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Abstract 27 

Background 28 

The study investigates oscillatory brain activity during working memory (WM) tasks. The tasks 29 

employed varied in two dimensions. First, they differed in complexity from average to highly demanding. 30 

Second, we used two types of tasks, which required either only retention of stimulus set or retention and 31 

manipulation of the content. We expected to reveal EEG correlates of temporary storage and central 32 

executive components of WM and to assess their contribution to individual differences. 33 

Results 34 

Generally, as compared with the retention condition, manipulation of stimuli in WM was associated 35 

with distributed suppression of alpha1 activity and with the increase of the midline theta activity. Load and 36 

task dependent decrement of beta1 power was found during task performance. Beta2 power increased with 37 

the increasing WM load and did not significantly depend on the type of the task.  38 

At the level of individual differences, we found that the high performance (HP) group was 39 

characterized by higher alpha rhythm power. The HP group demonstrated task-related increment of theta 40 

power in the left anterior area and a gradual increase of theta power at midline area. In contrast, the low 41 

performance (LP) group exhibited a drop of theta power in the most challenging condition. HP group was 42 

also characterized by stronger desynchronization of beta1 rhythm over the left posterior area in the 43 

manipulation condition. In this condition, beta2 power increased in the HP group over anterior areas, but 44 

in the LP group over posterior areas. 45 

Conclusions 46 

WM performance is accompanied by changes in EEG in a broad frequency range from theta to 47 

higher beta bands. The most pronounced differences in oscillatory activity between individuals with high 48 

and low WM performance can be observed in the most challenging WM task.  49 

 50 

 51 

 52 
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Background 53 

The ability to retain information in memory for a short period of time is critical for numerous 54 

cognitive tasks including planning, verbal competence, spatial orientation, mental manipulations of objects 55 

and many others [12–14]. 56 

According to Baddeley & Hitch’s [15] model, the structure of working memory (WM) consists of 57 

several components. One of them is responsible for temporary storage of information in modality-specific 58 

buffers. Another key component, the central executive, is considered to be a set of tools designed to 59 

maintain the active representation of memory trace, to control attention and to preserve the latter from 60 

interference caused by irrelevant stimuli [16,17]. 61 

A number of neuroimaging studies demonstrated that maintenance of information in WM engages 62 

a broad network of neural structures mostly including prefrontal cortex, parietal and temporal areas [13,18]. 63 

Whereas storage buffers represent information received from sensory inputs in posterior regions, the 64 

prefrontal cortex sustains and transforms this information and organizes executive processes of working 65 

memory [19]. Existing research highlights the importance of the fronto-parietal network activation in 66 

working memory processes, especially in high demanding tasks [20–24]. Apparently, individual differences 67 

in working memory capacity are also determined by fronto-parietal white matter connectivity [25].        68 

Features of the processes presumed by Baddeley & Hitch’s model of WM cannot be characterized 69 

only by spatial distribution of brain activation. Qualitatively different information about these processes 70 

can be obtained from studies of neuronal oscillatory activity as an energy-efficient mechanism for temporal 71 

coordination of cognitive processes [26].   72 

An increase of frontal midline theta rhythm (FMT) frequently accompanies such processes as 73 

nonspecific attention and WM [3,27–29]. The results of earlier studies often define FMT as the most 74 

plausible phenomenon reflecting an activation of central executive components of WM [30]. Several 75 

attempts to isolate central executive components from temporary storage components by including tasks 76 

requiring mental manipulations support hypothesis of the link between FMT and the executive control [31–77 

33]. Several studies demonstrated the activation of fronto-parietal executive control system during retention 78 
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in WM [34–36]. Moreover, some authors report increasing fronto-parietal synchronization with stronger 79 

engagement of central executive components [29]. Induced coupling of theta rhythm between frontal and 80 

parietal cortical regions by transcranial alternating current stimulation (tACS) resulted in improved visual 81 

WM performance, while the induced decoupling lead to WM deterioration [37].  82 

Changes in alpha activity also show parametrical increase related to working memory load [38–40]. 83 

Increasing power of alpha rhythm is frequently interpreted as a mechanism for filtration and for suppression 84 

of the cortical areas irrelevant to the current task [40–42]. 85 

The role of beta activity in working memory processes is still not sufficiently investigated. Thus the 86 

activity particularly in the low beta band (~13-20 Hz) was found to increase during retention in WM [3,43–87 

45]. A parametrical increase of low beta with the increasing of memory set size was also observed [3,43]. 88 

A comparison of retention condition with the conditions where participants were instructed to manipulate 89 

objects in WM showed that gradually increasing task complexity was related with a decrease of low beta 90 

activity [32]. 91 

Data of several studies suggest that the main contribution to individual differences in WM is made 92 

by the ability to control attention or executive control [46–48]. However, despite extensive research of WM 93 

in the recent 20 years, there is no clarity as regards the electrophysiological correlates mechanisms of 94 

individual differences in WM performance. The existing research (both general and differential 95 

psychological) have some limitations that restrict the possibility to explain the actual relationship between 96 

brain activity and WM performance.  97 

 First of all, most WM studies have used the n-back paradigm [1,2,49]. This kind of task engages 98 

multiple WM processes including retention of the stimuli set presented at the previous step, comparison 99 

between the first item of the memorized set and the new one, making decision about correctness of the 100 

comparison, and updating the content of WM. In this paradigm, it is difficult to clearly separate retention 101 

from the central executive components of WM. 102 

Second, the level of difficulty of the task is usually moderate and thus does not present a big 103 

challenge for people with average WM abilities. There are studies dedicated to the investigation of EEG in 104 
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WM tasks with several levels of difficulty [1,3,4,9]. In the studies mentioned above the number of steps 105 

did not exceed three (3-back) [1,2]. Some researchers applied other paradigms with gradually increasing 106 

difficulty of tasks for assessing WM performance [3,28,33]. But these paradigms either did not include any 107 

manipulation task [3,28], or their difficulty level was rather low [33]. 108 

Finally, the existing studies aimed to discover electrophysiological correlates of individual 109 

differences in WM were based on a sample size not exceeding 14 participants in each group [1,3,50]. An 110 

analysis of typical effect sizes indicates that at least twice larger groups would be necessary to reliably 111 

evaluate the differences between high- and low-performers. 112 

In this paper we used highly demanding tasks which should give us the opportunity to distinguish 113 

EEG activity of individuals with different levels of WM performance. Additionally, using two types of 114 

tasks, which required either only retention of stimulus set or manipulation of content, we expected to reveal 115 

EEG correlates of temporary storage and central executive components of WM and to assess their 116 

contribution to individual differences. 117 

The hypotheses of the study were as follows: 118 

1. Motivated by the previous studies we expected significant relationships between WM 119 

performance and oscillatory activity in theta and alpha frequency bands;   120 

2. Particularly, we supposed that frontal theta rhythm power is strongly related to the WM load;  121 

3. We expected that storage components of working memory play less important role in individual 122 

differences than executive components. Specifically, we assumed that no individual differences would be 123 

found in the simple retention conditions; 124 

4. Additionally, we hypothesized that the most challenging condition would best separate between 125 

low and high performers; 126 

 127 

Methods 128 

 129 

Participants 130 
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 131 

Due to a strong gender disproportion in the initial sample, only data of female participants were 132 

included into the present study. All participants were Russian native speakers. Furthermore, a subsequent 133 

analysis revealed five EEG records with an excessive amount of artefacts (i.e., less than 20 artifact-free 134 

epochs in at least one condition). Thus, 65 female participants (mean age = 20.92, SD=2.96) were included 135 

to the final sample. The participants had normal or corrected-to-normal vision and no history of 136 

neurological or mental diseases.  137 

 138 

Stimuli 139 

 140 

Sets of Russian alphabet letters written in capital were used as stimuli. The letters had been selected 141 

randomly and had random order and no repetitions in the sets. Each trial consisted of 7 consecutive events. 142 

An analogue using Latin letters and English words is shown in Fig. 1.  143 

  144 

Insert Figure 1 about here 145 

 146 

A trial always began with an exclamation mark presented for 200 ms, which was followed by a 147 

fixation cross for 3000 ms. Participants were instructed to fixate the cross when it appeared in the center of 148 

the screen. At the next step the word “forward” or “alphabetical”, presented for 500 ms, instructed 149 

participants whether they would have to memorize the original set as it was presented (retention task) or to 150 

memorize it after mental recombination of the letters in the alphabetical order (manipulation task). After 151 

that, sets of 5, 6 or 7 letters were demonstrated for 3000 ms followed by a delay period where a fixation 152 

cross was demonstrated for 6500 ms. At the end of this delay period, a randomly chosen letter from the 153 

previously presented set appeared on the screen together with a digit that represented the serial number of 154 

this letter. The letter-digit combination was presented for 1000 ms. Participants were asked to press a 155 

specified button of a computer mouse if the presented letter had the corresponding serial number either in 156 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2017. ; https://doi.org/10.1101/098301doi: bioRxiv preprint 

https://doi.org/10.1101/098301
http://creativecommons.org/licenses/by/4.0/


the original set (in the retention task), or in the set merging as a result of alphabetic recombination (in the 157 

manipulation task). The other mouse button had to be pressed if the serial number of the presented letter 158 

was incorrect. The two buttons were attributed to correct and wrong probes in a counterbalanced order. The 159 

probe was correct in 50 % of the trials, and the order of correct and incorrect probes was random. The next 160 

trial started after an interval that varied between 5000 and 5500 ms.    161 

Thus, the experiment entailed six different conditions: memorizing 5, 6 or 7 letters in the 162 

alphabetical or forward order. Each condition had 20 consecutive trials. These six blocks with 20 trials were 163 

presented in a random order. A short practice block of 6 trials was given immediately before the main 164 

experiment.  165 

 During the experiment, the participants were seated in a comfortable armchair in front of a com 166 

puter screen in a dark room. Stimuli were presented in white color on a black background in the center of 167 

the screen by using PsyTask software (Mitsar Ltd.). The distance to the screen was 1 m and the size of the 168 

letters was 1.2 × 1.2°.  169 

All participants were subdivided into two groups separated by the median of their mean performance 170 

across all tasks. The groups are referred to as high performance (HP; N = 32) and low performance (LP; N 171 

= 33) groups. The percentage of correct answers was used for behavioral data analysis. A repeated measures 172 

ANOVA with the between-subject factor Group (HP, LP) and the within-subject factors Task (retention, 173 

manipulation) and Load (5, 6, or 7 letters) was applied.  174 

 175 

EEG recording and analysis 176 

 177 

The EEG was recorded from 19 electrodes arranged according to the 10-20 system using Mitsar-178 

EEG-201 amplifier and referred to the average earlobe. Two additional electrodes were used for horizontal 179 

and vertical EOG. EEG data were acquired with 500 Hz sampling frequency, 0.16 Hz high pass filter and 180 

70 Hz low pass filter. 181 
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Frequency bands for EEG analysis were defined using individual alpha frequency (IAF) as follows: 182 

theta = [IAF-6 Hz to IAF-2.5 Hz], alpha1 = [IAF-2.5 Hz to IAF], alpha2 = [IAF to IAF+2.5 Hz], beta1 = 183 

[IAF+2.5 Hz to 20 Hz], beta2 = [20 Hz to 30 Hz]. The IAF was determined on a 3 min EEG recorded at 184 

rest with eyes closed. 185 

Segments of raw EEG recorded during the interval from 500 ms to 6500 ms of the delay period were 186 

analyzed. These segments were filtered between 0.5 and 30 Hz, and a 50-Hz notch filter was applied. The 187 

segments were subdivided into 2-second epochs. A fast Fourier transformation (FFT) was performed in 188 

each epoch. Ocular artefacts were corrected by using independent component analysis (ICA) followed by 189 

visual EEG inspection for remaining artefacts. These operations were performed in EEGlab toolbox. 190 

Spectral power densities for each frequency bands were calculated using Fieldtrip toolbox.   191 

Spectral power data were statistically analyzed by using two independent mixed-design ANOVAs. 192 

The first analysis involved mean power values in four regions of interest (ROI): left (Fp1, F7, F3) and right 193 

(Fp2, F8, F4) anterior areas, left (T5, P3, O1) and right (T6, P4, O2) posterior areas. This analysis included 194 

a between-subject factor Group (HP, LP) and the within-subject factors Task (retention, manipulation), 195 

Load (5 versus 7 letters), Hemisphere (left, right) and Site (anterior, posterior). The second ANOVA of 196 

mean power values at the midline (Fz, Cz, Pz) analogous to the previous with factors Group, Task and Load 197 

was performed. All statistical calculations were performed by using SPSS package. 198 

 199 

Results 200 

  201 

 Behavioral results 202 

 203 

Participants performed with a general mean accuracy of 78.5±0.9%. Mean accuracies for each 204 

condition are shown in Fig. 2.  205 

The main effects of Task (F(1, 63) = 108.1, p < 0.0001, ƞ2 = .632) and Load (F(2, 126) = 49.69, p 206 

< 0.0001, ƞ2 = .441) as well as their interaction of the factors (F(2, 126) = 5.606, p = 0.005, ƞ2 = .082) were 207 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2017. ; https://doi.org/10.1101/098301doi: bioRxiv preprint 

https://doi.org/10.1101/098301
http://creativecommons.org/licenses/by/4.0/


obtained. A pairwise comparison between load levels separately for alphabetical and forward conditions 208 

showed highly significant differences (p<0.0001) for all pairs but two. First, there was no difference 209 

between the performance in 5- and 6-letter conditions in the forward order (p=0.191). Second, the 210 

differences were less pronounced in the comparison between 6 and 7 letters in the alphabetical order 211 

(p=0.011; not significant after Bonferroni correction). For this reason, and in order to avoid potential 212 

problem with sphericity in statistical measures, the 6-letters condition was excluded from the EEG analysis. 213 

The mean performance accuracy in the high and low performance groups was 84.9±0,5% and 214 

71.9±1,1%, respectively (F(1, 63) = 87.26, p < 0.0001, ƞ2 = .581).  215 

 216 

Insert Figure 2 about here 217 

 218 

 Electrophysiological results 219 

  220 

 221 
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Table 1 222 

Results of the ANOVA with the factors Task x Load x Hemisphere x Site x Group. 223 

 Theta Alpha1 Alpha2 Beta1 Beta2 

 F p ƞ2 F p ƞ2 F p ƞ2 F p ƞ2 F p ƞ2 

Task 3.631 .061 .054 9.694 .003 .133    10.680 .002 .145    

Load             4.781 .033 .071 

Site 14.24 <.001 .184 29.38 <.001 .318 25.39 <.001 .287 16.747 <.001 .210 22.75 <.001 .265 

Hemisphere 7.712 .007 .109             

Group       6.143 .016 .089       

Site x Hemisphere          5.159 .027 .076    

Task x Group    4.763 .033 .070          

Task x Load 4.415 .040 .065       6.376 .014 .092    

Task x Site 8.285 .005 .116 5.620 .021 .082          

Task x Hemisphere 4.270 .043 .063             

Task x Site x Group             5.194 .026 .076 

Load x Site x Hemisphere 7.586 .008 .107 5.363 .024 .078          

Task x Site x Hemisphere x Group 9.042 .004 .126       5.131 .027 .075    

 224 
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Table 2 225 

Results of the ANOVA with the factors Task x Load x Group for midline sites. 226 

   F p ƞ2 

Task 

 

Theta 7.685 .007 .109 

Alpha1 6.526 .013 .094 

Beta1 20.427 <.001 .245 

Alpha1 4.715 .034 .070 

Load x Group Theta 4.465 .039 .066 

Task x Group Beta1 6.281 .015 .091 

Task x Load Theta 5.462 .023 .080 

Beta1 5.895 .018 .086 

227 
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General tendencies 228 

 229 

Theta 230 

  231 

 The theta rhythm had lower power in anterior areas in comparison with posterior areas (main effect 232 

of Site, see Table 1 for this section). Also, the power was higher over the left than the right hemisphere 233 

(main effect of Hemisphere). Furthermore, the theta power decreased with the increasing WM load at all 234 

ROIs except the right anterior one (Load x Site x Hemisphere interaction).  235 

 Across the whole sample, the theta power tended to be higher in the manipulation task than in the 236 

retention task. As depicted in Fig. 3. this effect was more pronounced at anterior than posterior areas (Task 237 

x Site interaction) and also more pronounced over the left than the right hemisphere (Task x Hemisphere 238 

interaction). 239 

  The analysis of midline theta showed higher power in the manipulation task than in the retention 240 

task (main effect of Task, see Table 2). Increasing number of the presented letters from 5 to 7 yielded a 241 

decrease of theta power in the manipulation task but its increase in the retention task (Task x Load 242 

interaction). This interaction was, however, strongly modified by the between-subject factor, as described 243 

below in the Section Individual differences-Theta. 244 

 245 

Insert Figure 3 about here 246 

 247 

Alpha 248 

 249 

As expected, alpha1 and alpha2 activity increased in the posterior direction (main effect of Site, see 250 

Table 1). 251 

Alpha1 power was lower in the manipulation task than in the retention tasks (main effect of Task). 252 

This effect was larger at the posterior than anterior sites (Task x Site interaction). 253 
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13 

 

Alpha1 activity was suppressed with increasing WM load in each ROI except the right posterior 254 

area where alpha1 power increased (Load x Site x Hemisphere interaction).  255 

 256 

Beta1 257 

 258 

Beta1 power was significantly lower in the anterior than posterior areas (main effect of Site), and 259 

lower on the left than right side (main effect of Hemisphere). 260 

As can be seen in Fig. 4, beta1 power increased with the increasing WM load in the manipulation 261 

conditions but decreased in the retention conditions (Task x Load interaction). In general, the power was 262 

higher in the retention condition than in the manipulation condition (main effect of Task). 263 

 264 

Insert Figure 4 about here 265 

 266 

Beta2 267 

 268 

In contrast to beta1, beta2 power was significantly larger in the anterior than posterior areas (main 269 

effect of Site). Increasing WM load led to an increase in beta2 activity (main effect of Load). 270 

 271 

Individual differences 272 

 273 

Theta 274 

 275 

The analysis revealed a four-way interaction between Task, Site, Hemisphere and Group. Additional 276 

separate analyses in groups were performed. In the HP group we observed a larger theta power in the 277 

manipulation condition than in the retention condition, and the magnitude of this effect was the highest in 278 
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14 

 

the left anterior area (Task x Site x Hemisphere interaction (F(1, 31) =7.605, p = 0.01, ƞ2 = .197). No 279 

significant effects were found in the LP group. 280 

An ANOVA performed on midline electrodes revealed opposite load dependent changes of the 281 

midline theta power in the HP and LP groups. As depicted in Fig. 5, an increase of the number of letters 282 

from 5 to 7 was associated with an increase of theta activity in the former group but its decrease in the latter 283 

(Load x Group interaction, see Table 1). Fig. 5 shows that the significant Load x Task interaction for the 284 

entire sample, described above in Section General tendencies-Theta, is actually produced by the dramatic 285 

decrement of the theta power in the most demanding condition (manipulation task, high WM load) in the 286 

LP group. Similarly, the triple interaction Load x Site x Hemisphere for the entire sample does not really 287 

characterize the entire sample but, like the Load x Task interaction, can be attributed to a disproportionately 288 

strong influence of the LP group. 289 

 290 

Insert Figure 5 about here 291 

 292 

Alpha 293 

 294 

As can be seen in Fig. 6, the suppression of the alpha1 power in the manipulation task relative to 295 

the retention task was stronger in the HP than the LP group (Task x Group interaction). Alpha2 was 296 

generally stronger in the HP than the LP group (main effect of Group). 297 

 298 

Insert Figure 6 about here 299 

 300 

Beta1 301 

 302 
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15 

 

A significant four-way interaction Task x Site x Hemisphere x Group was obtained and further 303 

analyzed for groups and for electrode sites. The first ANOVA yielded a significant Task x Site x 304 

Hemisphere interaction (F(1, 31) =6.471, p < 0.05, ƞ2 = .131) only in the HP group, indicating that the 305 

decrease of the beta1 power from the  retention task to the manipulation task was more pronounced in the 306 

left posterior and the right anterior ROIs. No such effects were observed in the LP group.  307 

The second ANOVA revealed a significant Task x Group interaction in the left posterior ROI (F(1, 308 

31) = 5,953, p < 0.05, ƞ2 = .086), indicating task dependent changes of beta1 power at the left posterior area 309 

in the HP group (see Fig. 7).  310 

 311 

  Insert Figure 7 about here 312 

 313 

Beta2 314 

 315 

The significant Task x Site x Group interaction (see Table 1) indicates opposite task- and location-316 

related changes in the two groups. The LP group showed higher beta2 activity in the manipulation task at 317 

anterior areas but in the retention task at posterior areas, while the opposite held true for the HP group (Fig. 318 

8).  319 

 320 

Insert Figure 8 about here 321 

 322 

Discussion 323 

 324 

General tendencies 325 

 326 

Theta and central executive components of WM 327 
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16 

 

 328 

The current study found that increasing WM task complexity and executive control demand were 329 

associated with the increase of the frontal theta activity. Increasing theta power in midline and frontal areas 330 

during mental manipulations in contrast to the mere retention of memory content is in line with numerous 331 

data indicating positive relationships between FMT and cognitive load [3,9–11,28]. Moreover, an increase 332 

of FMT in manipulaton tasks as compared with retention tasks was also found in studies whose design was 333 

similar to the present one [31–33,52]. 334 

In addition, the link between FMT and the activation of the anterior cingulate cortex (ACC) and the 335 

medial prefrontal cortex (mPFC) was repeatedly proven by simultaneous EEG-fMRI recordings as well as 336 

by direct electrophysiological recordings in monkeys [53–56]. The ACC and the mPFC are active during 337 

memory processes, WM performance, and executive control [57–59]. 338 

We assume that the increment of FMT (supposedly indicating the activation of the ACC) with 339 

increasing WM demands is related to increasing involvement of executive processes. However, it should 340 

be noted that FMT reflects not pure memory processes per se but more likely the allocation of cortical 341 

resources depending on features of the task [3,59,60]. One may speculate that increasing demands for 342 

executive control during manipulation of information in WM engage a widely distributed network whose 343 

main components are the prefrontal cortex and the ACC.    344 

 345 

Alpha1 and the storage components of WM 346 

 347 

As compared with the retention condition, manipulation of stimuli in WM was associated with 348 

distributed suppression of alpha1 activity. There is an empirically well supported hypothesis that 349 

desynchronization of low alpha is a nonspecific cortical response that can be observed during various 350 

cognitive operations [9,38,61] including maintaining information in WM [53,62,63].  In addition to this 351 

non-specificity model, however, more specific hypotheses about the dynamics of alpha exist. Thus, the 352 
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alpha synchronization in posterior areas during the maintenance of actual information may reflect active 353 

inhibition to protect these areas from reorienting to new irrelevant information processing [28,42]. It is 354 

plausible that the temporary storage components of WM play the key role in a successful maintenance of 7 355 

letters relative to 5 letters. It might be suggested that when the volume of information maintained in the 356 

temporary storage approaches the putative capacity limit (7+-2) the central executive should actively inhibit 357 

irrelevant information. The observed asymmetry of alpha1 power at the posterior area agrees with the 358 

previous studies of WM and short-term memory [9,28,54,64,65].      359 

 360 

Beta1 and manipulation of information in WM 361 

 362 

Task-related decrement of beta1 power found in this study was quite similar to the effect reported 363 

by Berger et al. [32] who also compared manipulation versus retention conditions. This effect may be 364 

explained by the conception of Engel & Fries [66] that, applied to the present experiment, suggests  that 365 

the decrease of beta1 power takes place during updating or manipulating information in WM as well as 366 

during retrieval of information from long term memory and encoding it in WM. The desynchronization of 367 

the beta1 rhythm can be attributed to the sequential updating of the WM content during mental 368 

alphabetizing of the letters. This process also involves addressing the long term memory where the alphabet 369 

is stored.  370 

Load-dependent changes in beta1 power were observed only in the manipulation condition. We 371 

hypothesize that manipulation is underpinned by two independent temporal buffers: the first one is the final 372 

storage for modified items after the manipulations, whereas the second one serves as a workspace for the 373 

remaining to-be-modified items. Perhaps, there are even two different beta1 rhythms that overlap in  374 

frequency but reflect different sub-processes in WM [67]. The first rhythm supports the activity of the first 375 

buffer (“store”), and the second rhythm, that of the second buffer (“workspace”). Synchronization of the 376 

former maintains the active state of the engram and protects it from irrelevant information. Weiss & 377 
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Rappelsberger [68] demonstrated a gradual increase of beta1 activity in response to sequential filling of 378 

WM by words. Research conducted by Leiberg, Lutzenberger, & Kaiser [69] also showed a load-dependent 379 

increase of beta1 activity. At the same time desynchronization of the other beta1 rhythm reflects the 380 

retrieval from long term memory and encoding to WM. In other words, desynchronization of the latter 381 

beta1 rhythm reflects manipulations of objects in “workspace” for their subsequent transfer to “store”.  382 

Our hypothesis also entails that the lack of beta1 desynchronization during the encoding process 383 

indicates a disruption of memory formation. Recently, Hanslmayr, Matuschek, & Fellner [70] found a 384 

negative effect of transcranial magnetic stimulation (TMS) of the left inferior frontal gyrus at beta1 385 

frequency (18.7 Hz) on memory performance in a word-list learning task. Furthermore, a study [44] 386 

performed on monkeys demonstrated desynchronization of beta activity during updating of WM content 387 

but synchronization of beta activity during retention.     388 

Probably, in the retention condition the “workspace” buffer is minimally involved. It may work at 389 

the beginning of the delay period when sequentially and quickly presented information is encoded. Thus 390 

Zanto & Gazzaley [71] found the desynchronization of beta1 rhythm during the first 1250 ms of the 4-s 391 

delay period but the synchronization from 1500 ms to the end of the delay. In the current study, the delay 392 

periods during maintaining and manipulation of 5 and 7 letters could be different due to a longer 393 

presentation time (3 seconds). Therefore, the recombination of 5 letters to the alphabetical order could 394 

already start during stimulus presentation and continue only in the “workspace” buffer without addressing 395 

the “store” buffer. When the recombination process is finished, the result is transferred to the “store” buffer 396 

and kept there until the probe is presented. The “store” buffer in this case prevents possible interference of 397 

other stimuli and maintains the actual state of the engram until the moment when its content is requested. 398 

When a longer stimulus set is memorized (i.e., 7 letters) a plausible strategy is to memorize the initial letters 399 

set and to transfer it into the “store” buffer. If this strategy is used, recombination may start after the stimuli 400 

have disappeared from the screen. During this period, both buffers are actively involved: the “store” buffer 401 

is keeping the initial set, while recombination is carried out in the “workspace” buffer. When the 402 
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recombination is finished the information transfers to the “store” and updates its content. This assumed 403 

information return to, and updating of, the “store” buffer would explain the increase of beta1 power from 404 

5- to 7-letter condition in the manipulation task. 405 

 406 

Beta2 and amount of information in WM 407 

 408 

Beta2 power increased with the increasing WM load and did not significantly depend on the type of 409 

the task. 410 

Dissociations between the lower (13-20 Hz) and upper (25-30 Hz) beta were demonstrated earlier 411 

in a study of Shahin, Picton, & Miller [72]. The authors concluded that the increment of the upper beta may 412 

reflect maintaining verbal stimuli in auditory memory. The maintenance of stimuli in WM was also 413 

suggested to cause synchronization of beta2 (~20-30 Hz) in two different tasks [73,74]. Spitzer et al. [74] 414 

assumed that the upper beta activity is directly related to the quantity of supramodal abstract information. 415 

The significant effect of Load on beta2 power found in the present study is in line with this interpretation. 416 

 417 

Individual differences 418 

 419 

Theta 420 

 421 

The task-related increment of theta power in the left anterior area was found only in the HP group. 422 

This may be related to more effective manipulations supported by the hippocampus and language cortex. 423 

Previous WM studies demonstrated a relationship between the hippocampal activity and the theta rhythm 424 

[75,76]. In animal studies, the synchronized activity of the prefrontal cortex and the hippocampus crucially 425 

determined the accuracy  in WM tasks [77,78]. The prefrontal cortex is hypothesized to be supported under 426 

excessive WM load by the  medial temporal lobe related to long term memory [79–81].  427 
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The activation of the left prefrontal cortex including the inferior frontal gyrus (IFG) and Broca's 428 

area was found in verbal tasks during executive processes functions [55,82,83]. Simultaneous EEG / fMRI 429 

recording in a modified Sternberg task revealed a load-dependent increase of left IFG activation and the 430 

theta rhythm [55]. Similar results were obtained by Chee & Choo [84] in a WM task. We suppose that the 431 

left-hemispheric accentuation of the theta rhythm represents more effective information exchange between 432 

short- and long-term memory storage in the HP group. 433 

Group differences were not only task-dependent but also load-dependent.  The HP group 434 

demonstrated a gradual increase of theta power at midline, reaching its peak in the most demanding 435 

condition: manipulation task with 7 letters. In contrast, the LP group exhibited a sharp drop of theta power 436 

in this condition after a maximum in the condition of moderate difficulty: manipulation with 5 letters. Since 437 

previous studies of EEG correlates of individual differences in WM were limited to moderate difficulty, we 438 

can state that our findings are fully consistent with the previous ones, where the theta activity always 439 

increased with memory load  [1,3,4,9–11]. However, the most difficult task resulted in a more complex 440 

change of theta activity that has not been observed so far.  441 

One may speculate that reaching the individual’s WM capacity limit is accompanied by a crucial 442 

deficit of attentional resources. Post-experimental reports suggest that most participants formulated their 443 

task as “to remember all letters if possible”, but possibly, some LP participants in the most difficult 444 

condition changed the task to “to remember at least some letters”. Alternatively, some subjects may have 445 

switched strategy to "remember the first few letters with regard to position" in the forward task and the 446 

"first few letters with regard to alphabetical order" in the alphabetical task. This post-hoc hypothesis was 447 

tested by an analysis of behavioral results with regards to the position of the probe letter. The factor Position 448 

was taken with 2 levels (the first two versus the last 2 letters for 5-letters conditions, or the first three versus 449 

the last 3 letters for 7-letters conditions). We found two significant interactions between Position and 450 

Group: Position x Group (F(1, 63) = 6.022, p = 0.017, ƞ2 = .087) and Position x Task x Load x Group (F(1, 451 

63) = 3.183, p = 0.045, ƞ2 = .048). Unfortunately, due to the post-hoc nature of this effect we could not 452 
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perform the EEG analysis with the factor Position, because we did not have a sufficient statistical power 453 

for this unplanned comparison. 454 

 Another explanation might be the loss of motivation in LP participants in the most challenging 455 

condition. This hypothesis, however, would predict a particularly poor performance of LP participants in 456 

the manipulation task with 7 letters. This disagrees with the observed data indicating nearly equal 457 

performance differences between LP and HP participants in all conditions (see Fig. 5). From our point of 458 

view, the strategy change hypothesis can better integrate this fact that the loss-of-motivation hypothesis.  459 

 Also Jaeggi et al. [2] came on the basis of their fMRI study to the same conclusion concerning the 460 

suboptimal strategies used by LP subjects in WM tasks. In that study, LP participants showed a positive 461 

correlation between task complexity and the amount of the broad activation in the frontal cortex. Obviously, 462 

the most challenging condition leads to the widely distributed engagement of the prefrontal cortex and 463 

results in the lack of neural resources for activation of the ACC necessary for the executive control of WM. 464 

 465 

Alpha 466 

 467 

In the development of the cortical idling hypothesis, [85] proposed that  the increasing alpha activity 468 

during cognitive processing is related to the allocation of attentional resources by inhibition of the cortical 469 

areas irrelevant to the current task [42,86,87]. In this context alpha rhythm plays the role of an information 470 

flow filter. 471 

It is well known that WM is one of the main components of general intelligence [88,89]. 472 

Accordingly,  the degree of alpha desynchronization in semantic memory task is positively related to 473 

intelligence [90]. Similar correlations between IQ and alpha power were observed in the resting state 474 

[91,92]. We suppose that stronger alpha power may reflect a higher level of readiness to perceive relevant 475 

information. Therefore, HP individuals have potentially more resourceful visual cortex and manage the 476 

tasks better [61]. 477 
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 478 

Beta1 479 

 480 

The main result was a stronger desynchronization of beta1 rhythm in the HP group in the 481 

manipulation condition in the left posterior area. An important role of the superior parietal cortex in flexible 482 

redistribution of attentional resources was demonstrated in several studies [93–96]. In terms of the two-483 

buffer model (see above, Section General tendencies-Beta1), one may suggest that HP individuals are better 484 

able to shift their attention between the store of the originally presented set and the workspace where they 485 

work with the symbols. This might allow them to perform manipulations in the “workspace” buffer not 486 

spending too much resources for maintaining information in the “store” buffer. 487 

 488 

Beta2 489 

 490 

In the manipulation task, beta2 power increased in the HP group in the anterior areas, but in the LP 491 

group in the posterior areas. As we do not know any comparable data in the literature, only a very 492 

preliminary explanation can be proposed. Beta2 is the EEG index that may most simply be designated as 493 

“activation”. We believe, therefore, that changes in beta2 activity are not related to mental processes as 494 

such, but rather to the general volume of information necessarily used in these processes. This volume is 495 

expected to be larger in the manipulation task than in the retention task because during manipulation one 496 

has to work with at least two stimulus sets: the one that should be manipulated with and the one that results 497 

from the manipulation. The increase of frontal activity in HP participants may, therefore, reflect their ability 498 

to process a larger amount of information, whereas the heightened activity of sensory regions in LP subjects 499 

appears to reflect their need to frequently address the original stimulus set.  500 

 501 

General discussion 502 
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In general, the obtained results allow us to make several claims about possible factors contributing, 503 

at the individual level, to effective verbal WM performance: 504 

firstly, a higher state of readiness to process relevant and to inhibit irrelevant information and related 505 

larger alpha power; 506 

secondly, stronger engagement of the left prefrontal cortex and the hippocampus; this factor can 507 

underlie efficient maintaining and manipulating information in WM due to a fast exchange of information 508 

between long term and working memory;  509 

thirdly, an energy efficient strategy for distribution of frontal resources in order to maintain the 510 

necessary level of activity of the ACC; 511 

finally, activation of the ACC and the related executive functions is decisive for successful 512 

manipulations of content in WM, simultaneous maintaining information about initial properties of stimuli 513 

and efficiently shifting attention between these cognitive operations.  514 

 515 

Limitations 516 

 517 

We have to acknowledge at least two limitations of the present study. Firstly, the results may be 518 

affected by the homogeneity of the sample in respect to gender (i.e., females). A gender based analysis will 519 

be the matter of a subsequent report Secondly, our putative explanation hypotheses suggested in the 520 

Discussion above have neuroanatomical implications, i.e., they presume the activity of certain brain 521 

structures such as the ACC. To test these hypotheses, a larger number of electrodes should be used in future 522 

studies, which will allow a more precise assessment of the spatial distribution of the obtained effects.  523 

 524 

Conclusions 525 

 526 
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1. In accordance with many previous studies, we expected to find significant WM-related changes in 527 

alpha and theta frequency bands. This hypothesis was only partially supported by the data. 528 

Significant effects were found in all analyzed frequency bands from theta to high beta, indicating 529 

that our knowledge about the neural basis of WM is not comprehensive. 530 

2. The hypothesis about a strong participation of the frontal theta rhythm in WM processes was 531 

confirmed. The novel finding was, however, different dynamics of frontal theta in HP and LP 532 

groups.  533 

3. When starting the study, we believed that some important findings can have been missed in the 534 

previous experiments because they used only tasks of low to average difficulty. Therefore, we 535 

predicted important intergroup variation in EEG pattern in the most challenging condition. This 536 

prediction was confirmed. The most pronounced differences between individuals with high and low 537 

WM performance, in terms of the oscillatory activity in several frequency ranges, were observed in 538 

the manipulation task with 7 letters, which is a very difficult condition that for many individuals 539 

might exceed their limits. Particularly, this condition resulted in a more complex change of theta 540 

activity than just an increase with WM load, which has not been observed so far. Including greater 541 

variety of experimental conditions and groups to the WM research agenda seems beneficial. 542 

4. Finally, we expected a stronger effect of executive WM components as compared with storage 543 

components. The data put this hypothesis in question. Firstly, the difference in performance between 544 

LP and HP participants was nearly equal in retention (weak executive control demands) and 545 

manipulation (much higher executive control demands) conditions. Secondly, task and site 546 

dependent group differences were found in each explored frequency bands including anterior theta 547 

and posterior alpha activity. In some studies these two responses were interpreted as reflections of 548 

executive and storage components of WM, respectively [5,6]. Although there is an alternative 549 

interpretation on the basis of cross-frequency coupling [7,8], all these observations together may 550 
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indicate that the two components of WM are equally important for WM performance at the 551 

individual level. More studies are needed to clarify this issue 552 

 553 
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 829 

 830 

Figure Legends 831 

Fig. 1 Examples of the trials. 832 

Fig. 2 Mean accuracy in different WM tasks and conditions. Notes. 5R, 6R, 7R – memorizing 5, 6, or 7 833 

letters in forward order (Retention condition); 5M, 6M, 7M – memorizing 5, 6, or 7 letters in alphabetical 834 

order (Manipulation condition). 835 

Fig. 3 General tendencies of theta power for Retention and Manipulation tasks (A) over the Left and 836 

Right hemispheres and (B) in Anterior and Posterior areas. Error bars depict Standard Error of the Mean 837 

(SEM). 838 

Fig. 4 Beta1 power chart and corresponding topograms for Retention and Manipulation tasks. Error bars 839 

depict SEM. 840 

Fig. 5 (A) Midline theta power for four WM tasks and (B, C) corresponding topograms in two groups. 841 

Notes: 5R, 7R – 5 and 7 letters Retention conditions; 5M, 7M –5 and 7 letters Manipulation conditions.  842 

Error bars depict SEM. 843 

Fig. 6 Alpha1 power for Retention and Manipulation tasks in Low and High performance groups. Error 844 

bars depict SEM. 845 

Fig. 7 (A) Beta1 power in the left posterior area for Retention and Manipulation tasks and corresponding 846 

topograms (B) in Low performance (LP) and (C) High performance (HP) groups. Error bars depict SEM 847 

Fig. 8 Beta2 power for Retention and Manipulation tasks in Low and High performance groups in 848 

Anterior and Posterior areas. Error bars depict SEM. 849 
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