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Abstract

RNA-processing.

Single cell RNA-seq (scRNA-seq) has revolutionised our understanding of transcriptome variability, with
profound implications both fundamental and translational. While scRNA-seq provides a comprehensive
measurement of stochasticity in transcription, the limitations of the technology have prevented its application
to dissect variability in RNA processing events such as splicing. Here we present BRIE (Bayesian Regression for
Isoform Estimation), a Bayesian hierarchical model which resolves these problems by learning an informative
prior distribution from sequence features. We show that BRIE yields reproducible estimates of exon inclusion
ratios in single cells and provides an effective tool for differential isoform quantification between scRNA-seq
data sets. BRIE therefore expands the scope of scRNA-seq experiments to probe the stochasticity of
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Background

Next generation sequencing (NGS) technologies have
revolutionised our understanding of RNA biology, il-
lustrating both the diversity of the transcriptome and
the richness and complexity of the regulatory pro-
cesses controlling transcription and RNA processing.
Recently, efficient RNA amplification techniques have
been coupled with NGS to yield transcriptome se-
quencing protocols to measure the abundance of tran-
scripts within single cells, known as single-cell RNA-
seq (scRNA-seq) [1]. scRNA-seq has provided unprece-
dented opportunities to investigate the stochasticity
of transcription and its importance in cellular diver-
sity. Groundbreaking applications of scRNA-seq in-
clude the ability to discover novel cell types [2], to
study transcriptome stochasticity in response to ex-
ternal signals [3], to enhance cancer research by dis-
secting tumour heterogeneity [4], to mention but a
few. However, such advances have been limited to ex-
plore variability between single cells at the gene level,
and we know very little about the global variability
of RNA splicing between individual cells. Bulk RNA-
seq splicing quantification algorithms cannot be eas-
ily adapted to the single cell case due to the minute
amounts of starting material, low cDNA conversion
efficiency and uneven transcript coverage resulting in
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intrinsically low coverage and potentially high techni-
cal noise [5]. This considerably limits the usefulness of
scRNA-seq to investigate questions about RNA pro-
cessing and splicing at the single cell level.

Splicing analysis has been revolutionised by the ad-
vent of (bulk) RNA-seq techniques. Early studies [6]
quantified splicing by considering junction reads that
are uniquely assigned to an inclusion/ exclusion iso-
form, necessitating very high coverage depth to achieve
confident predictions. The situation can be consider-
ably improved by using probabilistic methods based
on mixture modelling, an idea that is at the core of
standard tools such as Cufflinks [7] and MISO [8]. Nev-
ertheless, low coverage represents a challenge even for
probabilistic methods. Recent work has shown that im-
proved predictions at lower coverage can be achieved
by incorporating informative prior distributions within
probabilistic splicing quantification algorithms, lever-
aging either aspects of the experimental design, such as
time series [9], or auxiliary data sets such as measure-
ments of Polll localisation [10]. Such auxiliary data
are not normally available for scRNA-seq data. Nev-
ertheless, recent studies have also demonstrated that
splicing (in bulk cells) can be accurately predicted
from sequence-derived features [11]. This suggests that
overall patterns of read distribution may be associated
with specific sequence words, so that one may be able
to construct informative prior distributions that may
be learned directly from data. Here we introduce the
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Bayesian Regression for Isoform Estimation (BRIE)
method, a statistical model that achieves extremely
high sensitivity at low coverage by the use of informa-
tive priors learned directly from data via a (latent)
regression model. The regression model couples the
task of splicing quantification across different genes,
allowing a statistical transfer of information from well-
covered genes to lower covered genes, achieving consid-
erable robustness to noise in low coverage.

BRIE model has been implemented as a stan-
dard Python package, which is freely available at
http://github.com/huangyh09/brie. All scripts to
replicate the results in this paper are also included in
the repository.

Results and discussion

High level model description

Figure 1 presents a schematic illustration of BRIE (see
Methods for precise definitions and details of the es-
timation procedure). The bottom part of the figure
represents the standard mixture model approach to
isoform estimation introduced in MISO [8] and Cuf-
flinks [7], where reads are associated to a latent, multi-
nomially distributed isoform identity variable (see
Methods for a self-contained review of mixtures of iso-
forms models). This module takes as input the scRNA-
seq data (aligned reads) and forms the likelihood of
our Bayesian model. The multinomial identity vari-
ables are the assigned an informative prior in the form
of a regression model (top half of Figure 1), where the
prior probability of inclusion ratios is regressed against
sequence-derived features. Crucially, the regression pa-
rameters are shared across all genes and can be learned
across multiple single cells, thus regularising the task
and enabling robust predictions in the face of very low
coverage. In the Methods and Supplementary Material
we give details of the features used. While the class of
regression models we employ is different from the neu-
ral networks of [11], they still provide a highly accu-
rate supervised learning predictor of splicing on bulk
RNA-seq data sets. Fig S1 shows that the Bayesian
regression approach of BRIE can achieve a Pearson R
in excess of 0.8 on test sets, validating our choice of
model within BRIE.

This architecture effectively enables BRIE to si-
multaneously trade-off two tasks: in the absence of
data (drop-out genes), the informative prior provides
a way of imputing missing data, while for highly cov-
ered genes the likelihood term dominates, returning a
mixture-model quantification. For intermediate levels
of coverage, BRIE uses Bayes’s theorem to trade off
imputation and quantification.
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Figure 1 A cartoon of the BRIE method for isoform
estimation. BRIE combines a likelihood computed from
RNA-seq data (bottom part) and an informative prior
distribution learned from 735 sequence-derived features (top).

Benchmarking BRIE on simulated data

To assess the improvement in isoform quantifica-
tion afforded by BRIE’s informative prior, we simu-
lated RNA-seq reads for 11,478 human exon-skipping
events, and a correlated feature to learn prior (see de-
tails in Methods, and Supp. Fig S2). As we are in-
terested in quantifying the effects of an informative
prior, we compare BRIE with similar methods devel-
oped for bulk RNA-seq: MISO v0.5.3 [8], one of the
first and still very widely used probabilistic methods,
DICE-seq v0.2.6 [9], a modification of MISO using in-
formative priors (for multiple time points). For com-
pleteness, we also compare with Kallisto [12], which
was recently proposed as one of the most computa-
tionally efficient and robust quantification tools. To
simulate the effect of the regression prior, we intro-
duced an auxiliary variable with correlation 0.8 with
the desired inclusion ratios (the correlation value was
chosen to match the empirical performance of BRIE’s
regression prior on bulk RNA-seq data in Supp. Fig
S1). We also consider the case when BRIE’s auxiliary
variable is uncorrelated with the inclusion ratio (de-
noted as BRIE.Null) as a control. Thanks to the infor-
mative prior, BRIE can also provide an imputation for


https://doi.org/10.1101/098517
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/098517; this version posted April 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Huang and Sanguinetti

Page 3 of 10

A RPK=25, random feature B RPK=25, 0.8 correlated feature
1.0 + 1.0
- =+ R=0.716 ==+ R=0.912
08 .
: |
uj 0.6
o
@04 4
[%2]
o
0.2
0.0
I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PSI, Truth PSI, Truth
C Isoform estimate with simulated RNA-seq reads
[ Kallisto ET BRIE.Null [0 MISO B DICEseq [ BRIE
0.9
» el BT  mm
» 0.8
[=
o
&
T 0.7 -
o
0.6 -
0.5 T T T
RPK=25 RPK=50 RPK=100 RPK=200 RPK=400
Figure 2 BRIE improves isoform estimates by using an informative prior on simulated data. (A-B) At very low coverage RPK=25,
the scatter plot between the estimate of exon inclusion ration by BRIE and the simulation truth. (A) BRIE.Null uses five random
uniform-distributed features to learn prior. (B) BRIE uses one correlated feature with Pearson’s R=0.8 to the truth to learn
informative prior. (C) Pearson’s R between truth and estimate by BRIE, BRIE.Null and 3 other methods in different coverages.

drop-out transcripts (see below), which other methods
cannot; in order to maintain the simulation fair, we
did not include results on drop-out genes.

In the simulation, we set different coverage levels,
RPK (reads per kilo-base) ranging from 25 to 400.
Figure 2 clearly shows that the use of an informative
prior can bring very substantial performance improve-
ments at low coverage. At the lowest RPK level, BRIE
achieves a gain of almost 20% in correlation between
estimates and ground truth. Furthermore, this accu-
racy level is essentially maintained by BRIE at all cov-
erage values. Interestingly, BRIE.Null can still achieve
comparable accuracy to other existing methods at all
coverage values; therefore, even in cases where an infor-
mative prior could not be effectively learned, BRIE’s
results would not be worse than using a state-of-the-
art bulk RNA-seq method.

Imputation of drop-out in simulation

The informative prior learned by BRIE can also be
used to impute isoform usage when there is a drop-
out, i.e., no reads sequenced for an expressed isoform.

In sc-RNAseq experiments, drop-out widely occurs [5],
though it is sometimes hard to exactly detect, except
for spike-in RNAs. Here, we could coarsely define its
upper bound, by counting exon-skipping events ex-
pressed in bulk cells but not in a given single cell. In
Figure S3, we see that after removing drop-out events,
the correlation of expression level between a single cell
and bulk cells are dramatically higher on these splicing
events.

As BRIE can transfer information from highly ex-
pressed gene to lowly expressed genes across multiple
cells, we investigated the performance of BRIE in im-
puting the isoform usage if drop-out happens. There-
fore, the expression profile from a bulk RNA-seq li-
brary and the drop-out probability profile estimated
from 96 HCT116 human cell scRNA-seq libraries ( [13],
see Fig S4) were used to perform the simulation (see
simulation details in Methods). Figure S5 shows that
BRIE can produce a good imputation of the isoform
usage simply by taking the mean of the informative
prior learned from sequence features of the expressed
genes (Pearson’s R: 0.6~0.7).
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BRIE vyields robust splicing estimates on real data

To assess BRIE’s performance on real scRNA-seq
data, we used 96 scRNA-seq libraries from individ-
ual HCT116 human cells from the benchmark scRNA-
seq study of Wu et al [13] (see Methods for details).
Importantly, a bulk RNA-seq data set in the same
conditions was also obtained from one million cells.
To better explore performance on real data, we ex-
pand the set of competing methods to include Cufflinks
v2.2.1 [7], RSEM v1.3.0 and the recently proposed
single-cell quantification method Census (in Monocle
v2.2.0) based on Cufflinks FPKM [14]. Figure 3 shows
the results: BRIE clearly outperforms all other meth-
ods by a large margin, both in terms of correlation be-
tween estimates from different single cells (Fig 3f), and
in terms of correlations between estimates from indi-
vidual single-cells and bulk (Fig 3c). Example scatter
plots for both comparisons are given in Fig 3e and 3b,
clearly showing very consistent predictions. Notably,
the performance of other methods was strongly de-
graded by the inability to handle the large drop-out
rates (see Fig 3a and 3d for DICE-seq, where many
estimates of splicing are centred around the uninfor-
mative prior value of 0.5). The high correlation be-
tween bulk and scRNA-seq predictions is particularly
remarkable, as the analysis of the two data sets is
not done with a shared prior. Similarly high correla-
tions were found between splicing estimates obtained
by BRIE in single cells and estimates from bulk RNA-
seq obtained by other methods (Fig S6).

These statistical advantages are reflected in a more
effective and confident quantification: considering
genes with quantified uncertainty smaller than 0.3 (a
threshold adopted e.g. in [15] to select for downstream
analysis), Figure S7 shows that BRIE retained 10.9%
out of 11,478 genes on average from each single cell
(41.1% across all cells), as compared with 3.1% and
5.6% for MISO and DICE-seq, respectively.

BRIE gives higher sensitivity in differential splicing
analyses

BRIE can also be used for differential splicing detec-
tion across different data sets. To do so, we compute
the evidence ratio (Bayes factor, BF) between a model
where the two data sets are treated as replicates (null
hypothesis) and an alternative model where the two
data sets are treated as separate. We use the Savage-
Dickey density-ratio approach and relax it in order to
obtain more robust estimates (see Methods). Notice
that there are several ways in which differential com-
parisons could be performed: we could compare groups
of cells or individual cells, and we could share the learn-
ing of the prior across conditions, or learn separately.
All of these options are supported in the BRIE soft-
ware.
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To benchmark the effectiveness of this strategy, we
again turned to a simulation study, investigating the
ability of BRIE to detect differential splicing as we
vary coverage and the extent of the differential ef-
fect (see Methods for details of the simulation). This
benchmarking is important, as the informative prior
might be expected to impede differential quantifica-
tion. In practice, we see that, for substantial effect
sizes (AY = 0.6), we can detect a substantial frac-
tion of differentially spliced genes already at RPK 50,
further improving when the effect size is 0.8 (Fig S8a).
We also use the simulation study to explore the ef-
fect of different library size on our differential com-
parisons. We do this by fixing one of the comparison
cells to an RPK level. The results shown in Fig S8 b-
¢ demonstrate that BRIE is robust to normalisation
issues; this is not surprising, since relative quantifica-
tion algorithms normally combine normalisation with
estimation (see [14] for a discussion of this topic in the
scRNA-seq context).

We then moved to investigate the effectiveness of
BRIE to detect differential splicing in real cells. To
estimate a background level of differential splicing be-
tween identical cells, we considered again the 20 single
cell HCT116 libraries from Wu et al [13], and compared
all possible pairs of cells. Figure 4a shows the fraction
of genes called as differentially spliced at different BF
thresholds in this control experiment; as we can see,
this number is always very small, and around 1% at
the normally recommended threshold of BF=10. This
level of background calling could be partly attributed
to intrinsic stochasticity or to residual physiological
variability that was not controlled for in the experi-
ment, such as cell cycle phase. As an additional com-
parison, we considered two bulk RNA-seq methods for
differential splicing, MISO and the recently proposed
rMATS [16]. Both methods could only call a negligible
number of events, far fewer than the expected number
of false positives, confirming that bulk methods are
not suitable for scRNA-seq splicing analysis.

We then considered a mouse early development
scRNA-seq data set [17], and compared the single cell
transcriptomic profiles from cells from mouse embryos
at 6.5 and 7.75 days. We compared both the profiles of
individual cells at the same and different time points;
the results are summarised in Figure 4b. Comparing
individual cells at 6.5 days yielded approximately 1%
of events called as significantly differential (BF> 10)
at 6.5 days. Comparing this result with our investi-
gation of HCT116 cells suggests that murine cells at
6.5 days are still similar to a homogeneous population,
from the splicing point of view. The percentage nearly
doubled at 7.75 days, suggesting that differential splic-
ing becomes more widespread at this later stage of dif-
ferentiation. A similar fraction of exon skipping events
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Figure 3 BRIE improves splicing estimates by using sequence features. (A-C) Pearson’s correlation between between bulk and single
cells on exon inclusion ratio ¥ in HCT116 cells. Scatter plot of 1 estimates by DICEseq (A), or estimated by BRIE (B). Box-plot for
all methods (C) in 96 cells. (D-F) Pearson’s correlation between single cell pairs. Scatter plot of ¢ estimates by DICEseq (D), or
estimated by BRIE (E). Box-plot for all methods (F) in 4,608 cell pairs.

were differentially called between cells at 7.75 days and
cells at 6.5 days. To define a group of differentiation-
associated skipping events, we considered events that
we called as differential in at least 10% of 7.75 vs 6.5
comparisons. The resulting 159 events were highly en-
riched for organelle and intracellular part GO terms
(p < 0.01) (see Supplementary Table S1 and S2). Fig-
ure 4c shows the example of DNMT3B, a regulator
of DNA methylation maintenance, which is known to
undergo functionally relevant alternative splicing [18].
DNMTS3B exhibited differential splicing between 7.75
days and 6.5 days in 153 out of 400 comparisons be-
tween individual single cells, clearly highlighting the
strong differential inclusion effect. Four more example
events, all of which have shown differential splicing in
more than 100 pairs of comparisons, are presented in
Supplementary Figure S9.

We also directly compared the two groups of cells
within a single test (7.75 vs 6.5); this can be easily
achieved by assuming a shared splicing ratio 1 across
all cells in a condition. Mathematically, this is equiva-
lent to multiplying the likelihood terms associated to
each cell, in practice pooling the reads from different
cells. While this achieves higher power (see the dia-
mond dot in Fig 4b), it loses the considerable amount
of cell-to-cell heterogeneity highlighted by the single-
cell analysis. It would be interesting to explore a more

refined way of partial pooling within the hierarchical
model [19], or to combine BRIE with scRNA-seq clus-
tering approaches which can identify more homoge-
neous groups of cells [2].

Conclusions

Our results demonstrate that BRIE can provide a reli-
able and reproducible method to quantify splicing lev-
els within single cells. Alternative splicing is a ma-
jor mechanism of regulation of the transcriptome, and
splicing analyses within bulk studies have revealed im-
portant associations of splicing with disease. There-
fore, the ability to quantify alternative splicing in in-
dividual cells would considerably expand the relevance
of scRNA-seq technology to investigate variations in
RNA processing, and its relevance to diseases. We be-
lieve the usage of a data-driven informative prior is
essential for this task: directly using bulk RNA-seq
methods on scRNA-seq is not a viable route due to
the limitations of the technology, an observation that
was made earlier [1] that our results confirm. Recent
work [20] has addressed the issue of detection of alter-
native splicing across a population of single cells, but
as far as we are aware BRIE is the first method to
be able to quantify splicing in individual single cells,
and to detect differential splicing between individual
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Figure 4 Detection of differential splicing between cells. (A) Percentage of differential splicing events between human HCT116 cells,
detected by MISO, rMATS, BRIE and its mode with shared weights (i.e., BRIE.share) with different thresholds. MISO and BRIE use
Bayes factor (bf) and rMATS uses false discovery rate (g value). (B) Percentage of differential splicing events between mouse early
embryonic cells at 6.5 day or 7.75 day. The threshold is bf > 10 for MISO and BRIE, and ¢ < 0.05 for rMATS. Diamond indicates
pooling reads of 20 cells in each group. (C) An example exon-skipping event in DNMT3B in 3 mouse cells at 6.5s days and 3 cells at
7.75days. The left panel is sashimi plot of the reads density and the number of junction reads. The right panel is the prior
distribution in blue curve and a histogram of the posterior distribution in black, both learned by BRIE. For the histogram, the red
line is the mean and the dash lines are the 95% confidence interval.

cells from scRNA-seq data. We notice that, since BRIE
focusses on estimating splicing ratios, it is relatively
immune to normalisation issues, since it is essentially
a relative quantification method (see [14] for a com-
pelling demonstration of this property of relative quan-
tification methods).

BRIE provides a flexible framework for modelling
and, while sequence features are particularly appealing
due to their ease of usage and availability, additional
side information, such as DNA methylation and chro-
matin accessibility, could easily be incorporated. Im-
portantly, BRIE is not specific to single-cell RNA-seq
technology, and can be of use in any situation where
standard quantification is hampered by low coverage.

BRIE’s use of an informative prior enables a smooth
trade-off between imputation (at extremely low cov-
erages) and quantification. While this can be a highly

effective strategy, it comes at the cost of biasing results
at low coverage, potentially introducing some false pos-
itives in order to improve the recall of true positives.
Another advantage of BRIE’s probabilistic formula-
tion is the ease with which it could be combined with
other probabilistic modelling strategies aimed at re-
moving confounders such as cell-cycle stage [21], or at
estimating pseudo-time [22].

BRIE cannot be deployed on all scRNA-seq proto-
cols, as it assumes that sequenced reads can be dis-
tributed along whole transcripts. Naturally, protocols
such as CEL-seq or STRT-seq that bias reads towards
the ends of the transcript cannot provide information
about exon skipping events that may be very far from
the ends of a transcript. We believe that the availabil-
ity of splicing quantification approaches such as BRIE
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can therefore be an important consideration in exper-
imental design, particularly at a time when single-cell
omic technologies are about to start being more rou-
tinely employed.

Methods
Exon-skipping events annotation
Gene annotations were downloaded from GENCODE
human release H22 and mouse release M6. 24,957 and
9,343 exon-skipping events were extracted from pro-
tein coding genes on human and mouse, respectively.
In order to ensure high quality of the splicing events,
we applied 6 constraints following two recent stud-
ies [23, 11] for filtering:
1) located on chromosome 1-22 (1-19 for mouse) and
X
2) not overlapped by any other AS-exon
3) surrounding introns are no shorter than 100bp
4) length of alternative exon regions between 50 and
450bp
5) with a minimum distance of 500bp from TSS or
TTS
6) surrounded by AG-GT, i.e., AG-AS.exon-GT
Consequently, 11,478 and 4,549 exon-skipping events
from human and mouse respectively were finally used
for this study.

Feature extraction for Bayesian regression
Following Xiong et al [11], we extract predictive se-
quence features from the following 7 genomic regions
for each exon-skipping event (see cartoon in Figure
la): C1 (constitutive exon 1), I1-5ss (300nt down-
stream from the 5’ splice site of intron 1), I1-3ss (300nt
upstream from the 3’ splice site of intronl), A (alter-
native exon), 12-5ss (300nt downstream from the 5’
splice site of intron 2), 12-3ss (300nt upstream from
the 3’ splice site of intron 2), C2 (constitutive exon 2).
From these 7 regions, four types of splicing regula-
tory features are defined. First, 8 length related fea-
tures are included, i.e., log length of C1, A, C2, I1,
12, and the ratio of the log length of A/I1, A/I2 and
I1/12. Second, the motif strengths of the 4 splice sites,
i.e., [1-57ss, 11-3’ss, 12-5’ss and 12-3’ss, were calculated
from mapping each sequence to its averaged position
weight matrix. Here, we considered -4nt upstream to
+6nt downstream around 5’ss (11nt in total), and from
-16nt to 4nt for 3’ss. Third, we also include evolution-
ary conservation scores for each of the 7 genomic re-
gions, which were calculated by phastCons [24], and
are available at the UCSC genome browser. We used
the phastCons files in bigWig format with version hg38
for human and mml10 for mouse, where 99 and 59
vertebrate genomes were mapped to the human and
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mouse genome, respectively. Then the mean conser-
vation scores for the above 7 regions were extracted
by using bigWigSummary command-line utility. Lastly,
716 short sequences were extracted from the 7 regions,
including 1-2mers for I1-5ss and I2-3ss (20 sequences
each), and 1-3mers for C1, I1-3ss, 12-5ss and C2 (84
sequences each), and 1-4mers for A (340 sequences).
In total, 735 splicing regulatory features were used to
predict the exon inclusion ratio in Bayesian regression.

RNA-seq data and preprocessing

Bulk RNA-seq libraries for the K562 cell line were pro-
duced by the ENCODE project [25], downloaded from
Gene Expression Omnibus (GEO: GSE26284); these
were used to validate the prediction performance of the
splicing regulatory features on bulk RNA-seq (Supple-
mentary Figure S1).

Two single cell RNA-seq data sets were used to val-
idate BRIE model. The first data set is from a bench-
mark study [13], consisting of 96 single cell RNA-seq
libraries from the HCT116 cell line (GEO: GSE51254).
These single-cell RN A-seq libraries were prepared with
SMART-seq protocol, and have paired-end reads with
read length of 125bp. By using a barcode, 48 cells were
sequenced per lane, resulting in an average 2.2 million
reads per cell. From the same study, two bulk RNA-seq
libraries, each with 31.2M reads generated from 1 mil-
lion HCT116 cells, were also used for comparison. Only
reads mapping to alternatively skipped exons and their
flanking regions (as described in the previous subsec-
tion) were considered.

In order to study differential splicing across different
cell types, scRNA-seq data produced by SMART-seq2
protocol from mouse embryo at embryonic day 6.5 and
day 7.75 [17] were used. From each of the two groups,
20 individual cells were used, which can be accessed at
Array Express (E-MTAB-4079).

All above RN A-seq reads were aligned to the relevant
genome reference by HISAT 0.1.6-beta with known
splicing junctions.

Assessing BRIE via a simulation study
There are three simulations conducted to assessing
BRIE’s performance in quantifying isoform with low
coverages, detecting differential splicing, and imput-
ing splicing in drop-out cases. All synthetic reads were
generated by Spanki simulator [26], while we provide
Python wraps to easily run the simulations, which is
publically available in BRIE GitHub repository.
First, we assessed the robust performance of BRIE
in very low coverage on 11,478 human exon-skipping

events. We assume that the ¢ value follows a logitNormal

distribution with mean gy = 0 and o = 3, ie.,
logit(v) ~ N(0,3.0), as presented in Figure S2,
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which is similar to that in ENCODE K562 cell line.
Then we set all splicing events at the same sequencing
coverage, by fixing its RPK, i.e., reads per kilo-base in
each experiment. Finally, five different coverage levels
are used, including RPK = 25 (very low, but com-
parable to a ly covered gene in a scRNA-seq exper-
iment), RPK = 50, RPK = 100, RPK = 200 and
RPK = 400.

For the purpose of generating a feature to learn an
informative prior, we added Gaussian noise to the out-
put ¢ values from the Spanki simulator in its logit
format, and ensured a Pearson’s correlation coefficient
of 0.8 between the feature and the truth, as shown in
Fig S2. This correlation is similar as that achieved by
supervised learning in human data set (see Fig S1). By
contrast, five uniform-distributed random features are
used to learn a Null prior (i.e., random prior), which
is named as BRIE.Null.

Second, we tested the power of BRIE in detecting
differential splicing events on 400 random mouse exon-
skipping events with length ranging from 300bp to
800bp. Eight categories of @ from 0.1 to 0.9 except
0.5 were equally distributed to the 400 splicing events,
and opposite ¥ values were assigned to two conditions,
e.g., ¥=0.1 in condition 1 and ¥=0.9 in condition 2.
Then, the prior is set by the same procedure as the
first simulation.

Third, we mimicked the drop-out situation on 11,478
human exon-skipping events, and studied the imputa-
tion of BRIE in drop-out cases. We looked at one bulk
RNA-seq library and 96 single-cell libraries of HCT116
cell lines [13], and only focus on the splicing events
that are expressed in the bulk cells (FPKM > 0). We
define the drop-out events as those splicing events that
are expressed in the bulk cells (FPKM > 0) but not
in a given single cell (FPKM = 0). We further de-
fine the drop-out rate of a single cell as the fraction of
drop-out events in this cell, and the drop-out probabil-
ity of a skipping event as the fraction of its drop-out in
96 cells. Both distributions of the drop-out rates and
the drop-out probabilities were shown in Fig S4.

Given an expression profile (e.g., FPKM or TPM) Z
from a bulk library and a profile of drop-out probabil-
ity calculated from a group of single cells (e.g., the 96
cells here), we simulated the RPK for each isoform (or
transcript) as follows. For each isoform k, we generate
a binary variable Iy, i.e., either 0 or 1, following a bino-
mial distribution with mean as its corresponding drop-
out probability. Then each isoform expression level for
the simulated single cell is alyZ;, where coefficient «
is included to ensure a given number of total reads. If
one wants a different overall drop-out rate, but keep
the similarity of the drop-out probability profile, an
intercept will be added to the drop-out probability in
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its logit space. In the simulation of drop-out, the 735
sequence features from real data are used to learn in-
formative prior. We take the mean of the learned prior
as the imputed 9 for those drop-out events.

BRIE model for isoform estimate

Here, we define formally the BRIE statistical model.
We consider exon inclusion / exclusion as two differ-
ent isoforms. We start by reviewing the mixture mod-
elling framework for isoform quantification, introduced
in MISO [8]. The likelihood of isoform proportions ;
for observing N; reads R; 1.y, in sample (single cell) i,
can be defined as follows

N; 2
P(Ri,1:N¢|\I/i) = H Z m|Im (IinW)i) (1)

where the latent variable I;,, denotes read identity,
i.e., the isoform read n in cell ¢ came from. For bulk
RNA-seq methods like MISO [8] or DICEseq [9], the
conditional distribution of the read identity I;,|v; is
assumed to be a Multinomial distribution, and the
prior distribution over v; is taken to be an uninforma-
tive uniform distribution (suitably adjusted to reflect
the potentially different isoform lengths). The pre-
computed term P(R;y|l;) encodes the probability of
observing a certain read coming from a specific isoform
I;,. Bulk methods then proceed usually by adopting
a Markov-chain Monte Carlo strategy to sample from
the posterior distribution of the ; variables.

BRIE enhances the mixture model approach by com-
bining it with a Bayesian regression module to auto-
matically learn an informative prior distribution by
considering sequence features. First, we use a logit
transformation of v;, i..e, y; = logit(v;). We then
model the transformed exon inclusion ratio y; as a lin-
ear function of a set of m covariates X € R™ (here the
covariates are the sequence features described previ-
ously): y; = WT X +¢;, where W is a vector of weights
shared by all samples and ¢; follows zero-mean Gaus-
sian distribution. All exon skipping events are inde-
pendently modelled with shared W parameters.

Here, we use a conjugate Gaussian prior for the
weights, i.e., W ~ N(0,A™!), with a common choice
of A = AL, for a positive scalar parameter A. Thus, the
graphical representation of the full model is shown in
Supplementary Figure S10, and the full posterior is as
follows (omitting the cell index for simplicity),

P(W,0,%|X,R) x
2

P(W|\) H{P Uy | Xi, W, 0) H > P(R|I,)P

n= llk 1

(InlWe)}

(2)
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Inference in BRIE

As shown above, BRIE involves the whole set of exon-
skipping events, thus there are thousands of parame-
ters to infer jointly, which can lead to very high compu-
tational costs which are not easily distributed. There-
fore, we introduce an approximate method to alter-
nately learn ¢ and W. Also, to alleviate computational
burdens, there is an option to merge reads from all
cells to learn parameters. For simplicity, we set A em-
pirically, using the value A = 0.1 which gave the best
predictive performance on tests on ENCODE data.
Then, we collapse W and o by taking their expected
value in Bayesian regression given a set of ¥, i.e.,
W=(X"X+02A)"'X"Y and 0 = std(Y — WTX).
At a single exon-skipping event level, we used an adap-
tive Metropolis-Hastings sampler to sample ¥, where
a univariate Gaussian distribution is used for proposal
with adaptive variance, i.e., n = 2.38 * std(y(1"™)). At
this step, we could run short parallel MCMC chains
on multiple events to alleviate computational costs,
for example h = 50 steps if the total iteration is
n+h = 1000. Pseudocode to sample from the (approxi-
mate) posterior distribution of ¥ is given in Algorithm
1. Also, this model supports fixed W and o, which can
be learned from other data sets, e.g. bulk RNA-seq;
then the line 3 and 5 will be turned off in Algorithm
1. The convergence of the sampling is diagnosed by
using the Geweke diagnostic Z score; in our experi-
ments 1000 burn-in steps appeared to be sufficient in
all cases.

Algorithm 1: Approximation of ¥, W, o
Data: X, R, A; optional: W and o
Result: ¥, W, o
1 initialization Y(©) = 0;0 = 1.0;n = 1.0
2 for i+ 0 ton do
3 W('L) — (XTX + O.QA)—leY(i*h)
a Y=w®TX
5
6
7

o = std(Yh) —Y)
for £k + 1 to K do
if i x h > 10 then

8 L n = 2.38 % std(y](CO:i*h))

) for j < ixh to (i+1)*hdo _

10 Sample: p ~ U(0,1); yj ~ Qy(y,’;|y,(j),n)

" Calculate: P(y|R) = N (y | o) P(RIY)

12 if u <min{ (?i’;)| ) Qy(yk |y(’;) n) ,1}
Py |R) x Qy(yzlyy " m)

then

13 L y,(j+1) — Yl \I/](CJ+1> < logistic(y;)

14 else

15 yl(j-&-l) Fyl(cj)?\l,(kaﬂ) .

logistic(yfj))

16 return W(Otn)7 \I;(O:n*h);

BRIE then outputs an approximate posterior dis-
tribution on the v values as well as the learned re-
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gression weights. BRIE offers functionality to visualise
both such posterior distributions as histograms (Fig
4c) and learned weights as heatmaps (Supp. Fig S11
for 19 sequence related features).

Detection of differential splicing using Bayes factors
The Bayes factor [27] is a posterior odds in favor of
a hypothesis relative to another, and is also able to
detect whether splicing in two cells or conditions are
different or not.

To detect differential splicing between two cells (or
cell groups), A and B, § = U4 — ¥, we introduce
a null hypothesis (Hp) as 6 =~ 0, and the alternative
hypothesis (Hy) as 6 % 0. Here, D is the data used
to sample the posterior of ¥ in two cells. Then, the
Bayes factor in favor of the alternative hypothesis on
observing data D is defined as follows,

_ P(H,|D) _ P(D|H,\)P(H))

B = P(Ho|D) ~ P(D|Ho)P(Ho) )

As usual, we assume that both hypotheses have the
same prior, i.e., P(Hy) = P(Hp), and we can clearly
see that P(D|Hy) = P(DI|é =~ 0, H;). Therefore, by
taking the Savage-Dickey density ratio [28], we could
simplify the calculation of BF as follows,

e POl
P(D|§ =~ 0, Hy) (4)
_ P(=0|H1) _ P(—e<é<elHr)

T P(5~0[D,H) P(—€e<6<e€D,H)

where € can be set as 0.05.

As BRIE samples ¥ 4 and W 5 following their posteri-
ors, the distribution of P(§|D, Hy) is readily to approx-
imate by empirically re-sampling ¥4 — U . With a set
of re-sampled 6;.57, we take the proportion of |§;| < €
as the posterior probability P(—e < § < ¢€|D, Hy).
Similarly, we could sample a set of U 4 and g follow-
ing their prior distributions, and use the same proce-
dure to approximate the prior probability P(—e < § <
€|H1). In the case of comparing two cell groups, one
can multiply the individual likelihoods (with shared
¢ values); this however is equivalent to pooling reads
across different cells, and will loose the quantification
of cell-to-cell heterogeneity.

Abbreviations
scRNA-seq: single-cell RNA-seq; BF: Bayes factor; RPK: reads per
kilo-base; MCMC: Markov chain Monte Carlo.
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