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Abstract

Diverse cell types employ mechanisms to maintain size homeostasis and min-
imize aberrant fluctuations in cell size. It is well known that exponential
cellular growth can drive unbounded intercellular variations in cell size, if
the timing of cell division is size independent. Hence coupling of division
timing to size is an essential feature of size control. We formulate a stochas-
tic model, where exponential cellular growth is coupled with random cell
division events, and the rate at which division events occur increases as a
power function of cell size. Interestingly, in spite of nonlinearities in the
stochastic dynamical model, statistical moments of the newborn cell size
can be determined in closed form, providing fundamental limits to suppres-
sion of size fluctuations. In particular, formulas reveal that the magnitude
of fluctuations in the newborn size is determined by the inverse of the size
exponent in the division rate, and this relationship is independent of other
model parameters, such as the growth rate. We further expand these re-
sults to consider randomness in the partitioning of mother cell size among
daughters at the time of division. The sensitivity of newborn size fluctua-
tions to partitioning noise is found to monotonically decrease, and approach
a non-zero value, with increasing size exponent in the division rate. Fi-
nally, we discuss how our analytical results provide limits on noise control
in commonly used models for cell size regulation.
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Noise suppression in cell-size control 2

Introduction

How cells regulate the timing of division to ensure size homeostasis and avoid
getting abnormally large (or small) remains as one of the unsolved problems
in biology [1]. Perhaps the simplest model of cell size regulation is one
where the size of an individual cell grows exponentially over time, random
cell division events occur at discrete times that partition size between two or
more daughters cells. If the division timing is governed by a size-independent
stochastic process (such as, a timer measuring the time elapsed since the last
division event), then the statistical fluctuations in cell size grow unboundedly
over time [2]. As a consequence, size homeostasis requires division timing
to be regulated via a size-dependent process. Not surprisingly, uncovering
mechanisms mediating size sensing and control remains a vigorous area of
theoretical and experimental research in diverse organisms ranging from
prokaryotes to microbial eukaryotes to plant and animal cells [3–27].

We formulate a simple stochastic model for size control, where the size
grows exponentially over time throughout the cell cycle. Size dynamics is
interspersed with random division events that divide size by approximately
half (assuming two daughters). A key feature of the model is that the
probability of division event increases as a power function of size. While such
nonlinear stochastic dynamical systems are typically analytically intractable,
we show that moments of the newborn size (i.e., size just after a division
event) can be quantified in closed form. These results provide novel insights
into how statistical variations in the newborn size are controlled by the
division rate, and the randomness in size partitioning between daughters.
Finally, we show how combining our analytical results with size distribution
measurements allows inference of division rates.

Stochastic formulation of cell-size control

Let v(t) denote the size of an individual cell at time t. Depending on the
cell type, size can be quantified via different metrics, such as, cell length in
rod-shaped bacteria, or cell volume/mass in animal cells. The size grows
exponentially over time as

dv

dt
= αv, (1)

where α > 0 is referred to as the exponential growth coefficient. Cell divi-
sion events occur stochastically with a division rate f(v, τ ), where τ is a
timer (cell-cycle clock) measuring the time elapsed from when the cell was
born. More specifically, the probability of cell division occurring in the next
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infinitesimal time interval (t, t + dt] is given by f(v, τ )dt. Consistent with
experimental observations [5], the division rate is a non-decreasing function
in both arguments, i.e., the likelihood of division increases with size and
cell-cycle progression. Whenever a cell-division event occurs, the states are
reset as

v → v

2
, τ → 0, (2)

assuming that the mother cell divides into two identically-sized daughters.
It is well known that a size-independent division rate (f only depends on

timer τ ) that yields a finite non-zero average cell size, leads to unbounded
intercellular size variations [2, 28], i.e.,

lim
t→∞

〈
v2
〉
→∞, (3)

where the symbol 〈 〉 is used to denote the expected value of a random
variable. Hence, a size-dependent division rate is an essential feature for
size homeostasis. We particularly restrict ourselves to a special class of
division rates that take the form of power functions

f(v, τ ) =
(v
v̄

)m
(4)

where v̄ and m are positive constants. In the limit m→∞, (4) corresponds
to the well-known sizer paradigm, where the mother cell divides upon reach-
ing a critical size threshold v̄ [29–34]. Given that sizer implementation is
never perfect (m is always finite), how does the extent of random fluctua-
tion in cell size scale with the exponent m? Does this scaling depend on the
exponential growth coefficient α and v̄? How does the scaling change if the
two daughters are not identically-sized?

One approach to address these questions is to compute the statistical
moments of v, and investigate them as a function of model parameters.
For the stochastic dynamical system (1)-(4), the following set of differential
equations describes the time evolution of moments

d
〈
vl
〉

dt
= lα〈vl〉 −

〈
vl+m

〉
v̄m

(
1− 1

2l

)
, l ∈ {1, 2, . . .} (5)

[35, 36]. Note that for any m > 0, (5) suffers from the problem of un-
closed moment dynamics: the time evolution of any lower order moment
depends on higher order moments. Hence, moments cannot be computed
from (5), and approximate closure schemes are typically employed to solve
such systems [35, 37–48].
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Statistical moments of newborn cell size

Note that considerable cell-to-cell variations in v can simply be attributed
to the fact that different cells are in different stages of their cell cycle. Tak-
ing this into account, perhaps a more meaningful quantity is the newborn
cell size (v conditioned on τ = 0). We reformulate the size control model
presented in the previous section into a discrete-time stochastic system that
tracks the newborn size across generations

Consider a single cell undergoing cycles of growth and division. Let
random variable vi denote the newborn size during the start of the ith cell
cycle. Then, given that size increases exponentially over time, and the
division rate f(v, τ ), the time Ti from the start of the ith cell cycle when
division is triggered follows the probability density function (pdf)

Probability{Ti ∈ (τ, τ + dτ)} = f(vie
ατ , τ)e−

∫ τ
y=0 f(vie

αy ,y)dydτ (6)

[2, 49, 50]. Note that a constant function f in (46) would correspond to
exponentially distributed Ti. In our case, f takes the following time-varying
form based on (4)

f(vie
ατ , τ) =

(vi
v̄

)m
emατ (7)

that results in Ti with lower statistical variations than an exponential ran-
dom variable (i.e., memory in division timing), and dependent on vi (i.e.,
larger newborns divide earlier as compared to smaller newborns). Having
determined the time to division, the newborn size in the next cycle is

vi+1 =
vie

αTi

2
, i ∈ {1, 2, . . .}. (8)

This discrete-time stochastic system yields the following lth order moment
of vi+1 conditioned on vi

2l
〈
vli+1|vi

〉
=

∫ ∞
τ=0

vlie
lατf(vie

ατ , τ)e−
∫ τ
y=0 f(vie

αy ,y)dydτ (9)

=vli + lα

∫ ∞
τ=0

vlie
lατe−

∫ τ
y=0 f(vie

αy ,y)dydτ, (10)

where the first integral is simplified via integration by parts. Next, we show
how this recurrence equation can be solved in moments space.
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Linear dependence of division rate on cell size

We first restrict ourselves to m = 1 in the division rate (4), which cor-
responds to the probability of division-event occurrence increasing linearly
with size. In this case, using

f(vie
ατ , τ) =

vi
v̄
eατ , (11)

(10) can be written as

2l
〈
vli+1|vi

〉
=vli + v̄lα

∫ ∞
τ=0

vl−1i e(l−1)ατf(vie
αy, y)e−

∫ τ
y=0 f(vie

αy ,y)dydτ,

=vli + 2l−1v̄lα
〈
vl−1i+1|vi

〉
, l ∈ {1, 2, . . .}. (12)

Now unconditioning on vi and taking the limit i→∞(
2l − 1

)
lim
i→∞

〈
vli

〉
=2l−1v̄lα lim

i→∞

〈
vl−1i

〉
, l ∈ {1, 2, . . .}. (13)

The average newborn size at steady state is obtained by substituting l = 1

lim
i→∞
〈vi〉 = v̄α. (14)

In general, (13) can be solved iteratively to yield

lim
i→∞

〈
vli

〉
=
v̄lαl

2l

l∏
j=1

j2j

2j − 1
(15)

Thus, in spite of unclosed moment dynamics, the moments of newborn size
can be computed exactly in closed form.

One observation from (15) is that if we define a normalized size (size
scaled by its average)

v̂i =
vi
v̄α
. (16)

then all moments of v̂i become invariant of α and the mean cell size. This
was dramatically seen in experiments with E. coli, where the newborn size
distributions across different growth conditions collapse on top of each other
once scaled by their respective means [51]. The noise in newborn size, as
quantified by its Coefficient of Variation (CV ) squared, is give by

CV 2 :=
limi→∞

〈
v2i
〉

limi→∞ 〈vi〉2
− 1 =

1

3
(17)
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and is completely independent of model parameters v̄ and α. CV 2 computed
in (17) implies a standard deviation that is ≈ 58% of the average size. An
interesting point to note is

lim
i→∞

〈
v3i
〉

=
27

28

limi→∞
〈
v2i
〉3

limi→∞ 〈vi〉3
(18)

Since for any lognormally distributed random variable Y ,

〈Y 3〉 =
〈Y 2〉3

〈Y 〉3
, (19)

(18) suggests that as far as the third-order moment is concerned (i..e, skew-
ness), the newborn size at equilibrium is approximately lognormal. Next,
we consider the general case of any exponent m in (4).

Division rate as a power function of cell size

Before considering the general case it is worthwhile to note that as m→∞,
the size just before, and after division, approaches v̄ and v̄/2 with probability
one, respectively. Thus, one expects the noise in newborn size CV 2 → 0 as
m→∞, but the question remains as to how fast it goes to zero.

Our strategy in this case relies on making the division rate linear through
the following transformations

zi :=
(vi
v̄

)m
, z :=

(v
v̄

)m
. (20)

Given that v(t) increases exponentially between division events, z(t) follows
similar dynamics, but with a different exponential growth coefficient

dz

dt
= αmz, (21)

with resets
z → z

2m
, τ → 0, (22)

that are activated at the time of division. This transformation leads to the
following discrete-time system

zi+1 =
zie

αTi

2m
, i ∈ {1, 2, . . .}, (23)

where Ti is given by (46) with division rate f = z. Following steps similar
to the previous section yield the following moments for zi

lim
i→∞

〈
zli

〉
=
αlml

2lm

l∏
j=1

j2mj

2mj − 1
. (24)
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The case of exponent m ≤ 1

To obtain the moments of the newborn size using (24) we first consider the
case m = 1/n ≤ 1, where n is a positive integer. In this case,

vi = v̄zi
n =⇒ lim

i→∞

〈
vli

〉
= v̄l lim

i→∞

〈
znli

〉
=
( v̄

2

)l (α
n

)nl nl∏
j=1

j2
j
n

2
j
n − 1

, (25)

which yields the following noise in newborn size

CV 2 =
limi→∞

〈
v2i
〉

limi→∞ 〈vi〉2
− 1 =

limi→∞
〈
z2ni
〉

limi→∞ 〈zni 〉
2 − 1 =

∏2n
j=n+1

j2
j
n

2
j
n−1∏n

j=1
j2

j
n

2
j
n−1

− 1 ≥ 1

3

(26)

As expected from (18), CV 2 = 1/3 for m = 1 (n = 1). Moreover, CV 2

increases with decreasing m, and CV 2 → ∞ as m → 0 (n → ∞). This
latter result is consistent with the fact that a size-independent division rate
yields infinite variance in newborn size [2, 52].

The case of exponent m ≥ 1

Experimental quantification of size distributions in both E. coli and mam-
malian cells report CV 2 values considerably smaller than 1/3 [5, 51, 53–55].
Since CV 2 ≥ 1/3 for m ≤ 1, and CV 2 → 0 as m → ∞, suggests that the
physiological values of m are much larger than one. When m ≥ 1

vi = v̄zi
1
m , (27)

where all steady-state moments of zi are given by (24). While exact analyt-
ical formulas for the moments of vi are not available in this case, we show
how simple approximate formulas can be derived.

The first approximation relies on Taylor series. Assuming fluctuations in
zi are small, expanding the right-hand-side of (27) around the steady-state
average limi→∞

〈
zi
〉

lim
i→∞
〈vi〉 ≈ v̄ lim

i→∞
〈zi〉

1
m (28)

vi
limi→∞ 〈vi〉

− 1 ≈ 1

m

(
zi

limi→∞ 〈zi〉
− 1

)
. (29)
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Squaring both sides of (29) and taking the expected value yields

CV 2 =
limi→∞

〈
v2i
〉

limi→∞ 〈vi〉2
− 1 ≈ 1

m2

(
limi→∞

〈
z2i
〉

limi→∞ 〈zi〉2
− 1

)
, (30)

which using (24) yields the following approximation

CV 2 ≈
21+m

1+2m − 1

m2
. (31)

While this approximation is exact for m = 1 (CV 2 = 1/3), it predicts
noise in newborn size to monotonically decrease with increasing m with the
asymptote

CV 2 ≈ 1

m2
, m� 1. (32)

The second approximation works for large values ofm. Assumingm� 1,
then from (20) and (24)

lim
i→∞

〈
vlmi

〉
=
( v̄

2

)lm
αlml

l∏
j=1

j2mj

2mj − 1
(33)

≈
( v̄

2

)lm
αlml

l∏
j=1

j = λlml!, λ =
v̄ (αm)

1
m

2
. (34)

The moments in (34) are consistent with the newborn size at equilibrium
following a Weibull distribution with scale parameter λ and shape parameter
m [33]. For such a Weibull distribution the coefficient of variation squared
is given by

CV 2 ≈
Γ
(
1 + 2

m

)
Γ
(
1 + 1

m

)2 − 1 (35)

≈ 1.65

m2
, m� 1, (36)

where Γ denotes the Gamma function. Both the above approximations are
plotted in Fig. 1. While (31) is much more accurate for 1 ≤ m ≤ 5, (35)
is better for m ≥ 6. Note that both approximations imply a 1/m scaling of
the newborn size CV .
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Size exponent in the division rate
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Figure 1: Noise in newborn cell size, as qauntified by its steady-state co-
efficient of variation squared, is plotted as function of the size exponent m
in the division rate (4). For each m, the exact noise level is determined
by running 107 Monte Carlo simulations of the discrete-time system (23).
While the approximation (31) is more accurate for small m, approximation
(35) performs better for large m.

Incorporating partitioning errors

Our analysis up till now has assumed perfect symmetric division of a parent
cell into two daughters. Next we consider more realistic partitioning sce-
narios that allow for stochastic differences between daughter cell size. In
particular, at the end of ith cell cycle the size is reset as

v → βiv, (37)

where βi are independent and identically distributed random variable drawn
from a size-independent beta distribution with mean 〈βi〉 = 1/2. Noise in
the partitioning process is quantified via the coefficient of variation squared
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of βi, CV
2
β . Experimentally, CV 2

β is quantified by tracking sizes of both
daughters via

CV 2
β =

〈(
vi,1 − vi,2
vi,1 + vi,2

)2
〉

(38)

where vi,1 and vi,2 denote the two daughter cell sizes just after division.
The value of CV 2

β is estimated to be 10−2 for mammalian cells [5], and

10−3 − 10−4 for E. coli [53]. The low partitioning noise in E. coli is due to
the precise positioning of the septal ring at the cell midpoint using the Min
protein system [56, 57].

In the limit m → ∞, i.e., division occurs upon attainment of a critical
size v̄, the newborn size is given by

vi = βiv̄ =⇒ CV 2 = CV 2
β , (39)

and hence, newborn size fluctuations are completely determined by the ran-
domness in the partitioning process. Does CV 2 become more or less sensitive
to CV 2

β for lower values of m? To address this question, we consider a linear
division rate (m = 1), where moments can be determined exactly. With
inclusion of random partitioning, the stochastic dynamics of the newborn
size is described by the discrete-time system

vi+1 = βivie
αTi , i ∈ {1, 2, . . .}, (40)

which yields the following moments of vi+1 conditioned on vi〈
vli+1|vi

〉
=〈βli〉vli +

〈βli〉v̄lα
〈βl−1i 〉

〈
vl−1i+1|vi

〉
, l ∈ {1, 2, . . .}. (41)

Unconditioning on vi and taking the limit i→∞

1− 〈βli〉
〈βli〉

lim
i→∞

〈
vli

〉
=

v̄lα

〈βl−1i 〉
lim
i→∞

〈
vl−1i

〉
, l ∈ {1, 2, . . .}. (42)

Solving this recurrence equation leads to the following moments

lim
i→∞

〈
vli

〉
= v̄lαl

l∏
j=1

j

〈βj−1i 〉
〈βji 〉

1− 〈βji 〉
(43)

Finally, substituting l = 1, 2 and using 〈β2i 〉 = (1 + CV 2
β )/4 results in

lim
i→∞
〈vi〉 = v̄α, CV 2 =

limi→∞
〈
v2i
〉

limi→∞ 〈vi〉2
− 1 =

1 + 5CV 2
β

3− CV 2
β

. (44)
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Our results show that for m = 1, CV 2 increases monotonically with CV 2
β ,

but unlike (40) the dependence is nonlinear. For small values of CV 2
β , CV 2

can be decomposed as

CV 2 ≈ 1

3
+

16

9
CV 2

β , CV 2
β � 1, (45)

where the terms on the right represent noise contributions from random
division events and stochastic partitioning, respectively. This result implies
that the sensitivity of newborn size fluctuations to random partitioning is
16/9 ≈ 1.78 for m = 1, and higher than the sensitivity for m =∞ (40).

Conclusion

In summary, we have analyzed a stochastic model for size control, where
the likelihood of division events takes the form of power functions. Exact
and approximate formulas quantifying the magnitude of fluctuations in the
newborn size were derived and reveal the following key insights:

• In the absence of partitioning noise (CV 2
β = 0), the extent of newborn

size fluctuations is predicted to scale inversely with the exponent m in
the division rate.

• Newborn size follows a lognormal distribution for values of m close to
one, and a Weibull distribution for m� 1.

• Consistent with experimental observations [51], the normalized size
defined by (16) has moments that are independent of the exponential
growth coefficient and the mean cell size.

• The inclusion of random partitioning (CV 2
β 6= 0) creates an additional

noise term that increases nonlinearly with CV 2
β . The senstivity of

this noise term to CV 2
β decreases with increasing m, and approaches

a value of one for m→∞.

Can the results presented here be generalized to other forms of division
rates? Recent size measurements in prokaryotes have uncovered the adder
strategy for size homeostasis, where division is triggered after the cell accu-
mulates a constant size from birth [51, 53, 58–60]. In our framework, the
adder can be implemented via

f(v, τ ) =

(
v (1− e−ατ )

v̄

)m
, (46)
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Noise suppression in cell-size control 12

and a large enough m corresponds to division occurring after adding a size
v̄ to the newborn size [61]. Note that (46) has timer control in addition to
size control that prevents a cell to divide just after birth (i.e., f(v, 0) = 0).
This added timer control ensures that for perfect size partitioning, the noise
in newborn size is always lesser than the sizer strategy (4) for the same
value of m [61]. This result has important implication for estimation of m
from data. For example, [51] showed that the CV of E. coli newborn was
≈ 15% across growth conditions. Using a CV 2 = .023, Fig. 1 provides a
value of m ≈ 7 for the division rate (4), and this implies a m < 7 for the
adder strategy. With the increasing focus of measuring size at a single cell
resolution, our theoretical results provide an important basis to understand
origins of size fluctuations, and in turn use these noise measurements to
uncover size control principles.
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