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Abstract 9 

Backround 10 

Complete and accurate annotation of sequenced genomes is of paramount importance to their utility 11 

and analysis. Differences in gene prediction pipelines mean that genome sequences for a species 12 

can differ considerably in the quality and quantity of their predicted genes. Furthermore, genes that 13 

are present in genome sequences sometimes fail to be detected by computational gene prediction 14 

methods. Erroneously unannotated genes can lead to oversights and inaccurate assertions in 15 

biological investigations, especially for smaller-scale genome projects which rely heavily on 16 

computational prediction. 17 

Results 18 

Here we present OrthoFiller, a tool designed to address the problem of finding and adding such 19 

missing genes to genome annotations. OrthoFiller leverages information from multiple related 20 

species to identify those genes whose existence can be verified through comparison with known 21 

gene families, but which have not been predicted. By simulating missing gene annotations in real 22 

sequence datasets from both plants and fungi we demonstrate the accuracy and utility of OrthoFiller 23 

for finding missing genes and improving genome annotation. Furthermore, we show that applying 24 
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OrthoFiller to existing “complete” genome annotations can identify and correct substantial numbers 25 

of erroneously missing genes in these two sets of species. 26 

Conclusions 27 

We show that significant improvements in the completeness of genome annotations can be made 28 

by leveraging information from multiple species. 29 

Introduction 30 

Genome sequences have become fundamental to many aspects of biological research. They provide 31 

the basis for our understanding of the biological properties of organisms, and enable extrapolation 32 

and comparison of information between species. Owing to the increasing availability and affordability 33 

[1][2] of whole-genome sequencing technology, genomic data sets are now produced at a rate at 34 

which it is infeasible to rely entirely on careful manual curation to annotate a new genome; rather it 35 

is taken as given that a considerable portion of the process must be automated. 36 

There has been substantial methodology development in the area of automated gene prediction, 37 

with the production of several effective algorithms for identifying genes in de novo sequenced 38 

genomes [3]. In general, these methods predict genes by learning species-specific characteristics 39 

from training sets of manually curated genes. These characteristics include the distribution of intron 40 

and exon lengths, intron GC content, exon GC content, codon bias, and motifs associated with the 41 

starts and ends of exons (splice donor and acceptor sites, poly-pyrimidine tracts and other features). 42 

These characteristics are then used to identify novel genes in raw nucleotide sequences. These 43 

prediction methods vary in their performance, as demonstrated by considerable disagreement in the 44 

genes and gene models that they predict [4][3]. For example, one study [4] comparing Augustus, 45 

GENSCAN, Fgenesh and MAKER, looked at the number of genes predicted on a sample set of D. 46 

melanogaster assemblies with varying numbers of scaffolds. At the extreme end, with 707 scaffolds, 47 

the most frugal prediction (MAKER, with 12687 predicted genes) was almost doubled by the most 48 

generous prediction (GENSCAN, with 22679 predicted genes). Thus it is to be expected that genome 49 

annotations generated by different research groups using different methodologies will differ 50 

considerably in the complement of genes that they contain.  51 
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Absent or inaccurate gene models can not only contribute to oversights in biological investigations, 52 

they can also lead to false assertions in large-scale genome and cross-species analyses [5]. For 53 

example, incorrectly missing gene annotations can be mistakenly interpreted as gene loss, and such 54 

interpretations can lead to mistaken inferences about the biological or metabolic properties of an 55 

organism. Similarly, missing gene models can lead to errors in gene expression analyses that map 56 

and quantify RNA-seq reads using predicted gene models. Here, reads derived from erroneously 57 

missing genes, as they have no reference to map to, have the potential to map to the wrong gene 58 

leading to errors in transcript abundance estimation. 59 

Much of the cost and effort involved in de novo genome annotation can be reduced by leveraging 60 

data from other taxa. Moreover, data from disparate taxa have the potential to be used to 61 

simultaneously improve a cohort of genome annotations in a mutualistic framework. A number of 62 

approaches have been developed to utilise data from other species to improve or assist the process 63 

of genome annotation. For example, an automated alignment-based fungal gene prediction 64 

(ABFGP) method [6] has been developed for fungal genomes. While this method works well on 65 

fungal genomes, it cannot be applied to other taxa and thus has limited general utility. 66 

OrthoFiller aims to simultaneously leverage data from multiple species to mutually improve the 67 

genome annotations of all species under consideration. It is designed specifically to find “missing” 68 

genes in sets of predicted genes from multiple species. That is, to identify those genes that should 69 

be present in a genome’s annotation, whose existence can be verified through comparison with 70 

known gene families. A standalone implementation of the algorithm is available under the GPLv3 71 

licence at https://github.com/mpdunne/orthofiller. 72 

Results 73 

Problem definition, algorithm overview and evaluation criteria 74 

OrthoFiller aims to find genes that are present in a species’ genome, but which have no predicted 75 

gene model in the genome annotation for that species. It takes a probabilistic, orthogroup-based 76 

approach to gene identification, leveraging information from multiple species simultaneously to 77 

improve the completeness of the genome annotations for all species under consideration. OrthoFiller 78 
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is not designed for ab initio gene prediction and requires that each genome under consideration 79 

possesses a basic level of annotation, taken to be at least 100 annotated genes. The genomes 80 

should ideally be from a set of related species from the same taxonomic group (genus, family, order 81 

or class). 82 

A workflow for OrthoFiller is shown in Figure 1. The basic input for the algorithm is a set of genome 83 

annotation files in general transfer format (GTF) and a set of corresponding genome sequence files 84 

in FASTA format. Protein sequences are extracted from the genome FASTA files using the 85 

coordinates in the GTF files and a user-selected translation table. The predicted proteomes from the 86 

submitted species are clustered into orthogroups using OrthoFinder [7], the protein sequences of 87 

each orthogroup are aligned and the source nucleotide sequences for these proteins are threaded 88 

back through the protein multiple sequence alignment to create multiple sequence alignments of the 89 

nucleotide sequences of each orthogroup. Each nucleotide alignment is used to build a hidden 90 

Markov model (HMM) that is used to search the complete genome sequence of each species under 91 

consideration. The scores of these HMMs are used to learn the score distributions of true positive 92 

and false positive HMM hits (see methods). Each hit to an HMM that does not overlap with an existing 93 

predicted gene is subject to filtration using species-specific parameters that have been learned for 94 

true and false positive hits. Each hit that survives this filtration is considered to be a potential genic 95 

region, or hint. The algorithm then attempts to build gene models around these hints, using the 96 

Augustus [8] gene finder. Gene models constructed by Augustus are subject to two successive 97 

rounds of assessment and filtration. Firstly, the predicted gene models are compared against the 98 

hints that were used to inform them: if the gene model and its source hint are not sufficiently similar 99 

(see methods), the gene model is considered to be unrelated to the hint, and thus to the orthogroup 100 

used to inform its prediction. Secondly, the newly predicted genes that satisfy the first criterion are 101 

subject to orthogroup inference using the full set of existing and newly predicted genes. Those newly 102 

predicted genes that are clustered in an orthogroup whose HMM was used to predict them are then 103 

accepted as bona fide genes and added to the genome annotation. Thus genes predicted by 104 

OrthoFiller satisfy stringent orthology based criteria for inclusion. 105 
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To demonstrate the utility of OrthoFiller on real data it was applied independently to two sets of 106 

species. Set A comprised five fungal genomes (Table 1) and Set B comprised five plant genomes 107 

(Table 2), sourced from the Joint Genome Institute (JGI) and the Saccharomyces Genome Database 108 

(SGD) [9][10][11][12]. OrthoFiller was assessed using these datasets in two ways: first via simulating 109 

an incomplete genome annotation by randomly removing entries from the genome annotation of one 110 

species from each set, and assessing the accuracy of OrthoFiller in recovering the removed genes; 111 

second by application of OrthoFiller to the complete datasets and validating the novel detected genes 112 

through analysis of publicly available RNA-seq data. 113 

Two measures were used to assess the quality of recovered genes: the protein F-score and the 114 

orthogroup F-score, both defined in the methods section. These scores were calculated for all genes 115 

identified by OrthoFiller, by comparing the recovered gene with the removed gene and assuming 116 

that the original removed gene model was correct. Genes that are unique to the test species that 117 

lack homologues in other species were not analysed in this test, as OrthoFiller was designed to find 118 

evolutionarily conserved genes. As there were no publicly-available comparable methods that 119 

perform the same task as OrthoFiller, the method was assessed in comparison to performing the 120 

analysis without conducting the OrthoFiller evaluation and filtration steps. i.e. accepting all identified 121 

gene models that did not overlap an existing gene. 122 

Evaluation of OrthoFiller on S. cerevisiae after removal of 10% of gene annotations  123 

Figure 2 and Table 3 show the results of running OrthoFiller on the set of fungal species shown in 124 

Table 1 after random removal of 10% of “discoverable” genes (genes that were contained in an 125 

orthogroup with at least one gene from another species) from the predicted complement of genes in 126 

S. cerevisiae (i.e. 528 nuclear encoded gene annotations were deleted from a total set of 5288 127 

discoverable genes). 128 

After running OrthoFiller, a total of 197 genes were predicted in the genome of S. cerevisiae that 129 

were not present in the submitted genome annotation file. Of these, 196 overlapped with genes that 130 

were deleted from the original annotation and one was not present in the original annotation (37.1% 131 

of 528, Figure 2A). In total, 190 of the 196 found genes (96.9%) were recovered to high accuracy 132 

(protein F-score ≥ 0.95). The mean protein F-score of the remaining 6 genes of lower accuracy 133 
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(protein F-score < 0.95) was 0.85 (Figure 2B). All of the genes that had lower gene model accuracy 134 

were placed in exactly the same orthogroup as expected when the sequences were subjected to 135 

orthogroup inference. Thus, although 6 of the gene models differed from the original reference gene 136 

model, this difference was not sufficient to disrupt downstream identification of orthologous genes. 137 

To provide a comparison, in the absence of the OrthoFiller evaluation steps a total of 503 genes 138 

were identified, of which 447 overlapped with genes that were deleted from the original annotation 139 

and 56 were not predicted as genes in the original S. cerevisiae genome (Figure 2A). The regions 140 

comprising these 447 found genes corresponded to 440 deleted genes (84.6% of 528). This 141 

discrepancy in gene number is due to genes which were recovered, but whose recovered versions 142 

were split into multiple parts. There were 7 such split genes. In total, 411 (91.9% of 447) of the genes 143 

that overlapped with genes present in S. cerevisiae genome annotation were genes recovered with 144 

high accuracy (protein F-score ≥ 0.95) and the mean protein F-score of those recovered to a lower 145 

accuracy was 0.68 (Figure 2B), considerably lower than in the filtered case. Of these 36 lower-quality 146 

genes, 11 (30.5%) had an orthogroup F-score less than or equal to 0.95. Moreover, 10 of these 147 

genes were sufficiently mis-predicted that they failed to be placed in an orthogroup, or were placed 148 

in an orthogroup that shared no members with the orthogroup that contained the original gene. Thus 149 

in the absence of OrthoFiller filtration, more genes were recovered but 6 genes were fragmented, 150 

10 of the found genes bore insufficient similarity to the reference gene to facilitate orthogroup 151 

inference, and 26 were sufficiently mis-predicted that the results of orthogroup inference was altered. 152 

Figures 2C-D show the distribution of orthogroup F-scores versus protein F-scores obtained 153 

following application of OrthoFiller to this test dataset. The majority of recovered genes had both 154 

high protein and orthogroup F-scores (Figure 2C): 189 out of 196 genes (96.4%) had both F-scores 155 

≥ 0.95. This indicates that the majority of predicted genes are identical (or nearly identical) to the 156 

original removed gene and that when subject to orthogroup inference they were clustered in the 157 

correct orthogroup. Imperfect protein F-scores can be explained by discrepancies in intron/exon and 158 

start/stop codon choices between the removed and recovered gene models. Imperfect orthogroup 159 

F-scores were due to fluctuations in orthogroup membership. Figure 2D shows the results in the 160 

absence of OrthoFiller processing. In this case, 399 of 447 genes (89.3%) were of dually high quality. 161 
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In particular, there were 5 predicted genes with both a low (< 0.5) protein and orthogroup F-score, 162 

indicating those predicted genes were sufficiently incorrect to cause errors in orthologous gene 163 

identification. Thus, although OrthoFiller does not recover all deleted genes (37% of removed 164 

genes), application of OrthoFiller resulted in the recovery of high-quality gene annotations that 165 

contain few (in this example there are none) incorrectly predicted genes. 166 

Evaluation of OrthoFiller on S. cerevisiae after removal of 90% of gene annotations 167 

Figure 3 and Table 3 show the performance statistics for OrthoFiller using a version of S. cerevisiae 168 

genome where 90% of gene annotations were removed. This represents an extreme case where a 169 

genome has minimal annotation. The full details of detection of the deleted genes at different stages 170 

in the OrthoFiller algorithm are shown in Supplemental Figure 3. Here, application of OrthoFiller 171 

resulted in the identification of 1529 genes that overlapped with 1528 of the removed genes (32.1%, 172 

Figure 3A). One of the genes was split into two parts. Of the found genes, 1455 (95.1%) were 173 

recovered with a protein F-score of 0.95 or greater. Of the 74 genes with lower protein F-scores 174 

(Figure 3B), only 6 (8.1%) had an orthogroup F-score < 0.95. As before, although these gene models 175 

differed from the original reference gene model, this difference was not sufficient to disrupt 176 

downstream identification of orthologous genes. 177 

In the absence of OrthoFiller filtration, 4325 genes were found, of which 4116 overlapped the 178 

removed genes. Of the removed genes, 4156 were recovered, of which 64 genes were split. 3801 179 

of the found genes had a protein F-score ≥ 0.95 (87.9%). Of the 355 genes with lower protein F-180 

scores, 113 had an orthogroup F-score lower than 0.95, and 97 were sufficiently mis-predicted that 181 

they failed to be placed in any orthogroup at all, or in an orthogroup completely different to the one 182 

that was used to find them.  183 

Figures 3C-D show the distribution of orthogroup F-scores versus protein F-scores for recovery in 184 

the 90% removal case. Figure 3C shows that most genes were recovered well, with 1367 of 1529 185 

(89.4%) genes predicted correctly and placed in the correct orthogroup when subject to orthogroup 186 

inference (protein F-score ≥ 0.95, orthogroup F-score ≥ 0.95). Interestingly, there are many genes 187 

that are predicted correctly but are placed into a slightly different orthogroup to what was expected. 188 

This is due to changes in orthogroup membership caused by the many still-missing genes. Thus, 189 
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although the input datasets are dramatically different the performance characteristics of OrthoFiller 190 

on the 10% and 90% datasets are broadly consistent (e.g. 37.1% and 32.1% recovery respectively, 191 

96.9% and 95.1% high-accuracy recoveries respectively).  192 

Evaluation of OrthoFiller on A. thaliana after removal of 10% of gene annotations  193 

As it could be argued that fungal genomes present an easier challenge, an additional demonstration 194 

of the utility of OrthoFiller on an alternative group of organisms was also conducted. Here the 195 

analogous test of the method was applied to a set of five land plant genomes (Table 2). Table 4 and 196 

Figure 4 show performance statistics from application of OrthoFiller to the A. thaliana genome with 197 

10% (3168) gene annotations removed. Out of the 1097 genes that were output by OrthoFiller, 982 198 

overlapped removed genes. A total of 908 of the original genes were recovered, of which 67 were 199 

recovered but split into multiple parts (7.4%). Of the found genes, 416 (42.4%) had a protein F-score 200 

of 0.95 or higher, and of the lower quality genes, 56.5% had orthogroup F-scores of 0.95 or higher, 201 

and 52.5% were placed into exactly the same orthogroup as the one used to predict them. The mean 202 

protein F-score of lower-quality genes was 0.60. Thus similar to the fungal dataset, application of 203 

OrthoFiller resulted in the identification of 31.0% of the removed genes, with 42.4% being of gene 204 

model accuracy (assuming the deleted gene to be true). 205 

In the absence of OrthoFiller filtration 7048 genes were found, nearly twice as many as were 206 

removed. Only 3484 of these overlapped removed genes, of which 491 (14.1%) had a protein F-207 

score of 0.95 or higher. 1664 genes were recovered, of which 850 (51.1%) were split into multiple 208 

parts. The mean protein F-score of lower-quality genes was 0.37, and the percentage of lower-quality 209 

genes which received an orthogroup F-score of 0.95 or above was 18.2%.  210 

Figures 4C-D show the distribution of orthogroup F-scores versus protein F-scores for recovery in 211 

the 10% removal case for A. thaliana. Using OrthoFiller, 325 of 902 (33%) of genes had both a very 212 

high (≥ 0.95) protein and orthogroup F-score. In the unfiltered case, 324 of the genes had both a 213 

high protein and orthogroup F-score, though as a percentage of the total genes found (9.2% of 3484 214 

found genes), the success rate was considerably lower. Conversely, 35 out of 982 (3.6%) had both 215 

scores very low (<0.5), compared with 1710 out of 3484 (49.1%) genes in the absence of OrthoFiller 216 
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filtration. Thus in this case using OrthoFiller considerably reduces the proportion of found genes 217 

which are erroneous. 218 

Evaluation of OrthoFiller on A. thaliana after removal of 90% of gene annotations  219 

Performance statistics for the application of OrthoFiller to the 90% depleted A. thaliana genome 220 

(28516 genes removed) can be seen in Table 4 and Figure 5. Of 10931 found genes, 10788 221 

overlapped removed genes, 3393 of which (31.5%) had protein F-score 0.95 or above. 889 (9.0%) 222 

of the recovered genes were split into multiple parts. A total of 9840 out of 28516 (34.5%) removed 223 

genes were recovered, though 889 were split into parts (9.0%). Of the lower-quality genes, 50.1% 224 

had orthogroup F-score ≥ 0.95, and 46.7% were placed in exactly the right orthogroup. The mean 225 

protein F-score of the lower-quality genes was 0.57. Thus having fewer gene models to serve as 226 

examples for gene model training resulted in a higher error rate in gene model prediction. 227 

In the absence of OrthoFiller filtration, 28793 genes were predicted, 26004 of which overlapped 228 

removed genes. Of these, only 3539 (13.4%) had a protein F-score of 0.95 or above, with just 23% 229 

of the lower-quality genes having orthogroup F-score ≥ 0.95. In total 12646 of the 28516 removed 230 

genes were recovered, although 6052 of them were split (47.9%). The mean protein F-score of the 231 

lower-quality genes was 0.37. This shows that, although slightly more genes were recovered in the 232 

unfiltered case, considerably more noise and erroneous predictions are produced. 233 

Figures 5C-D show the distribution of orthogroup F-scores versus protein F-scores for recovery in 234 

the 90% removal case for A. thaliana. Using OrthoFiller, 2427 of 10788 found genes (22.5%) had 235 

both a very high (≥ 0.95) protein and orthogroup F-score, compared with 2413 out of 26004 (9.3%) 236 

in the unfiltered case. Conversely, only 5.9% of genes (636 out of 10788) predicted using OrthoFiller 237 

had both scores very low (<0.5), compared with 44.7% of genes (11631 out of 26004) in the absence 238 

of OrthoFiller filtration. Thus, similarly to with the fungal data set, the performance characteristics of 239 

OrthoFiller on the 10% and 90% plant datasets are broadly consistent (e.g. 31.0% and 34.5% 240 

recovery respectively, 42.4% and 31.5% high-accuracy recoveries respectively), and both contain a 241 

considerably smaller proportion of clearly erroneous genes than would be found without filtering. 242 
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OrthoFiller detects hundreds of conserved genes not present in the reference 243 

genome annotations  244 

In addition to testing the ability of OrthoFiller to recover already predicted genes, the algorithm was 245 

applied to both of the sets of complete genomes listed in Table 1 and Table 2, to assess the potential 246 

for novel genes to be discovered. The number of genes found for each species in each set is listed 247 

in Tables 5 and 6. Application of OrthoFiller to the 5 fungal species listed in Table 1 resulted in the 248 

detection of 31 novel genes distributed across the 5 species. Further rounds of OrthoFiller gene 249 

prediction identified no additional genes to those already found. Application of OrthoFiller to the 5 250 

plant species listed in Table 2 resulted in the identification of 570 individual novel genes in these 251 

species. 252 

To be detected as a novel gene OrthoFiller requires genes to pass rigorous sequence similarity tests 253 

to genes in other species (including empirical evaluation of sequence similarity scores to distinguish 254 

real from spurious hits), which in itself provides evidence for the existence of predicted genes through 255 

homology. To provide additional evidence for the existence of the novel predicted genes they were 256 

subjected to analysis using publicly available RNAseq data from the Sequence Read Archive (SRA) 257 

[13]. The datasets used for this analysis are listed in Tables 7 and 8. The tables also show the 258 

percentage of the novel genes found that had evidence for their existence in the RNAseq data. For 259 

most genomes, most genes predicted by OrthoFiller are supported by RNAseq evidence, with the 260 

average percentage of evidence-supported novel genes being 85.3% across the fungal species, and 261 

55.5% across the plant species. Given that the plant RNAseq datasets come from single tissue 262 

samples under a single condition it is not expected that all genes will be detected in these samples. 263 

For example, similar detection statistics were obtained for the original predicted genes from the 264 

source datasets, shown in Tables 7 and 8. It should also be noted that genes that are present in 265 

RNAseq reads are more likely to have been annotated already, given that many genome annotation 266 

pipelines rely on such data to perform their analyses [3]. 267 

Discussion 268 

Here we present OrthoFiller, an automated method for improving the completeness of genome 269 

annotations. It leverages information from multiple taxa, clustering genes into orthogroups and 270 
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finding genes that are conserved between species but that have escaped detection. OrthoFiller is 271 

designed to be stringent, conservatively identifying genes that can be confidently identified as 272 

missing members of existing orthogroups. Specifically, to pass the filtration criteria for detection by 273 

OrthoFiller, genes must be members of orthogroups conserved in multiple species. Thus OrthoFiller 274 

will not find genes that lack homologues in other species. These stringent criteria mean that not all 275 

genes that could be detected will be detected by the algorithm, but rather that the user should have 276 

confidence in the validity of genes identified by the method. 277 

OrthoFiller is intended to be run after a genome annotation is considered by the user to be complete 278 

or near-complete. OrthoFiller is designed with small scale genome sequencing projects in mind and 279 

is provided to enable users without significant resources for comprehensive RNAseq-based genome 280 

annotation to leverage information from related species to improve their genome annotations. 281 

However, OrthoFiller is equally suited for use in large-scale genome comparisons, reliably filling 282 

gaps in gene sets prior to large scale comparative genomics investigations. Application of OrthoFiller 283 

in these cases will enable genes to be analysed in downstream analysis that would otherwise have 284 

been classified as absent. 285 

The utility of OrthoFiller is demonstrated on both plant and fungal genome datasets, both in its ability 286 

to successfully find missing genes, and in the effectiveness of its filters in eliminating low-quality 287 

gene predictions. Application of this method to small groups of plant and fungal genomes resulted 288 

in the identification of 570 and 31 genes respectively. These genes are conserved in one or more 289 

species but were absent from the genome annotation in which they were predicted. We anticipate 290 

that application of OrthoFiller to larger datasets will likely result in further genome annotation 291 

improvement. The quality of genes found by OrthoFiller was assessed by artificial removal and 292 

recovery of subsets of genes from a single genome, treating those original gene models as true, and 293 

evaluating the quality of those genes that were recovered by comparison to the removed genes. In 294 

the absence of the OrthoFiller filtration steps, the proportion of poor-quality genes that are recovered 295 

is considerably higher.  296 

OrthoFiller is mainly designed for use on genomes that have already undergone some basic level of 297 

annotation. As can be seen by comparing the 10% and 90% removal cases in the two data sets, 298 
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application to very poorly annotated genomes can result in more genes of dubious quality, both from 299 

a sequence and an orthogroup perspective. It is worth noting that many of the genes with lower-300 

quality scores, particularly those with only one of the scores being low, can be explained by alternate 301 

gene models (in the protein F-score) and shifting of orthogroups due to expansion of proteome sets 302 

(in the orthogroup F-score case). In all cases, in the absence of OrthoFiller filtration considerably 303 

higher numbers of genes were predicted that didn’t resemble the genes that they were supposed to, 304 

indicating that they are erroneous. 305 

The OrthoFiller algorithm is designed to run on a Unix system with python and a minimal number of 306 

standard additional tools (HMMer, BedTools, Augustus, R). The speed of the algorithm is principally 307 

dependent on the speed of Augustus and HMMer, however processing time can be decreased by 308 

parallelising these steps of the method over multiple CPUs. 309 

Accurate and complete genome annotation is of paramount importance to the effective analysis of 310 

genomic and transcriptomic data, as well as for phylogenetic inference from genomic data. As the 311 

quantity of published genomes increases, care must be taken to ensure accuracy and quality of 312 

genome annotations are maintained. Automated methods that leverage publicly available 313 

information from multiple species to improve the annotation of newly sequenced genomes will help 314 

improve the accuracy and completeness of these resources and thus the quality of all analyses that 315 

utilise them.  316 

Methods 317 

Data sources 318 

For algorithm development and evaluation, a set of five small, well-annotated fungal genomes (Table 319 

1) and a set of five well-annotated plant genomes (Table 2) were selected. Evaluation of the 320 

algorithm focussed on S. cerevisiae and A. thaliana, as the gene models in these genomes have 321 

historically been subject to extensive improvement and revision and are the most likely to be correct.  322 

Algorithm overview 323 

OrthoFiller proceeds in five stages summarised in Figure 1 and described in detail in the following 324 

sections. In brief, the algorithm begins by inferring a set of orthogroups from the protein coding genes 325 
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of the set of species submitted to OrthoFiller (Figure 1A). The protein sequences in these 326 

orthogroups are subject to multiple sequence alignment, converted to nucleotide sequences and 327 

used to build HMMs. These HMMs are used to search the genomes of each species under 328 

consideration (Figure 1B) and the resultant HMM hits are subject to stringent filtering (Figure 1C) 329 

before being used as hints for gene model construction (Figure 1D). The gene models are subject 330 

to additional filtering (Figure 1E) and only those gene models that pass all filters are added to the 331 

revised genome annotation. The revised genome annotations are then subject to orthogroup 332 

inference (Figure 1F) and resultant orthogroups are analysed to confirm the identity of the newly 333 

predicted genes. The complete details for each step of this algorithm are described in the sections 334 

below. 335 

Inference of Orthogroups and construction of HMMs  336 

Orthogroups are inferred using OrthoFinder [7]. If a gene from the source annotation is not included 337 

in an orthogroup with at least one other sequence, it is classed as a singleton, and is not considered 338 

in downstream analyses. This is consistent with the problem definition of OrthoFiller, that is to identify 339 

unannotated genes that are conserved between species. Amino acid sequences from the 340 

orthogroups are aligned with MAFFT [14], using the L-INSI algorithm, and the resultant multiple 341 

sequence alignments are back-translated using the source nucleotide sequences. The resulting 342 

nucleotide alignments are converted to Hidden Markov models (HMMs) using HMMer [15], each of 343 

which is then searched against each input genome in turn to generate a set of hits per HMM per 344 

species. 345 

Evaluation of HMM search results 346 

Due to the probabilistic nature of HMM searches, there is considerable variation in the quality of the 347 

relationship between a hit region and the set of sequences used to generate the source HMM. One 348 

expects a large amount of “background noise”, that is sequence regions which pass the thresholds 349 

of the HMM but whose relevance is dubious. Each HMM hit has an associated bit score, an 350 

aggregated base-by-base similarity score between the hit and the aligned sequences used to 351 

generate it: we use this score to assess the quality of the hit. The bit score is strongly dependent on 352 
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the hit length, thus to prevent gene length from biasing downstream analyses the bit score of a hit is 353 

divided by the hit length, to generate the adjusted score for a hit h: 354 

𝑠𝑐𝑜𝑟𝑒𝑎𝑑𝑗(ℎ) =
𝑠𝑐𝑜𝑟𝑒(ℎ)

𝑙𝑒𝑛𝑔𝑡ℎ(ℎ)
 355 

The adjusted score is related to the e-value. However, the e-value calculation enforces a strict lower 356 

limit of 1 ×  10−200, all lower scores being rounded down to zero. Thus use of e-values would 357 

introduce irreversible length bias and would lead to downstream errors, as has been shown 358 

previously [7]. As bit scores do not have a threshold value, and they have been previously shown to 359 

be capable of facilitating accurate inference of phylogenetic trees [16], and length-corrected bit 360 

scores are used as the basis of the scoring scheme in OrthoFinder [7], they were used here. 361 

For each species, a threshold value for hit acceptance or rejection based on a hit’s adjusted score 362 

is created, by considering the distribution of hits which overlapped known genes. Anything above 363 

this threshold is considered to be genuine, and anything below this threshold is considered to be 364 

noise.  An HMM hit is classed as good if it overlaps any gene from the orthogroup used to create the 365 

HMM, bad if it only overlaps genes from orthogroups other than the one used to create the HMM, 366 

and candidate if it overlaps no known gene at all. Here candidate hits are the potential new genes 367 

of interest, and the good and bad genes are used to inform our judgement about the reliability of the 368 

candidate hits. 369 

Distributions of adjusted scores for good and bad hits to the S. cerevisiae genome from all HMMs 370 

generated by the species in Table 1 are shown in Supplemental Figure 1. Distributions for good and 371 

bad hits are clearly delineated into two distinct distributions. Note that in this case there are relatively 372 

few candidate hits, since the genome under inspection is already well annotated and is expected to 373 

have few missing gene predictions. Skew-t distributions are fit separately to the good and bad score 374 

distributions using gamlss [17]. Skew distributions were chosen because they allow flexibility in 375 

location, shape and scale of the underlying data and are commonly used for estimating parameters 376 

such as location and scale, while allowing the same distribution type to be used to fit both the good 377 

and bad hits. A separate skew-t distribution for the good and bad hits is fit for each species. In the 378 
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event that there are insufficient good and bad hits to fit distributions, good and bad hits from the 379 

other species are aggregated and a threshold value is calculated from this. 380 

For a given adjusted score 𝑥, the distributions of the good and bad hits are used to estimate both 381 

the absolute probabilities of a hit being genuine or being a mistake. We can estimate  382 

𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑥) =  
𝑃(𝑥|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒)

𝑃(𝑥|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒) + 𝑃(𝑥 |𝑚𝑖𝑠𝑡𝑎𝑘𝑒)𝑃(𝑚𝑖𝑠𝑡𝑎𝑘𝑒)
 383 

𝑃(𝑚𝑖𝑠𝑡𝑎𝑘𝑒|𝑥) =  
𝑃(𝑥|𝑚𝑖𝑠𝑡𝑎𝑘𝑒)𝑃(𝑚𝑖𝑠𝑡𝑎𝑘𝑒)

𝑃(𝑥|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒) + 𝑃(𝑥 |𝑚𝑖𝑠𝑡𝑎𝑘𝑒)𝑃(𝑚𝑖𝑠𝑡𝑎𝑘𝑒)
 384 

and then retain the hit depending on whether it has a higher probability of being genuine that being 385 

a mistake, based on its adjusted score. The probabilities 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒) and 𝑃(𝑓𝑎𝑙𝑠𝑒) are estimated by 386 

considering the proportion of good/bad hits which are good and bad respectively. The probability 387 

density functions 𝑃(𝑥|𝑔𝑒𝑛𝑢𝑖𝑛𝑒) and 𝑃(𝑥|𝑓𝑎𝑙𝑠𝑒) are determined using the fitted distributions as 388 

described above. 389 

Acquisition and evaluation of putative predicted genes 390 

Hits which survive the hit filtration step are passed to the gene-finding program Augustus as hints 391 

specified as exon parts. Only predicted genes that have a nonzero overlap with these hints are 392 

retained. These predicted genes are then subjected to a hint filter, which aims to separate those 393 

genes which have genuinely arisen from the hint from those that overlap the hint by chance. The 394 

hint filter evaluates a hint F-score for each predicted gene, by comparing against the hints from a 395 

particular orthogroup which overlap it. The hint F-score is a measure of how well the found gene 396 

corresponds to the hints used to inform its discovery. Each predicted gene G will have at least one 397 

hint region corresponding to it, which is a set of non-overlapping coordinates obtained from merging 398 

all hints that overlap G, and which are all derived from the same orthogroup. For a hint region H and 399 

a predicted gene G, the hint F score is defined as: 400 

ℎ𝑓(𝐻, 𝐺) =
2 ∙ ℎ𝑃(𝐻, 𝐺) ∙ ℎ𝑅(𝐻, 𝐺)

ℎ𝑅(𝐻, 𝐺) + ℎ𝑃(𝐻, 𝐺)
 401 

where 402 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098566doi: bioRxiv preprint 

https://doi.org/10.1101/098566
http://creativecommons.org/licenses/by/4.0/


16 
 

ℎ𝑃(𝐻, 𝐺) =
|𝐻 ∩ 𝐺|

|𝐻|
;       ℎ𝑅(𝐻, 𝐺) =

|𝐻 ∩ 𝐺|

|𝐺|
 403 

 404 

The filter uses a threshold hint F-score value of 0.8 (i.e. on average 80% of the length of the predicted 405 

gene is covered by the hit and vice versa), below which potential gene models are discarded. This 406 

value was chosen based on an analysis of hint F-scores of good and bad hits (as defined above) 407 

versus the Augustus output corresponding to them. Distributions for hint F-scores for the good and 408 

bad hits can be seen in Supplemental Figure 4, in which it can be clearly seen that practically all 409 

genuine hints pass the threshold value of 0.8. 410 

Once gene models have been filtered, they are fed once again into OrthoFinder, to cluster them into 411 

orthogroups. The orthogroup of each newly predicted gene is compared with the orthogroup(s) which 412 

were used to predict that gene. It is possible that multiple orthogroups informed the prediction of the 413 

same gene; similarly, there may be fluctuations in orthogroup membership between the original and 414 

new genomes. It is therefore only required that the new orthogroup into which the gene is clustered 415 

has non-zero overlap with at least one of the orthogroups used to predict it, and genes which do not 416 

fulfil this criterion are discarded. 417 

Algorithm evaluation 418 

Recovery of removed genes 419 

The test set of species from Table 1 was used to analyse the effectiveness of OrthoFiller for genomes 420 

of various levels of completion. Altered versions of the S. cerevisiae genome annotation were 421 

constructed with 10% and 90% of genes randomly removed, and the level of recovery of the removed 422 

genes upon implementation of OrthoFiller was assessed, where a gene 𝑮 was considered to be 423 

recovered if OrthoFiller predicted a gene 𝑮′ such that 𝑮 and 𝑮′ have non-zero overlap. 424 

The quality of the predicted genes was assessed by considering two scores: the orthogroup F-score 425 

and the protein F-score. The protein F-score is defined as 426 

𝑝𝐹(𝑆, 𝑆′) =
2 ∙ 𝑝𝑃(𝑆, 𝑆′) ∙ 𝑝𝑅(𝑆, 𝑆′)

𝑝𝑅(𝑆, 𝑆′) + 𝑝𝑃(𝑆, 𝑆′)
 427 
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where 𝑆 is the original amino acid sequence and 𝑆′ is the amino acid sequence of the recovered 428 

gene, and 429 

𝑝𝑃(𝑆, 𝑆′) =
|𝑆 ∩ 𝑆′|

|𝑆|
;       𝑝𝑃(𝑆, 𝑆′) =

|𝑆 ∩ 𝑆′|

|𝑆′|
 430 

where the intersection is defined to be the sum of identical amino acids in an alignment (MAFFT L-431 

INSI) of the two sequences. The orthogroup F-score is defined as  432 

𝑜𝑃(𝑆, 𝑆′) =
2 ∙ 𝑜𝑃(𝑂, 𝑂′) ∙ 𝑜𝑅(𝑂, 𝑂′)

𝑜𝑅(𝑂, 𝑂′) + 𝑜𝑃(𝑂, 𝑂′)
 433 

where 𝑂 is the orthogroup that the gene is placed when no deductions have been made, 𝑂′ is the 434 

orthogroup into which the gene is placed when OrthoFinder is run on the OrthoFiller results, and 435 

𝑜𝑃(𝑂, 𝑂′) =
|𝑂 ∩ 𝑂′|

|𝑂|
 436 

𝑜𝑅(𝑂, 𝑂′) =
|𝑂 ∩ 𝑂′|

|𝑂′|
 437 

where cardinality of the orthogroups takes into account only genes which were present in the input 438 

set of genome annotations, i.e. not counting the newly discovered genes.  439 

Evaluation of novel predicted genes 440 

RNA-seq data was downloaded from the Sequence Read Archive, and aligned to the genome with 441 

BowTie2 using default parameters. Coverage was calculated using BedTools coverage.  442 

Availability of data and materials 443 

The software is available under the GPLv3 licence at https://github.com/mpdunne/orthofiller. 444 
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Figure Legends 456 

Figure 1: Workflow diagram for the OrthoFiller algorithm. A) Proteomes are subdivided into 457 

orthogroups using OrthoFinder. B) Protein sequences in each orthogroup are subject to multiple 458 

sequence alignment, back-translated to DNA and used to create hidden Markov models (HMMs). 459 

These HMMs used to search each genome in the set. C) The set of hits are evaluated and filtered 460 

to remove low quality hits. D) Gene models are constructed around each retained hit using Augustus. 461 

E) The new gene models are compared to the hints that were used to generate them, and filtered to 462 

remove those which bear in sufficient similarity to the hints. F) The filtered genes are clustered into 463 

orthogroups and genes that are successfully placed into the orthogroup that was used to identify 464 

them are retained. G) The process may be run once, or iteratively until no further genes are found. 465 

 466 

Figure 2: Performance of OrthoFiller on S. cerevisiae genome with 10% of annotated genes 467 

removed. 468 

A) Using OrthoFiller 197 genes were found whose genomic locations matched any of the 528 deleted 469 

genes. In the absence of OrthoFiller filtration this increased to 447 genes identified that overlap any 470 

part of a deleted gene. B) A boxplot of protein F-scores for genes predicted using OrthoFiller, or in 471 

the absence of OrthoFiller filtration, that had a protein F-score of ≤0.95. C) Density plot showing the 472 

protein and orthogroup F-scores for all recovered genes using OrthoFiller. D) Density plot showing 473 

the protein and orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration. 474 
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Figure 3: Performance of OrthoFiller on S. cerevisiae genome with 90% of annotated genes 475 

removed. 476 

A) Using OrthoFiller 1529 genes were found which overlapped any of the 4759 deleted genes. In 477 

the absence of OrthoFiller filtration this increased to 4156 genes. B) A boxplot of protein F-scores 478 

for genes predicted using OrthoFiller, or in the absence of OrthoFiller filtration, that had a protein F-479 

score of ≤0.95. C) Density plot showing the protein and orthogroup F-scores for all recovered genes 480 

using OrthoFiller. D) Density plot showing the protein and orthogroup F-scores for all recovered 481 

genes in the absence of OrthoFiller filtration. 482 

Figure 4: Performance of OrthoFiller on A. thaliana genome with 10% of annotated genes 483 

removed. 484 

A) Using OrthoFiller 982 genes were found which overlapped any of the 3168 deleted genes. In the 485 

absence of OrthoFiller filtration this increased to 3484 genes. B) A boxplot of protein F-scores for 486 

genes predicted using OrthoFiller, or in the absence of OrthoFiller filtration, that had a protein F-487 

score of ≤0.95. C) Density plot showing the protein and orthogroup F-scores for all recovered genes 488 

using OrthoFiller. D) Density plot showing the protein and orthogroup F-scores for all recovered 489 

genes in the absence of OrthoFiller filtration. 490 

Figure 5: Performance of OrthoFiller on A. thaliana genome with 90% of annotated genes 491 

removed. 492 

A) Using OrthoFiller 10788 genes were found which overlapped any of the 28516 deleted genes. In 493 

the absence of OrthoFiller filtration this increased to 26204 genes. B) A boxplot of protein F-scores 494 

for genes predicted using OrthoFiller, or in the absence of OrthoFiller filtration, that had a protein F-495 

score of ≤0.95. C) Density plot showing the protein and orthogroup F-scores for all recovered genes 496 

using OrthoFiller. D) Density plot showing the protein and orthogroup F-scores for all recovered 497 

genes in the absence of OrthoFiller filtration. 498 

Figure 6: Coverage plots and orthogroup trees for a selection of new genes. Five 499 

representative examples of RNAseq coverage on genes predicted using OrthoFiller. Phylogenetic 500 

trees demonstrate the relationship of the newly predicted gene to other genes in the orthogroup. 501 
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Supplemental Figure Legends 502 

Supplemental Figure 1: hit score distributions for good, bad and candidate hits. Hits are to the 503 

S. cerevisiae genome, using HMMs from all orthogroups. A) Length normalised bit scores of HMM 504 

hits to regions of the genome that contained genes that were not part of the orthogroup used to 505 

generate the HMM (bad hits). B) Length normalised bit scores of HMM hits to regions of the genome 506 

that do contain the gene used to generate the HMM (good hits). C) Length normalised bit scores of 507 

HMM hits to regions of the genome that do not contain any previously annotated genes (candidate 508 

novel gene hits). D) All distributions overlaid. 509 

Supplemental Figure 2: Recovery of removed genes from S. cerevisiae after 10% removal: 510 

Representation of removed genes at each stage, filtered vs. unfiltered cases. A) The number 511 

of deleted genes that obtained hits from one or more orthogroup HMMs. B) The number of deleted 512 

genes that had hits after OrthoFiller hint filtration. C) No hint filtration. D) The number of deleted 513 

genes for which a gene prediction was made using Augustus that satisfied OrthoFiller filtration tests. 514 

E) The number of deleted genes that for which a gene prediction was made using Augustus in the 515 

absence of OrthoFiller filtration.  F) The number newly predicted genes that were retained or 516 

discarded based on the orthogroup assignment filter step in OrthoFiller.  517 

Supplemental Figure 3: Recovery of removed genes from S. cerevisiae after 90% removal: 518 

Representation of removed genes at each stage, filtered vs. unfiltered cases. A) The number 519 

of deleted genes that obtained hits from one or more orthogroup HMMs. B) The number of deleted 520 

genes that had hits after OrthoFiller hint filtration. C) No hint filtration. D) The number of deleted 521 

genes for which a gene prediction was made using Augustus that satisfied OrthoFiller filtration tests. 522 

E) The number of deleted genes that for which a gene prediction was made using Augustus in the 523 

absence of OrthoFiller filtration.  F) The number newly predicted genes that were retained or 524 

discarded based on the orthogroup assignment filter step in OrthoFiller.  525 

Supplemental Figure 4: Distribution of hint F-scores for good vs. bad hints. Here, Augustus 526 

has been allowed to predict genes that are already present in the input genome, hence we can 527 

consider separately the good and bad hits as hints. Shown are the distributions of hint F-scores for 528 
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good (green) and bad (red) hits respectively, demonstrating that practically all of the genuine hints 529 

have a hint F-score of 0.8 or higher. 530 

  531 
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Tables 532 

Table 1: Species Set A, fungal species used for algorithm validation 533 

Species Name Source Strain Taxonomy ID References 

Eremothecium gossypii  JGI1 ATCC10895 284811 [9] 

Debaromyces hansenii  JGI CBS767 284592 [10] [11] 

Kluveromyces lactis  JGI CLIB210 284590 [10] 

Saccaromyces cerevisiae  SGD2 S288C 559292 [18] 

Yarrowia lipolytica  JGI CLIB122 284591 [10] 

1Joint Genome Institute; 2Saccaromyces Genome Database 534 

 535 

Table 2: Species Set B, plant species used for algorithm validation 536 

Species Name Source Version Taxonomy ID References 

Arabidopsis thaliana JGI TAIR10 3702 [12] 

Brassica rapa JGI v1.3 3711 [12] 

Carica papaya JGI ASGPBv0.4 3649 [12] 

Capsella rubella JGI V1.0 81985 [12] 

Theobroma cacao JGI V1.1 3641 [12] 

 537 

Table 3: Recovery of removed genes in S. cerevisiae 538 

 10% annotations removed 90% annotations removed 

OrthoFiller Unfiltered OrthoFiller Unfiltered 

No. genes removed 528 528 4759 4759 

Total genes found 197 503 1529 4325 

Found genes which overlap removed genes 196 447 1529 4156 

Total recovered genes 196 440 1528 4116 

Number of split genes 0 7 1 34 

Mean pF score of found genes 0.99 0.97 0.99 0.97 

Mean oF score of found genes 1.00 0.98 0.98 0.96 

High-quality found genes (pF≥0.95)   190 411 1455 3801 

Lower-quality found genes (pF<0.95) 6 36 74 355 
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Mean pF-score of lower-quality genes  0.85 0.68 0.87 0.69 

% of lower-quality genes with oF≥0.95  100.0% 69.4% 91.9% 68.2% 

 539 

Table 4: Recovery of removed genes in A. thaliana 540 

 10% annotations removed 90% annotations removed 

OrthoFiller Unfiltered OrthoFiller Unfiltered 

No. genes removed 3168 3168 28516 28516 

Total genes found 1097 7048 10931 28793 

Found genes which overlap removed genes 982 3484 10788 26004 

Total recovered genes 908 1664 9840 12646 

Number of split genes 67 850 889 6052 

Mean pF score of found genes 0.77 0.46 0.71 0.46 

Mean oF score of found genes 0.87 0.50 0.84 0.57 

High-quality found genes (pF≥0.95)   416 491 3393 3539 

Lower-quality found genes (pF<0.95) 566 2993 7395 22465 

Mean pF-score of lower-quality genes 0.60 0.37 0.57 0.37 

% of lower-quality genes with oF≥0.95 56.5% 18.2% 50.1% 23.0% 

 541 

Table 5: Novel genes in fungal species 542 

Species Name Genome size (Mbp) No. pre-existing genes No. new genes. 

E. gossypii  9.10 4768 2 

D. hansenii  12.15 6272 13 

K. lactis  10.69 5076 6 

S. cerevisiae  12.16 6572 2 

Y. lipolytica  20.50 6447 8 

 543 

Table 6: Novel genes in plant species 544 

Species Name Genome size (Mbp) No. pre-existing genes No. new genes. 

A. thaliana 119.67 35386 116 

B. rapa 315.05 43370 10 

C. papaya 342.68 27793 382 
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C. rubella 134.83 28447 228 

T. cacao 346.16 44404 94 

 545 

 546 

Table 7: SRA RNA-seq data coverage for novel genes in fungal genomes 547 

Species SRA ID Instrument/details Genes in original annotation Novel genes 

Total W/ reads % Total W/ reads % 

E. gossypii  N/A1 N/A N/A N/A N/A N/A N/A N/A 

D. hansenii  SRR899423 Helicos Heliscope, single 5106 6739 75.77 13 7 53.8 

K. lactis  SRR1200528 Illumina Genome Analyzer II, single 5248 5251 99.9 6 6 100 

S. cerevisiae  SRR539284 Illumina HiSeq 2000, paired end 6498 6572 98.87 2 2 100 

Y. lipolytica  SRR868669 Illumina HiSeq 2000, single 7199 7520 95.73 8 7 87.5 

1No publically available data found for this species 548 

 549 

Table 8: SRA RNA-seq data coverage for novel genes in plant genomes 550 

Species SRA ID Instrument/details Genes in original annotation Novel genes 

Total W/ reads % Total W/ reads % 

A. thaliana SRR3932355 Illumina HiSeq 2500, paired end. 

Wild type Columbia rep1 

162699 197160 82.52 116 54 46.6 

B. rapa SRR2984945 Illumina HiSeq 2000, paired end. 

ga-deficient dwarf (gad1-2) +GA 

rep2 

180358 218457 83.56 10 3 30.0 

C. papaya SRR3509576 Illumina HiSeq 2500, paired end. 

SunUp/Sunset cultivar, young 

hermaphrodite leaf 

93345 112604 82.90 382 309 80.1 

C. rubella SRR797557 Illumina Genome Analyzer IIx, 

paired end 

135008 148564 90.88 228 154 67.5 

T. cacao SRR3217315 Illumina HiSeq 2000, paired end. 

Flower/leaf sample 

209407 264870 79.06 94 50 53.2 

 551 
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Figures 616 

Figure 1: OrthoFiller workflow 617 

 618 
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Figure 2: Performance of OrthoFiller on S. cerevisiae genome with 10% of annotated 620 

genes removed. 621 

  622 
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Figure 3: Performance of OrthoFiller on S. cerevisiae genome with 90% of annotated 623 

genes removed. 624 

 625 
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Figure 4: Performance of OrthoFiller on A. thaliana genome with 10% of annotated 627 

genes removed.  628 
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Figure 5: Performance of OrthoFiller on A. thaliana genome with 90% of annotated 630 

genes removed. 631 

 632 

 633 

 634 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098566doi: bioRxiv preprint 

https://doi.org/10.1101/098566
http://creativecommons.org/licenses/by/4.0/


33 
 

Figure 6: Coverage plots and orthogroup trees for a selection of new genes. 635 
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Supplemental Figures 638 

Supplemental Figure 1: hit score distributions for good, bad and candidate hits 639 

 640 
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Supplemental Figure 2: Recovery of removed genes from S. cerevisiae after 10% 641 

removal: Representation of removed genes at each stage, filtered vs. unfiltered cases 642 
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Supplemental Figure 3: Recovery of removed genes from S. cerevisiae after 90% 644 

removal: Representation of removed genes at each stage, filtered vs. unfiltered cases 645 
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 650 

Supplemental Figure 4: Distribution of hint F-scores for good vs. bad hints 651 
 652 
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