobius code and integrate it directly 550 
into our feature calculation pipeline resulting in significantly faster speeds than any other option. Several 551 
features were obtained by averaging per-site metrics (e.g. per-residue RONN3.2 disorder predictions) in 552 
windows of a specified length. Windowed tAI metrics are calculated over all 30 base windows (not 553 
solely over 10 codon windows). Supplementary Table 1 includes an in-depth description of each feature. 554 
Future work will explore contributions of elements outside the gene of interest, e.g. ribosomal binding 555 
site, linkers, tags. 556 
 557 
3. Preparation for model learning 558 

Calculated sequence features for the IMPs in the E. coli dataset as well as raw activity 559 
measurements, i.e. each 96-well plate, were loaded into R. As is best practice in using Support Vector 560 
Machines, each feature was “centered” and “scaled” where the mean value of a given feature was 561 
subtracted from each data point and then divided by the standard deviation of that feature using 562 
preprocess 98. As is standard practice, the resulting set was then culled for those features of near 563 
zero-variance, over 95% correlation (Pearson’s r), and linear dependence (nearZeroVar, 564 
findCorrelation, findLinearCombos)98. In particular this procedure removed extraneous 565 
degrees of freedom during the training process which carry little to no additional information with 566 
respect to the feature space and which may over represent certain redundant features. Features and 567 
outcomes for each list (“query”) were written into the SVMlight format using a modified 568 
svmlight.write 99. 569 

The final features were calculated for each sequence in the test datasets, prepared for scoring by 570 
“centering” and “scaling” by the training set parameters via preprocess 98, and then written into 571 
SVMlight format again using a modified svmlight.write. 572 
 573 
4. Model selection, training, and evaluation using SVMrank 574 
a. At the most basic level, our predictive model is a learned function that maps the parameter space 575 
(consisting of nucleotide and protein sequence features) to a response variable (expression level) 576 
through a set of governing weights (w1, w2, …, wN). Depending on how the response variable is defined, 577 
these weights can be approximated using several different methods. As such, defining a response 578 
variable that is reflective of the available training data is key to selecting an appropriate learning 579 
algorithm. 580 

The quantitative 96-well plate results 16 that comprise our training data do not offer an absolute 581 
expression metric valid over all plates—the top expressing proteins in one plate would not necessarily 582 
be the best expressing within another. As such, this problem is suited for preference-ranking methods. 583 
As a ranking problem, the response variable is the ordinal rank for each protein derived from its 584 
overexpression relative to the other members of the same plate of expression trials. In other words, the 585 
aim is to rank highly expressed proteins (based on numerous trials) at higher scores than lower 586 
expressed proteins by fitting against the order of expression outcomes from each constituent 96-well 587 
plate. 588 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/098673doi: bioRxiv preprint 

https://doi.org/10.1101/098673
http://creativecommons.org/licenses/by-nc/4.0/


 

 16 

b. As the first work of this kind, the aim was to employ the simplest framework necessary taking in 589 
account the considerations above. The method chosen computes all valid pairwise classifications (i.e. 590 
within a single plate) transforming the original ranking problem into a binary classification problem. 591 
The algorithm outputs a score for each input by minimizing the number of swapped pairs thereby 592 
maximizing Kendall’s τ 100. For example, consider the following data generated via context A 593 
(𝑋K,L, 𝑌K,L), (𝑋K,N, 𝑌K,N) and B (𝑋O,L, 𝑌O,L), (𝑋O,N, 𝑌O,N)	where observed response follows as index 𝑖, i.e. 594 
𝑌Q < 𝑌QSL. Binary classifier f (𝑋T, 𝑋U) gives a score of 1 if an input pair matches its ordering criteria and 595 
−1 if not, i.e. 𝑌T < 𝑌U: 596 

𝑓 𝑋K,L, 𝑋K,N = 1; 𝑓 𝑋K,N, 𝑋X,L = 	−1 597 

𝑓 𝑋O,L, 𝑋O,N = 1; 𝑓 𝑋O,N, 𝑋O,L = 	−1 598 

𝑓 𝑋K,L, 𝑋O,N , 𝑓 𝑋K,N, 𝑋O,L 	are invalid 599 
 600 

Free parameters describing f are calculated such that those calculated orderings 601 
𝑓 𝑋K,L , 𝑓 𝑋K,N … ; 	𝑓 𝑋O,L , 𝑓 𝑋O,N … most closely agree (overall Kendall’s τ) with the observed 602 
ordering	𝑌Q, 𝑌QSL, …. In this sense, f is a pairwise Learning to Rank method. 603 

Within this class of models, a linear preference-ranking Support Vector Machine was employed 604 
101. To be clear, as an algorithm a preference-ranking SVM operates similarly to the canonical SVM 605 
binary classifier. In the traditional binary classification problem, a linear SVM seeks the maximally 606 
separating hyper-plane in the feature space between two classes, where class membership is determined 607 
by which side of the hyper-plane points reside. For some 𝑛 linear separable training examples 𝐷 =608 
	 𝑥T 	𝑥T	𝜖	ℝ^}Q and two classes 𝑦T	𝜖	{−1, 1}, a linear SVM seeks a mapping from the d-dimensional 609 

feature space ℝ^ → {−1, 1} by finding two maximally separated hyperplanes 𝑤	 ∙ 𝑥	 − 𝑏 = 1 and 	𝑤	 ∙610 
𝑥	 − 𝑏 = −	1 with constraints that  𝑤	 ∙ 𝑥T 	− 𝑏 ≥ 1	for all 𝑥T with 𝑦T	𝜖	{1} and 𝑤	 ∙ 𝑥T 	− 𝑏 ≤ 	−	1 for all 611 
𝑥T with 𝑦T	𝜖	{−1}. The feature weights correspond to the vector w, which is the vector perpendicular to 612 
the separating hyperplanes, and are computable in O(n log n) implemented as part of the SVMrank 613 
software package, though in O(n2)	41. See 101 for an in-depth, technical discussion. 614 
c. In a soft-margin SVM where training data is not linearly separable, a tradeoff between misclassified 615 
inputs and separation from the hyperplane must be specified. This parameter C was found by training 616 
models against raw data from Daley, Rapp, et al. with a grid of candidate C values (2Q	∀	𝑛	𝜖	[−5, 5]) 617 
and then evaluated against the raw “folded protein” measurements from Fluman, et al. The final model 618 
was chosen by selecting that with the lowest error from the process above (C	=	25). To be clear, the final 619 
model is composed solely of a single weight for each feature; the tradeoff parameter C is only part of the 620 
training process. 621 

Qualitatively, such a preference-ranking method constructs a model that ranks groups of proteins 622 
with higher expression level higher than other groups with lower expression value. In comparison to 623 
methods such as linear regression and binary classification, this approach is more robust and less 624 
affected by the inherent stochasticity of the training data. 625 
 626 
5. Quantitative Assessment of Predictive Performance 627 

In generating a predictive model, one aims to enrich for positive outcomes while ensuring they 628 
do not come at the cost of increased false positive diagnoses. This is formalized in Receiver Operating 629 
Characteristic (ROC) theory (for a primer see 42), where the true positive rate is plotted against the false 630 
positive rate for all classification thresholds (score cutoffs in the ranked list). In this framework, the 631 
overall ability of the model to resolve positive from negative outcomes is evaluated by analyzing the 632 
Area Under a ROC curve (AUC) where AUCperfect=100% and AUCrandom=50% (percentage signs are 633 
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omitted throughout the text and figures). All ROCs are calculated through pROC 102 using the analytic 634 
Delong method for AUC confidence intervals 103. Bootstrapped AUC CIs (N	=	106) were precise to 4 635 
decimal places suggesting that analytic CIs are valid for the NYCOMPS dataset. 636 

With several of our datasets, no definitive standard or clear-cut classification for positive 637 
expression exists. However, the aim is to show and test all reasonable classification thresholds of 638 
positive expression for each dataset in order to evaluate predictive performance as follows: 639 
Training data – The outcomes are quantitative (activity level), so each ROC is calculated by 640 
normalizing within each dataset to the standard well subject to the discussion in 4a above (LepB for 641 
PhoA, and InvLepB for GFP) (examples in Fig. 1D) for each possible threshold, i.e. each normalized 642 
expression value with each AUC plotted in Fig. 1E. 95% confidence intervals of Spearman's ρ are given 643 
by 106 iterations of a bias-corrected and accelerated (BCa) bootstrap of the data (Fig. 1A,C) 104. 644 
Large-scale – ROCs were calculated for each of the expression classes (Fig. 2E). Regardless of the 645 
split, predictive performance is noted. The binwidth for the histogram was determined using the 646 
Freedman-Diaconis rule105, and scores outside the plotted range comprising <0.6% of the density were 647 
implicitly hidden. 648 
Small-scale – Classes can be defined in many different ways. To be principled about the matter, ROCs 649 
for each possible cutoff are presented based on definitions from each publication (Fig. 3C,E,G, 650 
Supplementary Fig. 2B,D,F). See Methods 1 for any necessary details about outcome classifications for 651 
each dataset. 652 
 653 
6. Feature Weights 654 
Weights for the learned SVM are pulled directly from the model file produced by SVMlight and are given 655 
in Supplementary Table 1. 656 
 657 
8. Availability 658 

All analysis is documented in a series of R notebooks 106 available openly at 659 
github.com/clemlab/IMProve. These notebooks provide fully executable instructions for the 660 
reproduction of the analyses and the generation of figures and statistics in this study. The IMProve 661 
model is available as a web service at clemonslab.caltech.edu. Additional code is available upon request.  662 
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25 

Fig. 1. Training performance. (A) A comparison of GFP activity 16 with measured folded protein 26 859 
where each point represents the mean for a given gene tested in both works, and error bars plot the 860 
extrema. Spearman’s rank correlation coefficient and 95% confidence interval (CI) 104 are shown. (B) 861 
Plates are the number of independent sets of measurements within which expression levels can be 862 
reliably compared. Genes are the number of proteins for which the C-terminus was reliably ascertained 863 
16. Observations are the total number of expression data points accessible. Total pairs are the number of 864 
comparable expression measurements (i.e. those within a single plate). Kendall’s τ is the metric 865 
maximized by the training process (See Methods 4b). The color of the column heading identifying each 866 
experimental set is retained throughout the figure. (C) Agreement against the normalized outcomes 867 
plotted as the mean activity (see Methods 5 for definition) versus the score with error bars providing the 868 
extent of observed activities (Spearman’s ρ and 95% CI noted). (D) Illustrative Receiver Operating 869 
Characteristics (ROC) for thresholds at 25th and 75th percentile in activity with the number of positive 870 
outcomes at that threshold, the Area Under the Curve (AUC), and 95% CI indicated. (E) The AUC of 871 
the ROC at every possible activity threshold. 872 
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Fig. 2. Success of the model against outcomes from NYCOMPS. (A) An overview of the NYCOMPS 874 
outcomes and (B) a histogram of the number of conditions tested per gene colored based on outcome. 875 
(C) Receiver Operating Characteristics for positive groupings given by Only Positive outcomes genes 876 
(red) and genes with at least one positive outcome (pink). The percent positive for each group 877 
(corresponding color), total counts (black), and Area Under the Curve (AUC) values with 95% 878 
Confidence Interval (CI) are shown. The ROC considering genes with Mixed outcomes only as positive 879 
is shown as a blue dashed line with an AUC of 53.5 (51.8-55.2). The grey dashed line shows the 880 
performance of a completely random predictor (AUC = 50). (D) Histograms of genes with Only Positive 881 
(red) and Only Negative outcomes (grey) across IMProve scores (binned as described in Methods 5). 882 
The percentage of Only Positive outcomes in each bin is overlaid as a brown line (right axis). (E) The 883 
Positive Predictive Value (PPV) plotted for each percentile IMProve score, e.g. 75 on the x-axis 884 
indicates the PPV for the top 25% of genes based on score for genes, where positive indicates genes 885 
with Only Positive outcomes. The dashed line shows the overall success rate of the NYCOMPS 886 
experimental outcomes (~11% Only Positive). (F) The fold change in the PPV as a function of IMProve 887 
score relative to the success rate of NYCOMPS. (G) The AUCs for outcomes across all trials and within 888 
the most-tested plasmids along with 95% CI. Performances are also split by predicted C-terminal 889 
localization 39. The numbers below indicate the total number of trials for each group and the percent 890 
within that group that were positive. (H) The NYCOMPS dataset split by the presence or absence of a 891 
Pfam family in the training set with AUCs calculated by considering Only Positive genes as positive 892 
outcomes. 893 
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Fig. 3. Success of the model against small scale outcomes. (A) Summary of the model’s performance 895 
against NYCOMPS and a variety of small scale expression experiments. Positive outcomes refer to 896 
those in the highest group as assigned by the authors of the respective studies. Where targets were tested 897 
in more than one condition (e.g. different plasmids or strains), the number of distinct proteins are 898 
indicated in parenthesis with a dagger. (B) The expression of archaeal transporters in up to 6 trials 44. 899 
Positive expression count is plotted above the dashed line and negative outcomes below the line. (C) 900 
Quantitative expression outcomes of those transporters as detected by Coomassie Blue. (D) Receiver 901 
Operating Characteristics (ROC) along with Areas Under the Curves (AUC) and 95% confidence 902 
interval as well as the total number of positives for the given threshold (red hues) along with the total 903 
outcomes (black) are presented. In each curve, increasing expression thresholds are displayed as deeper 904 
red. 905 
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Fig. 4. Feature contributions to the model. (A) Classifying features by the type of sequence they are 907 
calculated from. (B) Considering the training set (as in Fig. 1), Spearman correlation coefficients with 908 
95% confidence intervals using individual feature categories for each grouping of data within the 909 
training set of E. coli IMPs. Colors indicate the subset being assessed (green, whole cell GFP 910 
fluorescence; orange, alkaline phosphatase activity; purple, folded protein by in-gel fluorescence). (C) 911 
Protein/nucleotide feature dependence within the training set substantiated by the AUC of the ROC at 912 
every possible activity threshold for feature subsets independently (as in Fig. 1E). (D) The AUC and 913 
95% confidence intervals using only protein or nucleotide features. (E) Protein/nucleotide feature 914 
dependence across small scale datasets shown as AUCs of the ROC along with 95% CI for the condition 915 
with the best overall predictive power (black).  916 
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Fig. 5. Usage of the model within IMP families and for optimization of expression. (A) Outcomes 918 
for specific protein families with an optimal IMProve score threshold indicated. Genes are shown in the 919 
chart as dots colored based on outcomes from trials: Only Positive (red), Only Negative (grey), and 920 
Mixed (blue). Overall statistics, as in Supplementary Table 3, are noted. Dashed lines represent the 921 
optimal threshold from the ROC curves. For the top two rows, each was only tested in a single condition 922 
(N: His-FLAG-TEV-gene). The bottom three rows are larger pools from NYCOMPS where there are 923 
multiple trials for many of the genes.  (B) A table curated from Supplementary Table 3 where Pfams 924 
were selected based on specific criteria (minimum 10 trials, 4 positive and 4 negative outcomes) and 925 
ordered by AUC. Proteins, as in A, that have known crystal structures within the family are highlighted 926 
in purple. DUFs are domains of unknown function. For context, the following Pfam families correspond 927 
to TCDB classes: PF05425, 9.B.62; PF02667, 2.A.73; PF03595, 2.A.16; PF00999, 2.A.36, 2.A.37; 928 
PF00535, 9.B.32; PF03601, 2.A.98; PF02537, 1.A.43; PF01757, 9.B.97; PF02378, 4.A.1, 4.A.2, 4.A.3; 929 
PF02690, 2.A.58; PF02632, 2.A.88 107. (C) A comparison of the predictive capacity of IMProve 930 
compared to using silent mutations engineered to increase anti-SD sequence binding propensity 26. The 931 
table presents experimental relative expression level (mutant over wild-type sequence) versus 932 
predictions from relative changes in either IMProve score or SD-like sites. The cells are colored as a 933 
heat map from red (lower expression) to blue (higher expression).  934 
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S3 

Supplementary Fig. 1. Success of the model against a variety of small scale outcomes. For each set, 3 
vertical lines indicate the median IMProve score. Receiver Operating Characteristics (ROC) along with 4 
Areas Under the Curves (AUC) and 95% confidence interval as well as the total number of positives for 5 
the given threshold (red hues) along with the total outcomes (black) are presented. In each curve, 6 
increasing expression thresholds as defined by the original publication are displayed as deeper red. The 7 
Reciever Operating Characteristic (ROC) with each cutoff is plotted, where a higher cutoff is represented 8 
by a deeper red, followed by the Area Under the Curves (directly below) in colors that correspond to the 9 
respective curve. (A,B) Mammalian GPCR expression in either E. coli (top) or P. pastoris (bottom). (C,D) 10 
Experimental expression of 116 H. pylori membrane proteins in E. coli in at most 3 vectors (238 trials) 11 
scored as either a 1, 2, or 3 from the outcome of a dot blot as well as Coomassie Staining of an SDS-12 
PAGE gel for two of the vectors. To compare the three vectors with a single set of scores, the two scores 13 
were averaged to give a single number for a condition making them comparable to the third vector while 14 
yielding 2 additional thresholds (1.5 and 2.5) and the 6 total levels shown. (E,F) Experimental expression 15 
of M. tuberculosis membrane proteins plotted based on outcomes. (G,H) Pooled outcomes from the 16 
expression of 87 P. aeruginosa membrane proteins in E. coli across 3 plasmids and 2 strains scored on a 17 
relative scale. (I,J) Expression of 77 T. maritima membrane proteins in E. coli noted as purified (5), not 18 
purified but expressed (14), or neither. (K,L) Expression of 37 microbial secondary transporters in 4 19 
IPTG-inducible vectors (144 trials) in E. coli quantified as 10 ng/mL (pink) or 100 ng/mL (red) via dot 20 
blot. 21 
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S5 

Supplementary Fig. 2. Complete set of feature correlations and their individual contributions to the 23 
model. Features are ordered first by category and then by weight (grey bars). Labels are green for protein-24 
sequence derived and brown for nucleotide-sequence derived features. Pearson correlation coefficient 25 
between each pair of features across the NYCOMPS dataset is plotted (right). See S1 Table for a detailed 26 
description of each feature. Feature categories are overlaid as square boxes and indicated by black bars on 27 
the top, left, and right of the correlation matrix. 28 
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S7 

Supplementary Fig. 3. Feature contributions to the model across datasets used for training and 30 
validation. (A) Pearson correlation coefficients between feature categories are shown. Feature labels are 31 
green for protein-sequence derived and brown for nucleotide-sequence derived. (B) Total weight for each 32 
category is represented as a bar. The contribution of each feature to the category is shown by partitioning 33 
the bar. The red dot indicates the total sum of weights within the category. (C) Feature category 34 
dependence within the training set is shown by Spearman’s ρ and 95% CI between the normalized 35 
outcomes versus the feature subset. (D) Considering the NYCOMPS data set (as in Fig 2), the Area Under 36 
the Curve (AUC) of a Receiver Operating Characteristic and 95% confidence interval when predicting 37 
solely by features from the specified category against the NYCOMPS dataset. Red, using positive only as 38 
the cut-off for individual genes (Fig 2C); grey, using positive outcomes within each plasmid and 39 
solubilization condition (as in Fig 2E). 40 
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Type Category Calculation Method/Tools Abbreviation Description Used for Model SVM Weight Index by 
Weight

CAI Codon Adaptation Index T 0.10882621 25

Nc Effective number of codons F 0.088591106 26

GC3s GC content at the synonymous position T -0.04667477 51

CpG Frequency of CG di-nucleotides T -0.16528028 72

Biopython avgCU Average Codon Usage T 0.11009531 21

CPS Sum of Codon Pair Score values T 0.79854816 2

CPSpL Codon Pair Bias T -0.33074614 77

tAI tRNA Adaptation Index T -0.03330641 47

tAI10Min Minimum tAI score over 10 codon windows T -0.09449133 58

tAI10Max Maximum tAI score over 10 codon windows T 0.14543056 19

tAI10q25 25th percentile of tAI scores over 10 codon windows T 0.057585392 29

tAI10q75 75th percentile of tAI scores over 10 codon windows T 0.11830714 19

avgCU_first40 Codon Usage over the first 40 codons T 0.008758551 35

avgCU_first20 Codon Usage over the first 20 codons T -0.18854903 65

avgCU_first5 Codon Usage over the first 5 codons T -0.09333684 52

avgCU_first10 Codon Usage over the first 10 codons T 0.22332223 14

GC Overall GC content T 0.11720225 18

GC10min Minimum %GC over 10 codon windows T -0.12703171 56

GC10q25 25th percentile of %GC over 10 codon windows T 0.052650452 25

GC10q75 75th percentile of %GC over 10 codon windows T 0.11153498 18

GC10max Maximum %GC over 10 codon windows T -0.01430641 34

X40deltaG ΔG of the lowest free energy structure for the first 40 codons T 0.075478621 22

X40freqens Frequency of the lowest free energy structure within the ensemble for the first 40 codons T -0.12966549 51

plus10valRNAss Average hybridization probability centered around +10 base, i.e.  average of +5 to +15 (Goodman, et al., 2013) T 0.080081761 21

zeroto38avgRNAss Average hybridization probability over 10 base windows from 0 to +38 T 0.48096541 7

zeroto38minRNAss Minimum hybridization probability over 10 base windows from 0 to +38 T -0.0451249 34

zeroto38q25RNAss 25th percentile of hybridization probability over 10 base windows from 0 to +38 T -0.34232038 56

zeroto38q75RNAss 75th percentile of hybridization probability over 10 base windows from 0 to +38 T -0.24050736 53

zeroto38maxRNAss Maximum hybridization probability over 10 base windows from 0 to +38 T 0.034986421 23

deltaG ΔG of the lowest free energy structure F #N/A #N/A

freqens Frequency of the lowest free energy structure within the ensemble T 0.027135454 27

avgRNAss Average hybridization probability over 10 base windows T 0.46994936 7

minRNAss Minimum hybridization probability over 10 base windows T -0.0498676 32

q25RNAss 25th percentile of hybridization probability over 10 base windows T -0.09537871 39

q75RNAss 75th percentile of hybridization probability over 10 base windows T -0.08084998 37

maxRNAss Maximum hybridization probability over 10 base windows T -0.07990561 36

totalSDsites Total number of Shine-Dalgarno (SD)-like sites T -0.48917305 51

relareaSD Average anti-SD - SD hybridization energy for the whole protein T -0.07600968 33

codon16_36SD Total number of SD-like sites between codons 16 and 36 T -0.01342936 27

codon16_36relareaSD Average anti-SD - SD hybridization energy between codons 16 and 36 T 0.25027758 10

codon40_60SD Total number of SD-like sites between codons 40 and 60 T 0.013446409 22

codon40_60relareaSD Average anti-SD - SD hybridization energy between codons 40 and 60 T 0.082086273 17

-5_+2TM2SD Total number of SD-like sites lying in the region starting 5 residues before and ending 2 residues after the start of the 2nd transmembrane domain T -0.08689712 31

-5_+2TM2relareaSD Average anti-SD - SD hybridization energy between 5 codons prior to and 2 codons after the start of the 2nd TM segment T -0.03265401 26

DisEMBL 1.4 hotloops Number of “hot” loops, which are classified as “highly” dynamic based on Cα temperature, minus 1 T 0.071120471 17

avgRONNTM Average RONN score for TMs T -0.12197997 27

avgRONN Average RONN score for the entire protein T 0.49654859 6

q25RONN 25th percentile of RONN scores T -0.19440715 37

q75RONN 75th percentile of RONN scores T -0.35734981 40

avgRONNloop Average RONN score of loops T -0.0781056 26

avgRONNextloop Average RONN score of extracellular loops T 0.20923467 10

avgRONNcytloop Average RONN score of cytoplasmic loops T 0.16293134 11

avgRONNNterm Average RONN score of the N-terminus, i.e.  loop that precedes the first TM segment F -0.11986996 28

avgRONNCterm Average RONN score of the C-terminus, i.e. loop that follows the final TM segment T 0.082627214 13

avgRONNTM1_2 Average RONN score for the loop between the first 2 TM segments T -0.02097784 19

Overall Codon usage

Codon Pair Score Code from Coleman, et al., 2008

tRNA adaptation index codonR

RNAfold 2.1.9

RONN 3.1

Overall Disorder 

Loop Disorder

5' Codon Usage Biopython

Nucleotide

Protein

codonW 1.4.2

Shine-Dalgarno-like sites 
(Fluman, et al., 2014)

GC content Custom

RNAfold 2.1.9

NUPACK

NUPACK

RNAfold 2.1.9

5' RNA Structure

Overall RNA structure 
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RONNlongestloop Average RONN score for the longest loop T -0.07889783 22

avgTMlen Average length of TM segments T 0.012067568 16

membrCont Number of residues predicted to be part of a TM segment T 1.0901064 1

membrContNorm MembrCont / length of protein T -0.1495994 23
avgHydroGES Average hydrophobicity (GES scale as in Daley, et al., 2005) T 0.51562566 2
minhyd_19GES Minimum hydrophobicity over 19 residue windows T 0.16866946 7
minhyd_41GES Minimum hydrophobicity over 41 residue windows T 0.004997028 12
maxhyd_41GES Minimum hydrophobicity over 41 residue windows T -0.00273499 12
nterm_hydOCT Average hydrophobicity of the N-terminus T 0.052106239 9

loop1_avghydOCT Average hydrophobicity of the first loop (Octanol-water partitioning scale) T -0.10978091 15
loop1_minhyd_OCT 19 Minimum hydrophobicity of 19 residue windows T 0.094023138 8
loop1_maxhyd_OCT 19 Maximum hydrophobicity of 19 residue windows T 0.2844961 5

HYD1stTM Hydrophobicity of the first TM segment T -0.15915927 14

HYDallTMs Average hydrophobicity of all TM segments T 0.23088375 5

delG1stTM ΔG of insertion of the 1st TM segment T 0.041452195 6

delGallTMs Average ΔG of insertion of all TM segments T -0.18423484 13

aromatacityNorm Average aromaticity T 0.15027378 1

GPcount Total number of glycines and prolines in TMs  / number of TMs T -0.05606809 1

numPosCyt Total (-) charges (R, K, H) on cytoplasmic loops T -0.27489546 13

numPosNormCyt numPosCyt / the total cytoplasmic loop length T -0.02318138 7

numNegCyt Total (+) charges (E, D) on cytoplasmic loops T 0.57904214 1

numNegNormCyt numNegCyt / the total cytoplasmic loop length T -0.32880098 11

numPosExt Total (+) charges (R, K, H) on extracellular loops T 0.50109029 1

numPosNormExt numPosExt / divided by the total extracellular loop length T -0.16209885 9

numNegExt Total (-) charges (E, D) on extracellular loops T 0.015456084 4

numNegNormExt numNegExt / the total extracellular loop length T -0.03816556 4

numPos_LongestCytLoop Total (+) charges (R, K, H) on the longest cytoplasmic loop T 0.44503307 1

nterm_neg Total (-) charges (E, D) on the N-terminus T -0.35054731 6

len1_2loop Length of the loop between the first two TM segments (Fluman, et al., 2014) T -0.11428721 5

longestCytLoopNorm Length of the longest cytoplasmic loop divided by the length of the protein T -0.50917369 5

longestExtLoop Length of the longest extracellular loop T 0.36319321 1

longestExtLoopNorm Length of the longest extracellular loop divided by the length of the protein T -0.90276045 4

lenNterm Length of N-terminus F #N/A #N/A

lenNtermNorm LenNterm / length of protein T 0.53105849 2

seqLen Protein length, i.e.  number of residues T -1.62956 4

weight Molecular weight F #N/A #N/A

pI Isoelectric point T -0.09808014 3

Biopython (ProtParam)Length/pI

Biopython (ProtParam)

Hydrophobicity

Loop length

Loop charge

Phobius/Custom

RONN 3.1
Loop Disorder

Protein

TM Size/Count

T. Hessa, et al., 2007

Custom

Phobius/Biopython
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S10 

Supplementary Table 1. Sequence parameter weights and descriptions. Weights are presented after 43 
normalizing to the mean value for clarity. Features that were calculated but removed in pre-processing are 44 
noted (Methods 3). 45 
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Count Positive 
Count AUC

Lower 
bound

95% CI

Upper 
bound

95% CI
Count Positive 

Count AUC
Lower 
bound

95% CI

Upper 
bound

95% CI
5680 693 66.3 64.2 68.5
2764 241 67.6 64.0 71.2
5680 1528 58.9 57.3 60.6
2764 569 59.9 57.3 62.6
11435 1966 62.1 60.8 63.5
5679 720 62.7 60.5 64.8
5072 991 62.2 60.2 64.1
2658 353 63.9 60.8 67.1
2534 405 64.5 61.6 67.3
875 119 60.3 54.9 65.6
532 99 58.7 52.5 64.8
231 29 59.3 49.3 69.3
226 21 67.2 55.3 79.0
157 10 72.2 59.8 84.6
1117 129 55.4 50.0 60.8
693 49 54.0 45.5 62.5
1381 216 58.5 54.6 62.3
744 100 58.6 52.9 64.2
347 61 64.4 57.5 71.3
164 32 74.9 66.4 83.3
226 44 65.2 55.9 74.4
157 28 79.1 69.8 88.4

C_LDAO

 C-terminal Cytoplasmic (Predicted)
 C-terminal Periplasmic (Predicted)

All

934 67.1 65.2 68.9

His-MBP-TEV- LDAO MSGC.9_LDAO

His-GST-TEV- DDM MSGC.24

-TEV-His

His-TEV- DDM MSGC.7

His-MBP-TEV- DDM MSGC.9

Gene Outcomes
(Only positive)

NYCOMPS 
Abbreviation

Solubilization 
DetergentGene Structure

DDM MSGC.28

Gene Outcomes
(At least 1 positive)

All Expression Trials

His-FLAG-TEV- DDM N

-TEV-His DDM C

-TEV-His LDAO

61.158.359.72097
8444

64.861.663.27730 1344

17114 2686 62.6 61.5 63.8

64.454.059.2128763

3409 524 63.6 61.1 66.1

60.151.155.61781810

383 31 69.0 60.1 77.8

73.462.467.993511

2125 316 58.6 55.4 61.8

383 72 70.8 64.0 77.6

Supplementary Table 2
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S12 

Supplementary Table 2. AUC values for the NYCOMPS dataset. AUC values and 95% confidence 47 
intervals are presented in summary, by expression condition, and by predicted C-terminal localization as 48 
well as for IMProve scores calculated without the most computationally expensive RNA secondary 49 
structure calculation. 50 
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S13 

Supplementary Table 3. Predictive performances of the model across protein families. The proteins 51 
and performances are with respect to those tested by NYCOMPS as summarized in Fig 2. This data is 52 
available in an interactive format at clemonslab.caltech.edu. 53 
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