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We introduce a multi-factorial, multi-level approach to build and explore evolutionary 

scenarios of complex protein networks. EvoKEN combines a unique formalism for 

integrating multiple types of data associated with network molecular components and 

knowledge extraction techniques for detecting cohesive/anomalous evolutionary 

processes. We analyzed known human pathway maps and identified perturbations or 

specializations at the local topology level that reveal important evolutionary and 

functional aspects of these cellular systems. 
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The dynamic molecular machinery underlying cellular systems is often represented by 

complex, hierarchical networks of interactions between the cell’s constituents, such as 

proteins, DNA, RNA and small molecules. Ultimately, phenotypic traits and diseases can be 

described in terms of the complex intracellular and intercellular networks that link tissue and 

organ systems1,2. The structures of these networks, including metabolic, signaling or 

transcription regulatory networks, often share similar features even in distantly related 

species3.  Understanding the evolution of these networks is therefore essential to 

reconstruct the history of life, but also to better understand how the network structures 

correlate with the functioning of organisms at different granularity levels4,5.  

 

Application of evolutionary based methods in complex networks is challenging6  and requires 

integration of multiple factors, such as gene spatial/temporal expression, protein sequence 

conservation, cellular localization signals, 3D structure, or binding/interaction sites7. In this 

context, we have developed an original formalism, called the evolutionary barcode or 

EvoluCode8, to allow the integration of different parameters (e.g. genome context, protein 

organization, conservation patterns) in a common framework and to summarize the 

evolutionary history of a gene that leads to its current state in a given organism 

(Supplementary Fig. 1). EvoluCode thus facilitates the application of formal data mining and 

knowledge extraction techniques in evolutionary analyses. We previously used this approach 

to barcode all human protein-coding genes using 10 evolutionary data types from 17 

vertebrate proteomes. Our systematic comparison of the human barcodes revealed protein 

function-evolution relationships that could not be observed by using only one or two 

biological parameters, for example using only sequence conservation8.  
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Here, we introduce a unique protocol, called EvoKEN (Evolutionary Knowledge Extraction in 

Networks), that combines the EvoluCode formalism with knowledge extraction techniques, 

in order to study the evolution of genes in the context of their complex biological networks. 

We show how EvoKEN can be used at the pathway level to identify local topological motifs 

that have evolved cohesively and to highlight ‘outlier’ genes whose evolutionary history 

deviates from the local neighbors, suggesting different underlying evolutionary processes. 

We then extend our work to investigate unusual evolutionary scenarios at the inter-pathway 

or ‘cellular’ level. 

Our protocol can be applied to any biological system, where we define a system as a set of 

genes implicated in a common process or phenomenon (genetic information processing, 

signal transduction, metabolism, disease response, etc.) and mapped onto a molecular 

network. We demonstrate the utility of our approach by constructing and exploring 

evolutionary scenarios for the complete set of human pathway maps in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) knowledge base9. First, we mapped our 

EvoluCodes for the human proteome to the KEGG maps, thus producing pathway-level 

evolutionary maps (Fig. 1) for a total of 248 biological systems (available at 

lbgi.igbmc.fr/barcodes). We then applied a knowledge extraction algorithm (Online 

Methods) on each individual map in order to estimate its evolutionary cohesiveness and to 

identify genes with anomalous, ‘outlier’ barcodes that might reflect unusual evolutionary 

pressures within the system. Here, we used the Local Outlier Factor (LOF)10, a powerful 

anomaly detection algorithm which is related to density-based clustering and is suitable for 

analyzing large-scale, multidimensional datasets where the underlying data distribution is 

unknown. The LOF method identified a total of 1147 outlier genes in 248 KEGG maps 

(lbgi.igbmc.fr/barcodes and Supplementary Fig. 2). The most cohesive pathways, i.e. those 
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with the least outliers (Supplementary Fig. 3 and Supplementary Table 1), were typically 

involved in universal biological processes such as translation or cell growth/death, in line 

with previous observations11.  

To further investigate the biological significance of genes with anomalous evolutionary 

histories, we measured the correlations between the EvoKEN outliers and their local 

topology in the corresponding networks. We focused on the metabolic pathways in KEGG, 

where the nodes in the networks represent metabolites (substrates, products and 

intermediates) that are linked by a reaction, associated with one or more genes/proteins. 

Within these networks, we manually defined 6 classes of local topological motifs based on 2 

key node properties, redundancy and connectivity (Fig. 2a and Online Methods). The outlier 

genes from 20 metabolic pathways were then assigned to the different topology classes (Fig. 

2b). We found that the cohesiveness of a gene in its network context depends on the local 

topological structure: for instance, the smallest proportion of outliers was found at the 

nodes involved in linear paths in the networks, particularly in non-redundant paths (class F). 

In contrast, more outliers were found at the start/end points of a pathway (class D), and at 

the interface between pathways, so called ‘hubs’ in the networks (class C). The correlation 

we observe between gene conservation and local network topology may be due to specific 

selection pressures, for instance on essential genes12. 

Having established the evolutionary cohesiveness of individual pathways, we then asked 

whether we could identify unusual evolutionary behavior at the cellular level. Individual 

pathways often function in a coordinated fashion and understanding the interactions or 

crosstalk between pathways is important for deciphering complex cellular processes, such as 

the appropriate physiological responses to internal or external stimuli. To investigate these 
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high-level processes, we identified a set of genes involved in the crosstalk between 155 

KEGG pathway maps, reflected by the fact that all the genes in the set were present in at 

least 3 maps. In this case, the evolutionary cohesiveness of a gene is context-dependent, i.e. 

a gene may be defined as cohesive in one of these pathways and as an outlier in another 

(Fig. 2c). Such cases of differential evolutionary conservation may indicate important events, 

such as gene duplications, rearrangements or losses and the subsequent gain or loss of 

interactions in the network. For each pair of KEGG maps, we calculated the proportion of 

outlier genes observed in the overlapping set of genes shared between the two systems. We 

then constructed a global map of the relationships between the 155 maps, representing the 

evolutionary behavior of these pathways during vertebrate evolution (Fig. 2d and 

Supplementary Fig. 4). The exploration of this map provides a powerful and visual means of 

highlighting important events in the evolution of human biological systems.  

Two examples are highlighted in Fig. 2d. First, the genes involved in both cell cycle and 

oocyte meiosis pathways are generally cohesive with the other genes in these pathways, but 

the crosstalk with the progesterone-mediated oocyte maturation pathway contains a higher 

proportion of outlier genes (Supplementary Table 2).  In fact, cell cycle and oocyte meiosis 

pathways are conserved in most vertebrates, while the exact nature of oocyte maturation is 

more variable between species. A number of these functional specificities are highlighted by 

the EvoKEN outliers, such as the Myt1 gene coding for a cdc2-inhibitory kinase 

(PMYT1_HUMAN), which acts as a negative regulator of entry into mitosis during the cell 

cycle. Inspection of the Myt1 evolutionary barcode (Supplementary Fig. 5a) indicates a more 

divergent sequence family than is typical for this conserved pathway. This might be a result 

of the different functions of Myt1, which is implicated in control of entry into meiosis, either 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/098285doi: bioRxiv preprint 

https://doi.org/10.1101/098285
http://creativecommons.org/licenses/by-nc/4.0/


EvoKen  B. Linard et al. 

6 
 

alone (as in Xenopus) or in concert with Wee1 (as in mouse oocytes)13. Other examples of 

outliers are provided in Supplementary Fig. 5. 

The second example concerns the innate immune system, where pattern recognition 

receptors, such as Toll-like receptors (TLR), RIG-I-like receptors (RLR) or NOD-like receptors 

(NLR), recognize a wide variety of pathogens and endogenous molecules and trigger 

complex, overlapping intracellular signaling cascades. Outlier genes involved in the crosstalk 

between these pathways are described in Supplementary Table 3. We highlight one 

example: the receptor interacting protein RIP1 (RIPK1_HUMAN), which plays a crucial role in 

the cellular response to TLR and RLR signals, switching between cell survival through RIP1 

activation of NF-κB and cell death induced by caspase-8 cleavage of RIP114. The RIP1 

evolutionary barcode (Supplementary Fig. 6a) shows a typical sequence conservation in 

vertebrate evolution, but synteny is only observed in mammals and not in fishes for example 

where RIP1 plays a different role in TLR signaling15. Other examples of outliers are provided 

in Supplementary Fig. 6. Unraveling the evolutionary history of these pathways and their 

crosstalk will be important in understanding how the immune system functions and in 

developing effective therapeutic and vaccine strategies. 

It is clear that more in-depth analysis, involving phylogenetic tree and ancestor 

reconstruction would be required to describe in detail the evolutionary events identified in 

these studies. The advantage of EvoKEN is that it provides an effective framework for 

investigating the evolution of large systems at different granularity levels from local network 

motifs to the cellular level, allowing the rapid identification of interesting patterns in a 

particular biological context. Hopefully, EvoKEN will contribute to the emerging field of 
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evolutionary systems biology, with the goal of understanding and modeling the topological 

and dynamic properties of the complex networks that govern the behavior of the cell. 

METHODS 

Construction of EvoluCodes for the human proteome  

The evolutionary barcodes (EvoluCodes) used in this study were constructed as described in 

8. Each protein-coding human gene is thus associated with one EvoluCode that is visualized 

as a 2D matrix. The columns of the matrix correspond to the studied organisms, which in this 

work consist of 17 vertebrates with almost complete genomes from the Ensembl 16 database 

(version 51). The rows of the matrix correspond to different evolutionary parameters (Table 

1) that were extracted from multiple alignments 17,18, synteny analysis and orthology data19. 

For each vertebrate organism, the most closely related homolog to the human reference 

gene was identified (based on percent residue identity) and 10 parameters were calculated. 

Table 1. Evolutionary parameters included in EvoluCodes of human proteome. 

Parameter name Description Source 

length length of the vertebrate sequence Multiple alignment 

length_difference difference in length between the human 

reference and vertebrate sequences 

Multiple alignment 

no_of_regions number of conserved regions shared 

between the human reference and 

vertebrate sequences 

Multiple alignment 

sequence_identity percent residue identity shared between 

the human reference and vertebrate 

sequences 

Multiple alignment 

no_of_domains number of known protein domains (from 

the Pfam20 database) in the vertebrate 

sequence 

Multiple alignment 

domain_conservation parameter indicating domain structure 

conservation between the human reference 

Multiple alignment 
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and vertebrate sequences: unchanged 

domain structure/domain gains/domain 

losses/domain shuffling 

hydrophilicity average hydrophilicity of the vertebrate 

sequence 

Multiple alignment 

inparalog number of human inparalogs with respect 

to the vertebrate species. This parameter 

represents the duplicability of a human 

gene compared to the other species 

Ortholog/paralog 

database 

co-ortholog number of co-orthologs in the vertebrate 

species with respect to human. This 

parameter reflects gene duplications in the 

non human lineage 

Ortholog/paralog 

database 

Synteny parameter indicating conservation of 

genome neighborhood: synteny on both 

sides of the gene / synteny either 

downstream or upstream of the gene / no 

synteny 

Synteny database 

 

To facilitate visualization of the EvoluCode, a color is assigned to each matrix cell 

representing typical or atypical parameter values. To do this, the distribution of each 

parameter in each organism is first described by the sample percentiles, using the Emerson-

Strenio formulas 21 implemented in the R software and color gradients are assigned to three 

intervals:  

 Interval 1 represents values that are lower than what is generally observed for a specific 

parameter in a specific organism and is assigned a blue-to-green gradient 

 Interval 2 represents values that correspond to what is generally observed for a specific 

parameter in a specific organism and is assigned a green color 

 Interval 3 represents values that are higher than what is generally observed for a specific 

parameter in a specific organism and is assigned a green-to-red gradient.  
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By compiling several evolutionary parameters extracted from different biological levels, from 

residue data to phylum data, EvoluCodes incorporate an evolutionary systems biology point 

of view. Consequently, EvoluCodes can highlight important evolutionary events that could 

not be discovered using a single evolutionary parameter such as sequence conservation or 

domain composition. The complete set of 19778 human EvoluCodes can be visualized online 

at: lbgi.igbmc.fr/barcodes. 

 

Analysis of human pathway data and definition of cohesive/outlier genes 

We based our analysis on pathway data from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) knowledge base. We analyzed 248 human pathways with the help of the KEGG SOAP 

server (http://www.kegg.jp/kegg/soap/). A total of 5849 EvoluCodes could be mapped to the 

genes in these pathways. 

For each pathway, we then identified ‘outlier’ genes, i.e. genes with an unusual evolutionary 

history (EvoluCode) compared to the other genes in the pathway. We determined outliers 

using an anomaly detection algorithm called Local Outlier Factor (LOF) 22. The basic concept 

of LOF is the local density, where locality is given by k nearest neighbors. By comparing the 

local density of an evolutionary barcode to the local densities of its neighbors, we identify 

regions of similar density, as well as barcodes that have a substantially lower density than 

their neighbors. These are considered to be outliers. The local density is estimated by the 

typical distance at which a barcode can be "reached" from its neighbors.  

First, the 2D matrix representing an EvoluCode, consisting of 10 rows and 17 columns, is 

redimensioned to a 1D vector of length, n=170. Then, if A and B are 2 EvoluCodes in 
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Euclidean n-space, with A = (a1, a2,...,an) and B = (b1, b2,...,bn), the distance between A and B 

is: 

𝑑(𝐴, 𝐵) =  √∑(𝑏𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

 

The Euclidean distance between the EvoluCode A and its k nearest neighbors is denoted 

kdist(A) and the set of k nearest neighbors is Nk(A). The reachability distance is then 

calculated as: 

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑘 (𝐴, 𝐵) = max{𝑘𝑑𝑖𝑠𝑡(𝐵), 𝑑(𝐴, 𝐵)} 

The local reachability density (lrd) of EvoluCode A is defined as: 

lrdk(A) =  1 / (
∑ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑘 (𝐴,𝐵)𝐵∈𝑁𝑘(𝐴)  

|𝑁𝑘(𝐴)|
) 

And the local reachability densities are then compared with those of the neighbors using: 

LOFk(A) = (
∑

lrd(B)

lrd(A)
B∈Nk(A)   

|Nk(A)|
)  

The LOF score thus represents the cohesiveness of the EvoluCode associated with each gene 

in the context of its pathway. The authors of the LOF algorithm consider that a score less 

than 1 indicates a clear inlier object, i.e. a cohesive barcode. Genes with a LOF score 

significantly greater than 1 are considered as outliers. However, the threshold determining a 

clear outlier depends on the dataset. Here, we defined the outlier threshold value as the 

upper quartile for the LOF scores of the EvoluCodes in the context of the 248 human 

pathways, which was 1.037. 
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Analysis of metabolic pathways  

The KEGG database currently contains pathway data for 84 human KEGG metabolic 

pathways, where the nodes in the networks represent metabolites (substrates, 

intermediates and products). The edges between nodes represent reactions that are 

associated with one or more genes/proteins. For our experiment, we selected all pathways 

with more than 20 human genes, giving us an initial set of 20 pathways, containing a total of 

875 different reactions, of which 671 reactions were associated with cohesive genes and 204 

reactions with outlier genes. We defined 6 classes of local topological motifs within these 

pathways, based on node redundancy and connectivity (Table 2).  

Table 2. Definition of local network topology classes. 

Class Redundancy Connectivity Description 

A yes N/A Alternative gene 

for same reaction step 

B yes N/A Alternative path 

for n>1 reactions 

C N/A Inter-pathway Pathway interface 

D N/A 1 intra-pathway Start/end of pathway, single 

substrate/product 

E N/A >2 intra-pathway Multiple substrates and/or 

products 

F No 2 intra-pathway Other: mostly linear paths, 

plus a small number of 

exceptions, such as unlinked 

genes  

 

We then determined the topological localization of all biological reactions associated with 

the outlier genes. For each class, we calculated the proportion of cases where the reaction 

was associated with an outlier gene. In cases where a reaction was associated with more 
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than one gene (protein complexes, genes with similar biochemical functions, etc.), we used 

the gene with the lowest LOF score. This choice reduced the number of reactions that are 

considered as outliers and only reactions with a clear outlier status were included for 

analysis. 

Construction of the cellular level evolutionary map 

We constructed a cellular level map, representing the evolutionary histories of the pathways 

in the KEGG database. For the 200 human KEGG pathways, we identified the genes shared 

by each pair of pathways. We then focused our analysis on the pathway pairs sharing at least 

3 genes, representing 155 KEGG pathways, which describe mainly cellular processes and 

signal transductions. In the evolutionary map, each node represents a specific KEGG 

pathway and the edge joining 2 nodes represents the genes shared by the two pathways. 

The node diameter is proportional to the number of genes implicated in the pathway. Each 

node is assigned a color representing the homogeneity of the EvoluCodes associated with 

the genes. The cohesiveness of the pathway evolution is estimated based on LOF value 

dispersion, using the IQR (interquartile range, IQR = Q3 − Q1). A low IQR indicates more 

cohesive barcodes associated with a given node.  

Pathways with high cohesiveness are indicated by dark blue and pathways with low 

cohesiveness are light blue. The edge thickness is proportional to the number of genes 

shared by the 2 nodes, while the edge color indicates the proportion of shared genes 

identified as outliers in one or both linked pathways. A green edge links pathways that do 

not share any outlier genes. A red edge links pathways where all shared genes are outliers in 

at least one of the maps. Intermediate values are assigned a green to red color gradient.  
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SUPPLEMENTARY INFORMATION 

Supplementary Figures 1-6 and Supplementary Tables 1-3 are are available as supplementary 

files. 
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FIGURES 
 

Figure 1 | Framework to construct and explore multi-level evolutionary networks. 

Evolutionary barcodes, known as EvoluCodes, are assigned to individual genes and then 

mapped onto a known gene network, such as a KEGG pathway map. At the system level, the 

resulting evolutionary map provides a context for differentiating genes with ‘cohesive’ or 

‘outlier’ (highlighted in red) evolutionary histories. At the cellular level, systems and inter-

system crosstalk can be analyzed in terms of the cohesiveness of the underlying gene 

evolution. 

  
Figure 2 | Characterization of outlier genes at the system and cellular levels. (a) Definition 

of 6 classes of local topological motifs in metabolic pathways, depending on the redundancy 

and connectivity of the reactions (and associated genes) in the network. (b) Identification of 

outlier genes and their distribution in the local topology classes. (c) The crosstalk between 2 

systems is characterized by the proportion of shared outlier genes, indicated by a color 
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gradient from green (all cohesive) to red (all outlier). (d) An integrated evolutionary map of 

selected human pathways showing the number and cohesiveness of the gene evolutionary 

histories, associated with individual pathways (nodes) and pathway crosstalk (edges). 
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