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Abstract

Neurons in the primary somatosensory cortex (S1) respond to peripheral stimulation with syn-

chronised bursts of spikes, which lock to the macroscopic 600 Hz EEG waves. The mechanism of

burst generation and synchronisation in S1 is not yet understood. Using models of single-neuron

responses fitted to unit recordings from macaque monkeys, we show that these synchronised

bursts are the consequence of correlated synaptic inputs combined with a refractory mechanism.

In the presence of noise these models reproduce also the observed trial-to-trial response variabil-

ity, where individual bursts represent one of many stereotypical temporal spike patterns. When

additional slower and global excitability fluctuations are introduced the single-neuron spike pat-

terns are correlated with the population activity, as demonstrated in experimental data. The

underlying biophysical mechanism of S1 responses involves thalamic inputs arriving through

depressing synapses to cortical neurons in a high-conductance state. Our findings show that

a simple feedforward processing of peripheral inputs could give rise to neuronal responses with

non-trivial temporal and population statistics. We conclude that neural systems could use refrac-

toriness to encode variable cortical states into stereotypical short-term spike patterns amenable

to processing at neuronal time scales (tens of milliseconds).

Significance statement

Neurons in the hand area of the primary somatosensory cortex respond to repeated presentation

of the same stimulus with variable sequences of spikes, which can be grouped into distinct

temporal spike patterns. In a simplified model, we show that such spike patterns are product
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of synaptic inputs and intrinsic neural properties. This model can reproduce both single-neuron

and population responses only when a private variability in each neuron is combined with a

multiplicative gain shared over whole population, which fluctuates over trials and might represent

the dynamical state of the early stages of sensory processing. This phenomenon exemplifies

a general mechanism of transforming the ensemble cortical states into precise temporal spike

patterns at the level of single neurons.

1 Introduction

Neurons usually generate highly variable responses to repeated presentations of the same stim-

ulus. This variability might originate from thermal noise in ion channels (Chow & White, 1996;

Schneidman et al., 1998), recurrent activity in the network (Destexhe et al., 2003; van Vreeswijk

& Sompolinsky, 1996) or modulation of neuronal excitability (Destexhe et al., 2001; Fontanini

& Katz, 2008; Faisal et al., 2008). Over recent years many results have shown that a signif-

icant fraction of this variability is shared across large populations of neurons. These shared

fluctuations were attributed to the variations of incoming stimuli and modulation of excitability

(Brody, 1999; Shadlen & Newsome, 1998; Goris et al., 2014; Ecker et al., 2014). However, most of

these studies focused on spike-rate variations over long time scales, neglecting millisecond-range

spike timing differences. Such short time scales might be especially important for neurons that

fire brief bursts of spikes at a frequency reaching several hundred spikes per second separated

by much longer intervals of silences (Evarts, 1964; Llinás & Jahnsen, 1982; Krahe & Gabbiani,

2004). Since the transitions between bursting and tonic firing characterised by longer interspike

intervals are dynamically controlled (Swadlow & Gusev, 2001) both time scales might be relevant

for neuronal processing.

Neurons in somatosensory cortices can encode their sensory inputs in the precise lengths (< 10

ms) of interspike intervals (Estebanez et al., 2012; Panzeri et al., 2001; Witham & Baker, 2015),

which suggests that high firing precision is important for the reliability of stimulus encoding.

In the primary somatosensory cortex (S1) of macaque, single neurons respond to peripheral

stimulation with barrages of spikes elicited at sub-millisecond precision (Baker et al., 2003).

However, when presented repetitively, the same stimulus produces variable responses in terms

of the number of elicited spikes and the lengths of interspike intervals, which might limit the

amount of information they can carry. It is, however, possible that such trial-to-trial variability

represents an alternation between several classes of reliable responses, called spike patterns

(Toups et al., 2012). Such spike patterns have been indeed observed in S1 (Telenczuk et al.,
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2011), but neither the mechanism of their generation nor their functional significance has been

identified.

Here, we propose a mechanism that explains the precise patterns of single-neuron responses

as an interplay between synaptic inputs and intrinsic refractory properties of the neuron (Berry

& Meister, 1998; Czanner et al., 2015). To test this hypothesis, we develop simple models

capturing the two processes, and we are able to fit the parameters of the models to extracellular

recordings of single-unit activity in the somatosensory cortex.

2 Methods

2.1 Experimental methods

Neuronal responses were evoked in the hand representation of the primary somatosensory cortex

of two awake Maccaca mulatta monkeys by electrical median nerve stimulation at the wrist

(pulse width: 0.2 ms; repetition rate: 3 Hz; intensity: 150% motor threshold); see also Figure

1A. Single-unit activity was recorded extracellularly using a 16-channel Eckhorn drive [Thomas

Recording GmbH; Giessen, Germany; Eckhorn & Thomas (1993)]. Each of the platinum/glass

electrodes (electrode impedance: 1 MΩ) was advanced into cortex (area 3b) until well-isolated

neurons were found with one of the electrodes. The receptive fields of the neurons were tested

by means of manual tapping using a stylus.

In addition, we recorded EEG signals from the surface of the dura (epidural EEG) with two

electrodes placed in the vicinity of the micro-electrode array. The signals were then high-pass

filtered (>400 Hz) to obtain the high-frequency EEG (hf-EEG).

All experimental procedures were performed according to Home Office UK (Scientific Proce-

dures) Act 1986 regulations and institutional ethical guidelines.

2.2 Spike sorting

From the extracellular recording we obtained spike waveforms that were first band-pass filtered

(1 kHz – 10 kHz) and then sampled with a frequency of 20 kHz. Action potentials of neurons sur-

rounding the microelectrode were detected in the extracellular recordings by means of amplitude

thresholding; the threshold was chosen manually to detect spikes whose amplitude was signifi-

cantly above noise level. The wave shapes of the detected action potentials were parametrised

by their amplitude, width and projection coefficients on two main principal components. The

spike timings of single units were determined based on these shape features using a manual clus-

ter cutting method that allowed for identification of clusters of arbitrary shapes (Lewicki, 1998;
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Hazan et al., 2006). To ensure correct clustering the procedure was performed by two operators

and then checked for consistency.

In order to validate the spike discrimination, we checked the extracellular action potentials

generated by a putative single neuron for the consistency of the wave shape and amplitude.

Additionally, we searched for interspike intervals (ISIs) shorter than 1 ms; if such short intervals

were found the clustering procedure was repeated. Spike trains with evidence of poor spike

sorting (inconsistent wave shapes or ISIs < 1 ms) were excluded from subsequent analyses.

2.3 Spike pattern classification

From 46 neurons identified in the two monkeys we selected 17 neurons that responded with

bursts of spikes. Bursting neurons were defined by responses with more than one spike for at

least 4% of stimuli and a mode of the interspike interval histogram shorter than 1.8 ms (Baker

et al., 2003).

Among these 17 neurons we identified neurons that also fired spontaneous bursts by counting

the number of interspike intervals in the post-stimulus period (> 30 ms after the stimulus) that

were shorter than 1.8 ms. In this time window the initial response dies out and baseline firing

rate is re-established. Neurons that fired at least 10% of bursts in this window were labelled as

spontaneous bursters.

In each neuron we summed spikes over all trials, and we identified prominent peaks in the

obtained peri-stimulus time histograms (PSTH; bin width 0.2 ms, Figure 3A). As the within-

burst spike composition varied from trial to trial, each trial was described with a binary string

whose entries (one or zero) represented the occurrence or non-occurrence of a spike in a sequence

of bins bracketing the major peaks of the overall PSTH: the borders between the bins were

placed manually in the troughs of the PSTH (Figure 3A, B: vertical lines). Each binary string

corresponded to one spike pattern; the length of the string equalled the total number of peaks

in the PSTH.

In addition, we averaged the concomitant hf-EEG responses over trials concurring to each of

the identified spike patterns of a single neuron.

2.4 Spike-train probability model

To reproduce the distribution of emitted spikes in a single neuron, we chose a minimal model

(spike-train probability model, STPM) that could replicate the observed high variability in the

cortical responses (Softky & Koch, 1993; Destexhe et al., 2001) and manifest refractoriness

(decreased probability of spiking for some time after producing a spike).
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We assumed that a spike emission is a random point process with the probability

p (spike in interval [t, t+ dt]|{ti}) = λ(t|{ti})dt, (1)

where {ti} denotes the spiking history earlier than time t, and λ(t|{ti}) is the conditional inten-

sity.

The conditional intensity λ(t|{ti}) is assumed to have a Markov property, i.e., it is conditioned

only on the time tlast of occurrence of the last spike at time: λ(t|{ti}) = λ(t, tlast). A further

assumption is that the firing-rate modulation and refractory effects are multiplicative, thus

reflecting the reduction of spike probability due to, for example, inactivation of sodium channels

or hyperpolarisation caused by opening of potassium channels (Berry & Meister, 1998):

λ(t|tlast) = q(t)w(∆t), (2)

where q(t) is the intensity function, w(∆t) is the recovery function, and ∆t = t− tlast is the time

interval since the last spike.

The parameters of the model, the intensity function q(t) and the recovery function w(∆t),

are defined on a per-bin basis, and they are fitted to experimental data by means of a maximum

likelihood approach. To capture fine temporal details of the neuronal responses (for example,

response onset and interspike intervals) the intensity and recovery functions were defined with

a short sampling interval (0.05 ms). The log-likelihood function L(q;w|{ti}) is obtained by log-

transforming the probability function of an inhomogeneous Poisson process with the conditional

intensity (2) (Dayan & Abbott, 2001; Johnson & Swami, 1983):

L(q;w|{ti}) = −

∫ T

0

q(t)w(t− tlast)dt+
∑

i

ln[q(ti)w(ti − tlast)]. (3)

where T is the duration of response (T = 30 ms), i is the spike index, and ti denotes the times

of occurrence of recorded spikes. The likelihood L of obtaining the experimental spike train ti is

maximised with respect to the parameters q(t) and w(∆t) by means of an iterative expectation-

maximization (EM) algorithm, which guarantees that the global maximum is reached (Miller,

1985). In addition, we ensure that after 5 ms the model neuron recovers from refractoriness by

setting the recovery function to unity for long intervals, i.e., we require w(∆t > 5ms) = 1 (for

example, see Figure 2A).

To study the effects of refractoriness on the modelled responses, we compared the results to

the STPM without refractory period (non-refractory STPM, w(∆t) = 1 for all ∆t > 0). The
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model is fully characterised by its intensity function q(t), which can be estimated directly from

the experimental PSTH (bin width set to 0.05 ms to allow for sufficient temporal precision).

2.5 Generalised linear model

One limitation of the STPM is that the history effects are restricted to the last spike only. To

evaluate effects evoked beyond the last spike, we considered the generalised linear model (GLM;

Truccolo et al. (2005); Czanner et al. (2015)) with conditional intensity λGLM(t|{ti}) of the form

λGLM(t|{ti}) = exp

(

s(t) +
∑

i

h(t− ti)

)

(4)

where s(t) is the driving force and h(τ) is the spike history kernel.

Note that the intensity function q(t) of the STPM can be identified with exp(s(t)), and the

recovery function w(∆t) corresponds to exp (
∑

i h(t− ti)). In contrast to the STPM, in the

GLM the effects of the previous spikes can extend infinitely back in time. In practice, we reduce

the number of free parameters of the GLM by restricting the history horizon above which the

spikes can not contribute to the responses any more; we thus set h(t > tmax) = 1. The horizon

tmax = 8 ms was selected to maximise the Akaike Information Criterion (AIC), which balances

the goodness of fit with the number of free parameters of the model (for example, see Figure

2C).

The likelihood of the GLM is defined analogously to the spike-train probability model:

L(s;h|{ti}) = −

∫ T

0

λGLM(tj |{ti < t})dt+
∑

j

lnλGLM(tj |{ti < t}) (5)

= −

∫ T

0

exp

(

s(t) +
∑

i

h(t− ti)

)

dt+
∑

j

(

s(tj) +
∑

i

h(tj − ti)

)

(6)

where the sums go over all spikes.

Since the log-likelihood function is a convex function of the parameters, they can be found

using standard optimization techniques. In the results presented here we used the conjugate

gradient optimization.

We compared the goodness-of-fit of the STPM and the GLM using the time-wrapping method

(Brown et al., 2002): The inter-spike intervals in the experimental data were rescaled to account

for temporal variations in firing probability. If the model perfectly reproduced the data the

distribution of the rescaled inter-spike intervals would be uniform (the diagonal in Figure 2E).
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2.6 Model validation

To validate the model, the dataset was divided into two non-overlapping subsets of equal size: a

training and a validation set. The trials for each set were selected randomly from all stimulation

repetitions. The parameters of the model were fitted to the training set. Based on these pa-

rameters 1000 spike trains were simulated. The goodness-of-fit was evaluated separately for two

statistics X, that is, the PSTH (with bin size 0.2 ms) and the spike pattern distribution. For

each of the two statistics, the model error was evaluated as the normalised differences between

the simulated Xmodel and validations spike trains Xvalidate (cf. Rauch et al., 2003):

Err(Xmodel,Xvalidate) =
N
∑

i=1

(

Xmodel
i −Xvalidate

i

)2

Xvalidate
i

, (7)

where X = XN
i=1 is either the PSTH or the spike pattern distribution of model (Xmodel) or

validation (Xvalidate) set; N is the size of the vector and equals the number of bins (N = 70 for

T=14 ms and 0.2-ms bins) or the number of identified spike patterns (N ≤ 16 for binary words

of length less or equal to 4).

The model error Err(Xmodel,Xvalidate) was compared against the error between the training

and validation sets Err(Xtrain,Xvalidate) (reference error). The significance of the difference

between the model and reference errors was quantified by means of the F-test with (N−1, N−1)

degrees of freedom (Barlow, 1989) where

F = Err(Xmodel,Xvalidate)/Err(Xtrain,Xvalidate). (8)

2.7 Serial correlations

From the responses of single neurons we identified spike triplets defined as three consecutive

spikes separated by intervals shorter than 4 ms. In this analysis, to increase the number of

intervals, we broadened the analysis window to 50 ms after the stimulus. Next, we calculated

Pearson’s correlation between the interspike intervals (ISIs) of the first and the second spike

and the second and the third spike in the triplet (rdata). We compared the estimated rdata to

the correlation coefficient calculated from surrogate data (rmodel) for the same number of trials,

which were generated by the STPM model with parameters fitted to the experimental spike

trains. The significance of the differences between correlation coefficients found in simulated

and experimental ISIs was evaluated by means of a bootstrap test. To this end, 1000 estimates

of rmodel were obtained from independently simulated datasets, and the resulting coefficients

were compared to rdata. The p value was taken as the smaller of two values multiplied by 2:
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1) the fraction of bootstrap trials for which rmodel was greater than rdata or 2) the fraction of

bootstrap trails for which rmodel was smaller than rdata (two-sided bootstrap test).

2.8 Population model

To model the relation between spike patterns of a single neuron and the response of the popu-

lation, we extended the STPM to a population of uncoupled neurons receiving common inputs.

The population response was calculated from a simulated ensemble of 5000 identical neurons.

The parameters of the STPM were fitted to the responses of the analyzed neuron, and these

parameters were shared by all 5000 model neurons. In each trial j the intensity function of

all neurons was modulated by a multiplicative gain factor Gj that was drawn from a uniform

distribution on the interval [1 − γ, 1 + γ], where 0 ≤ γ ≤ 1 is the strength of modulation. The

intensity function in trial j was then qj(t) = Gjq(t). From the obtained single-trial single-neuron

responses the total population response was calculated by summing the binned spike responses

of all neurons (bin size 0.2 ms) and subsequent band-pass filtering (400 – 1200 Hz) corresponding

to the analysis of EEG data.

Next, we randomly selected a single neuron from the population and used its spikes for

further analysis. We classified the spike patterns of this neuron in single trials based on the

occurrence/omission of spikes in a discrete sequence of spiking “windows”. The band-pass filtered

population response was then averaged over trials with respect to the type of concomitant spike

pattern. This procedure, when applied to the model, reproduced the analysis that was applied to

the experimental data and described above (see “Spike pattern classification”). The root mean

square (RMS) amplitude of the pattern-specific average was compared with the experimentally-

obtained hf-EEG related to the same spike pattern (Telenczuk et al., 2011). The similarity of the

values across different spike patterns was quantified by means of Pearson’s correlation coefficient.

2.9 Biophysical model

In order to understand the mechanisms of burst generation, we developed a simplified single-

neuron model. The model consists of a linear neuron with a spiking threshold (leaky integrate-

and-fire), which receives conductance-based inputs through depressing synapses (short-term

synaptic depression). The membrane potential in the model follows the standard membrane

equation:

Cm
dV

dt
= −gL(V − Vrest)− Isyn (9)
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where Cm is the membrane capacitance, gL is the leak conductance, Vrest is the resting potential,

and Isyn are the synaptic currents. When the membrane potential reaches the threshold Vthr

a spike is generated and the potential is reset to Vreset putting the cell into a hyperpolarised

state. The total synaptic current in the LIF neuron is a sum of intracortical and thalamocortical

currents: Isyn(t) = ICortex(t) + ITh(t).

The cortical synaptic currents are conductance-based inputs from ninh inhibitory and nexc

excitatory neurons. The excitatory gexc and inhibitory ginh synaptic conductance are a sum of

contributions mediated by each spike, such that gexc/inh(t) =
∑

texc/inh
g(t− texc/inh). The times

of the excitatory texc and inhibitory tinh synaptic inputs are drawn from a homogeneous Poisson

process with equal rates for excitatory and inhibitory inputs fexc = finh. Each spike results in a

transient increase of the synaptic conductance with an exponential time course:

g(t− tsp) = w exp

(

t− tsp
τ

)

(10)

for t ≥ tsp and 0 otherwise. Here tsp is the time of the spike, w is the synaptic weight and τ is

the synaptic time constant. The reversal potentials for excitation and inhibition are Eexc and

Iinh, respectively. With these definitions the total current of cortical synapses is:

ICortex = gexc(t)(V − Eexc) + ginh(t)(V − Einh) (11)

In addition to the intracortical inputs, the neuron receives excitation from nTh thalamo-

cortical excitatory neurons. The thalamocortical neurons are silent in absence of peripheral

stimulation and generate Poisson-distributed spikes 7.68 ms after the onset of the median nerve

stimulus (the delay takes account of the propagation delays from periphery to the cortex). The

strength of thalamocortical excitatory synapses providing the feedforward inputs to the model

decays with the pre-synaptic activity following the short-term synaptic depression mechanism

(Tsodyks & Markram, 1997):

dxi

dt
=

zi
τrec

− Uxiδ(t− tsp) (12)

dyi
dt

= Uxiδ(t− tsp) (13)

dzi
dt

=
yi
τ1

−
zi
τrec

(14)

where τ1 is the decay constant of synaptic conductance, τrec is the recovery time from synaptic

depression and U describes the fraction of available resources used by each presynpatic spike.
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The postsynaptic current due to the thalamocortical inputs is then:

ITh = GTh(t)(V − Eexc), (15)

where the total conductance due to thalamic inputs is given by:

GTh(t) =

nTh
∑

i=1

yi(t)gTh,i(t) (16)

gTh,i stands for conductance of a single synapse and yi its efficiency. The contribution of a single

presynaptic spike to postsynaptic conductance is assumed to be the same as for an excitatory

cortical synapse (i.e. gexc(t)).

Eight parameters of the model were adjusted to reproduce the experimental PSTH: weights of

excitatory (wexc), inhibitory (winh) and thalamocortical (wTh) synaptic inputs, excitatory synap-

tic time constant (τexc), firing rates of cortical (fexc) and thalamocortical (fTh) pre-synaptic

neurons, number of thalamocortical synapses (nTh), and use of synaptic resources by thalamo-

cortical synapse release (U). Other parameters were fixed to values found in the literature. The

values of other parameters are given in Table 1.

3 Results

Neurons in area 3b of macaque monkeys show brief (< 10 ms) bursts of activity in response to

stereotypical electrical stimulation of the median nerve (0.2 ms pulse, 1.5 time motor threshold

applied transcutaneously to the median nerve); see also Figure 1A. In a dataset of 46 neu-

rons recorded extracellularly using movable platinum-glass electrodes (Eckhorn drive, Thomas

Recordings) we found 17 neurons that responded with burst of spikes (defined as trains of two

or more spikes with interspike intervals shorter than 1.8 ms). When averaged over several rep-

etitions of the stimulation the responses gave rise to a post-stimulus time histogram (PSTH)

with prominent peaks coincident with the within-burst spikes (Figure 1B). The appearance of

such PSTH peaks points to the precision of the burst timing with respect to the onset of the

stimulus.

Some of these bursting neurons also elicited spikes in absence of median nerve stimulations

(5 neurons fired at least 10% of bursts in the window [30, 300] ms after the stimulus). The

evoked and spontaneous bursts differed slightly with respect to mode of the within-burst interval

distribution [evoked: 1.82 (1.71) ms; spontaneous: 1.32 (0.41) ms, mean (standard deviation)

across neurons] and burst length [evoked: 2.76 (1.26) spikes per burst; spontaneous: 2.18 (0.39)
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spikes per burst], but these differences were not statistically significant (t-test, p > 0.01).

To understand the mechanisms underlying bursting of neurons in the primary somatosensory

cortex, we propose a phenomenological model of the single-neuron response to the median nerve

stimulation. The model is based on two experimental observations: 1) Upon presentation of

strong sensory stimuli, layer IV cortical neurons are bombarded with intense and coincident

synaptic inputs from thalamocortical neurons (Bruno & Sakmann, 2006; Hanajima et al., 2004;

Swadlow & Gusev, 2001; Gil et al., 1999; Cruikshank et al., 2007). 2) After emitting a spike,

neurons are refractory, which limits their maximum firing rate (Berry & Meister, 1998; Gray,

1967; Kara et al., 2000). In order to illustrate the effects of these two phenomena on neuronal

responses, we simulated a probabilistic model (the spike-train probability model, STPM, see

Methods) with an exponentially decaying intensity function and an absolute refractory period

τref = 1.2ms (Figure 1C). The PSTH of the simulated spike responses qualitatively reproduces

main features of the PSTH obtained from experimental data. Specifically, the absolute refractory

period leads to an appearance of multiple peaks in the PSTH (three peaks visible in Figure 1C: at

6 ms, 7.8 ms, and 9.5 ms after the stimulus) separated by deep troughs corresponding to periods

of quiescence during which the neuron is refractory. The presence of such peaks and troughs

in the trial-averaged PSTH is possible because the responses of the neuron are reliable across

trials. The first peak of the PSTH reflects the initial spike triggered by the sharp transient of the

intensity function (Figure 1C, red line). This initial response is highly reliable, giving rise to the

narrowest and tallest PSTH peak (half-amplitude width: 0.75 ms; peak-to-trough amplitude:

1773 spikes/s in Figure 1C, black line). The refractory state following the first spike leads to a

pronounced decrease of firing probability and gives rise to the deep PSTH trough following the

initial PSTH peak. The subsequent PSTH peaks become wider and are of smaller amplitude

due to the gradual decay of the intensity function (second peak: 1.25 ms, 1002 spikes/s; third

peak: 1.25 ms, 290 spikes/s). The PSTH obtained from this simulation is qualitatively similar

to cortical burst responses triggered by peripheral nerve stimulation (compare Figure 1C, left

with Figure 1B, bottom).

Refractoriness explains the intra-burst intervals. We demonstrated that the STPM with

a decaying intensity function and an absolute refractory period can produce a PSTH that agrees

qualitatively with the responses of neurons in primary somatosensory cortex of macaques. In

order to test whether the STPM can also quantitatively reproduce the fine details of neuronal

responses recorded in vivo, we inferred the intensity and recovery functions directly from the

data. The two functions were defined on per-bin basis and were treated as the free parameters
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of the model. These parameters were then fitted to the experimental spike trains using a convex

optimisation technique guaranteeing the identification of the most optimal model (see Methods,

Figure 2A).

The fitted intensity function peaks shortly after the stimulus onset (< 10 ms) and decays back

to baseline when the burst is terminated (Figure 2A, left). The intensity function still contains

three distinct peaks, but they are less prominent compared to the peaks in the PSTH (Figure 1B).

This smoothing can be attributed to the decoupling of synaptic inputs, which are represented

by the intensity function, from the refractoriness, which is represented by the recovery function

(Figure 2A, right). Although the maximum of the intensity function is much above the rate at

which individual neurons can fire spikes, the refractoriness limits the firing rate of the model

neuron. In agreement with the properties of biological neurons, the fitted recovery function

is equal to 0 for the first 1 ms after emitting a spike (absolute refractory period), but after a

few milliseconds fully recovers from the refractoriness returning to the rest state (w(t) ≈ 1).

Interestingly, immediately after the absolute refractory period the recovery function over-shoots

for about 1 ms, largely exceeding the rest value. The fast (≪ 1 ms) fluctuations following

this over-shoot represent statistical noise due to the finite size of the data set. Altogether, the

parameters of the STPM disentangle the synaptic inputs from the refractory effects.

The STPM provides a parsimonious description of bursting in S1 cortex. The sim-

ulated peri-stimulus time histogram (Figure 2B, red line) matches closely the one obtained from

the experimental data (Figure 2B, dark blue line). In order to demonstrate that this good match

is not a result of an over-fitting, we performed cross-validation. First, the data set was divided

randomly into two subsets: training data and validation data. The model was fitted only to

the first subset, and then the results of the simulation were validated on the second (Figure 2B,

light blue line). We found that the difference of the fitted PSTH from the validation set was of

the same magnitude as the variation within the dataset (see Methods, F-test, p > 0.01). This

test indicated that the model optimally captured the features of both training and validation

set without considerable over-fitting.

The parameters of the model were fitted to each of the 17 neurons yielding similar results.

Importantly, an application of the cross-validation procedure revealed that in 12 out of the

17 neurons the PSTH simulated with the model was not significantly different from the PSTH

calculated from the recorded spike trains (F = 0.65−1.59, p > 0.01). In the remaining 5 neurons

the modelled PSTH deviated significantly from the validation PSTH (F = 2.33− 4.88, p < 0.01,

F-test). This sub-population of neurons may have differing firing properties that would need
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more sophisticated models (implementing, for example, bursting mechanisms; see Discussion).

To further analyse the cases in which the simulated spike trains differed from the data,

we subtracted the model PSTH from the validation data PSTH (Figure 2B, bottom). The

resulting residuals still contained fluctuations aligned to the peaks of the PSTH. This indicated

that the model does not fully capture the shape of the PSTH. Indeed, the correlation coefficient

between the residuals and the PSTH of the validation set was significantly positive (bootstrapped

95% confidence intervals, Figure 2D) meaning that the residuals contain some remnants of the

averaged neuron response. Altogether, these results show that the STPM model is sufficient for

describing trial-averaged responses in the majority of recorded neurons.

Poisson-like variability explains the occurrence of temporal spike patterns in re-

peated trials. Having shown that the interplay between the intensity and recovery functions

of the STPM can account for a large part of the trial-averaged response of a single neuron, we

tested whether the model can also explain the trial-to-trial variability of the spiking of cortical

neurons.

In order to quantify the trial-to-trial variability of neuronal responses, we sorted single-trial

spike trains according to the occurrence of spikes in pre-defined temporal windows (Figure 3A-

C). Each spike train was assigned a binary word based on occupancy of preferred firing windows

the borders of which were aligned to the troughs of the PSTH (windows labelled ‘x’, ‘y’ and ‘z’

in Figure 3A). As explained above, these troughs reflect the periods of quiescence due to the

refractoriness of the neuron. When the single-trial spike trains were re-ordered according to the

associated binary word, we could distinguish between several patterns of activity (spike patterns).

In most trials the neuron fired in all three windows (triplet, 111) or only the first two (doublet,

110), where the input was the strongest (compare with Figure 2A), but also doublets with other

combinations of spikes and silences were common (the spike pattern frequency distribution is

shown in Figure 3C). For example, the doublet 101 corresponds to trials in which the neuron

fired at the onset of the stimulation (window ‘x’, Figure 3A), then remained silent during the

second window (‘y’) and fired again in the third window (‘z’); the omission of the spike in the

window ‘y’ is the consequence firing late in the window ‘x’ (see the corresponding line in the

raster plot of Figure 3B), so that the neuron is refractory during the window ‘y’. In other neurons

the number of discrete firing windows (determined by the number of PSTH peaks) ranged from

two to four, and a similar distribution of spike patterns was obtained. The appearance of such

spike patterns can be attributed to the chance phenomena (Poisson firing) and their interplay

with the structured input and refractoriness.
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We found that the distribution of spike patterns in the experimental data was similar to the

distribution obtained from the STPM (Figure 3D). In contrast, when the recovery function was

constrained to 1 for all bins and the intensity function estimated from the data (non-refractory

STPM) some spike patterns appeared at frequencies much different from the experimental data

(for example, spike patterns 010, 110, 001 and 111 in Figure 3D), despite the fact that the overall

PSTHs were almost identical (Figure 3D, inset). The differences of spike pattern frequencies can

thus be understood as the effect of refractoriness; without it the probabilities of firing in each

window are independent of the occurrence of spikes in the previous windows, in which case the

frequency of a spike pattern can be directly predicted from the trial-averaged response (PSTH).

To quantify the similarity between the experimental and modelled spike patterns, we used

a cross-validated chi-square statistics (see equation (7) in the Methods). In 12 of 17 examined

neurons the spike-pattern distribution of the STPM was similar to the experimental distribution,

and for 5 cells they were significantly different (F-test, p < 0.01); in 2 of these 5 neurons the

PSTH was not accurately predicted by the STPM precluding the possibility of predicting the

trial-to-trial variations. In the remaining 3 neurons there were substantial differences in the

frequency of selected spike patterns, which might reflect the mis-estimation of the recovery

function. Overall, these results show that in most neurons the STPM with time-dependent

inputs and refractoriness can account not only for the trial-averaged but also the trial-to-trial

variability of responses to somatosensory stimulation.

Within-burst intervals manifest significant correlations. Next, we investigated whether

the correlations between consecutive interspike intervals (serial correlations) may play a role

in the generation of spike patterns. The STPM predicts that the response should be fully

determined by the current input and the interval since the last spike. However, the calculation

of the serial correlations in the experimental data obtained from S1 showed that two consecutive

interspike intervals are not independent (Figure 3E). Since significant serial correlations might be

induced by the firing-rate variations alone, we compared the experimental serial correlations with

the ones obtained with the STPM, which does not assume any correlations between interspike

intervals. In the example shown in Figure 3E the serial correlations are indeed accounted for

by the STPM model meaning that the spiking history prior to the last spike does not affect the

response.

In 12 out of 17 neurons the experimental and model serial correlations were not significantly

different (two-sided bootstrap test, p > 0.01, Figure 3F) confirming that for most neurons the

spiking memory did not extend over the last spike. In 3 neurons the coefficient could not
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be determined because of a low number of triplets identified in responses. In 2 neurons the

correlation coefficients were larger in the data than in the fitted STPM model (bootstrap test,

p < 0.01).

We also compared the STPM with a generalised linear model (GLM, Figure 2C), which can

account for spiking history extending over the last spike. The GLM showed a similar power in

explaining both the average PSTH compared to the STPM (t-test, p < 0.01, Figure 2D, right

box). However, it allowed for using larger bins without significant loss of goodness-of-fit (Figure

2E, F). Finally, the introduction of spike history effects extending over multiple preceding spikes

did not explain the significant serial correlations in every neuron. The GLM could account

for the measured serial correlations in 13 out of 17 neurons. Overall, these results show that

refractoriness is sufficient to explain the statistics in the within burst intervals obtained in most

recorded neurons.

Trial-to-trial input variations induce significant serial correlations The significant se-

rial correlations found in two neurons could result from variability of the inputs that they receive.

Although the peripheral stimulation of the median nerve used to evoke the somatosensory re-

sponses was well controlled over the duration of the recording, it is possible that the effective

input to the cortex was modulated at the early stages of somatosensory pathway (cuneate nu-

cleus, thalamus) and by on-going activity in the cortex. On the other hand, the STPM was

fitted under the assumption that the inputs and model parameters do no change in time, i.e.,

that they are stationary.

To test the effects of trial-to-trial variability on the estimated STPM parameters and the serial

correlations, we simulated spike trains from the STPM with a step-like recovery function and an

exponentially decaying intensity function (Figure 4B and C, dashed lines). In addition, in each

trial we modulated the amplitude of the intensity function by a multiplicative gain, G, which was

randomly drawn from uniform distribution on the interval [0.2, 1.8] (Figure 4A). Next, we fitted

the simulated surrogate data with an STPM assuming that the intensity function was fixed and

that the trial-to-trial variability resulted solely from the probabilistic nature of the model. The

fitted intensity function (Figure 4B, red line) reflected the rapid onset and slower decay of the

input after the stimulus, but its trace deviated from the “ground-truth” intensity function used

in the simulation (compare the solid red and dashed gray curves in Figure 4B). Importantly, the

intensity function contained small ripples akin to the ones visible in the intensity function fitted

to experimental data (Figure 2A, left). Similarly, the fitted recovery function did not capture

the step-like transition from refractoriness to baseline, but it manifested a prominent overshoot
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following the absolute refractory period and slower decay to baseline (Figure 4C); such time-

dependence was reminiscent of the shape of recovery function estimated from the data (Figure

2A, right).

We also studied the effects of the gain modulation on the GLM. The intensity function

estimated with this model still contained fluctuations absent in the function used for simulation,

but their amplitude was reduced compared to the STPM. A greater improvement was observed

in the GLM estimate of the recovery function, which approximated well the real function without

a visible overshoot. Overall, both STPM and GLM mis-estimated some model parameters in

presence of trial-to-trial variation, but we found that the GLM was more robust (Figure 4D).

Finally, we estimated the serial correlation between the interspike intervals in presence of the

input modulation. We found that the serial correlation was significantly larger compared to the

spike trains simulated with the STPM with no trial-to-trial variations (Figure 4E). This result

shows that positive serial correlations can be obtained when neuronal responses vary from trial

to trial reflecting changing inputs or excitability of the neuron. Since in our analysis in Figures

3E and F we compared experimental serial correlations to the ones obtained from the STPM,

which does not account for the input variability, our estimate of serial correlations could reflect

input modulation.

In summary, we show that the trial-to-trial variations of the input can explain several aspects

of the STPM fitted to experimental data, in particular the ripples in the fitted intensity func-

tions, overshoot following the refractoriness in the recovery function, and significant correlations

between consecutive interspike intervals.

Trial-to-trial input variations induce correlations between single-neuron and popu-

lation responses. Simultaneous recordings of single-neuron spike patterns and macroscopic

EEG signals recorded from the surface of dura (high-frequency, > 400 Hz, epidural EEG) have

shown that the spike patterns are not private to each neuron but that they are coordinated across

a population of neurons responding to peripheral stimulation (Telenczuk et al., 2011). Such a

coordination could possibly by achieved with a millisecond range-synchronisation of the neurons,

but the mechanisms of such a synchronisation are not clear. Alternatively, it could be produced

by the shared modulation of inputs or excitability. In order to test the latter hypothesis, we

applied our probabilistic single-neuron model, the STPM, to a population of neurons receiving

common gain modulation (Figure 5A).

As before, we assumed that the gain varies from trial to trial due to fluctuations in excitability,

synaptic strength, or background activity. In order to investigate the effect of the gain factor on
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the population response, we simulated 5000 identical, statistically independent model neurons

with the parameters estimated from the experimental data. We found that the frequencies of

individual spike patterns depended on the value of the gain factor: Some patterns (for example

“100”) occur more frequently at low gain (G=0.8), while others (for example “110”) tend to

occur more often at high gain (G=1.2, Figure 5B). Concurrently, the amplitude of the binned

spike trains averaged across neurons (population PSTH) increased with the gain (Figure 5C).

The concurrent dependence of population PSTH and single-neuron spike pattern distribu-

tion on the gain factor may also explain the correlation between single-neuron responses and

macroscopic population activity found in experimental data. Spike patterns that are more fre-

quent at low gain coincide predominately with a low-amplitude population PSTH whereas spike

patterns elicited more frequently at high input gain, on average, coincide more often with a

high-amplitude population PSTH. Consequently, the amplitude of the population PSTH might

co-vary with single-neuron spike patterns. In particular, we found that the root-mean-square

amplitude of the high-pass filtered PSTH (> 400 Hz) depends on the spike pattern used for

grouping the trials (Figure 5D).

To test whether gain modulation could explain the experimental results, we simulated the

STPM model with trial-varying gain factor (see Methods) and compared the spike-pattern-

specific high-frequency EEG (hf-EEG) amplitude calculated from experimental data with the

simulated population response. We found that already for a modest level of the gain modulation

(modulation strength γ=0.2) the root-mean-square amplitudes of the experimental hf-EEG and

high-pass-filtered population PSTH of the model were strongly correlated (Figure 5E, an example

for one neuron, Pearson’s r = 0.93).

We found a positive correlation coefficient in 12 of 16 neurons that produced at least 3

different patterns. This fraction is significantly above the chance level expected from uncorrelated

quantities (two-sided binomial test, p<0.05). Thus, we conclude that gain modulation can

introduce correlations between the single-neuron spike patterns and macroscopic population

responses.

Spike patterns emerge as input-driven phenomena in a simplified biophysical model

of a cortical neuron. The probabilistic models presented so far are abstract, and their pa-

rameters (intensity and recovery functions) can not be linked directly to biophysical properties

of a neuron. To interpret the generation of spike patterns mechanistically, we developed a sim-

plified biophysical model of a cortical neuron based on the leaky integrate-and-fire (LIF) model.

Although this model does not reproduce faithfully all biological properties of realistic neurons,
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it captures their integration and spike generation properties, which are essential to the responses

analysed here. We simulated the neuron with two types of synaptic inputs – tonic excitatory

and inhibitory inputs, and phasic thalamic excitatory inputs representing the barrage of action

potentials triggered by peripheral stimulation.

In absence of thalamic inputs the model neuron elicits only few spikes due to spontaneous

threshold crossings. However, in the model the median nerve stimulation is assumed to activate

the thalamocortical fibers (28 synapses per cortical neuron), which then fire randomly according

to a Poisson distribution with the rate of 700 spikes per second. These massive inputs trigger

excitatory post-synaptic currents bringing the membrane quickly to the threshold. This results in

a series of spike emissions accompanied by rapid successions of membrane de- and re-polarisations

(Figure 6A).

We calculated the PSTH of the model by summing spike responses of n = 500 repetitions

of the simulation. In each repetition the intracortical excitatory and inhibitory inputs, as well

as the thalamocortical inputs, were drawn randomly from the Poisson distribution. In spite

of this randomness, the model PSTH is composed of discrete peaks well separated by short

valleys showing that the neuron fired precisely at preferred latencies (Figure 6B). Although

the LIF model does not contain an explicit refractoriness, the intervals between the PSTH

peaks correspond to the time required to depolarise the membrane from the reset potential

(Vreset = −70 mV) to the spiking threshold (Vthr = −40 mV). In Figure 6A this time is seen as

the slow rise time following the rapid downstrokes (reset) of the membrane potential triggered

by spikes. Such a hyperpolarised period acts effectively as the refractory period as seen in the

STPM and GLM.

The characteristic decay of the response in the somatosensory cortex observed in the ex-

perimental data (Figure 1B) could be driven by the adaptation of the neuron to the intense

stimulation either at synaptic (Markram & Tsodyks, 1996) or neuronal level (Benda & Herz,

2003). Here, we model this process by means of short-term synaptic depression, which reflects

the depression of thalamocortical synapses due to prolonged activity (Gil et al., 1997). The

gradual decrease of synaptic drive makes the subsequent peaks smaller, broader, and separated

by longer intervals (Figure 6B) as observed also in the experimental PSTH (Figure 1B). After

10 ms of stimulation the thalamocortical synapses deplete, abolishing further discharges.

In practice, the inputs to somatosensory cortex can also decay after a brief median nerve sim-

ulation (0.2 ms) applied to the median nerve invalidating our assumption of sustained synaptic

drive. However, it has been found that the thalamocortical projections can respond with pro-

longed firing to brief presentation of the stimulus (Swadlow & Gusev, 2001). Interestingly, such
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responses also formed bursts of action potentials. If the axonal delays of multiple thalamocorti-

cal neurons are matched at the submillisecond level, such bursts could provide oscillatory inputs

cortical level. The effects of such input patterns on the cortical responses should be investigated

in the future.

The responses of the LIF model neuron vary from trial to trial (Figure 6C-D). This variability

results from random cortical and thalamocortical inputs, which provide Poisson-distributed input

spikes. Increasing the rate of inhibitory and excitatory inputs in a balanced fashion puts the

neuron in a so-called noise-driven regime in which spikes are evoked by the random fluctuations

over the threshold rather than by the mean depolarisation (Destexhe et al., 2003; Zerlaut et al.,

2016). In this regime the responses of the neuron are more variable such that a broader range of

different spike patterns is obtained across the trials. In particular, we found that the patterns

with long latencies (such as, 011) or spike omissions (101) became more frequent at higher

intracortical firing rates (Figure 6E).

In summary, the LIF model indicates that bursts in the somatosensory cortex can be driven

by the input and do not always require intrinsic bursting mechanisms (reviewed by Krahe &

Gabbiani (2004)). The number of spikes per burst and the within-burst intervals can be mech-

anistically explained by the integrating properties of single neurons that are equipped with an

intrinsic adaptation process or driven by synapses that show short-term depression. Strong tha-

lamic inputs can produce precise population responses at preferred latencies, which can overcome

the variability. At the single-trial level the variability of the thalamic input is expressed in the

form of stereotyped spike patterns.

4 Discussion

By means of simplified phenomenological models and a biophysical point-neuron model, we

showed that within-burst variability of cortical S1 neurons can be decomposed into the private

variability of each neuron and multiplicative input modulation that is shared by the entire pop-

ulation. The private variability explains most of the differences between responses elicited in

single trials and underlies the re-appearance of the same spike patterns over multiple repetitions

of the stimulus. The shared gain modulation coordinates the responses of many responding neu-

rons and explains the puzzling co-variability between single-neuron and macroscopic population

responses demonstrated in experimental recordings (Telenczuk et al., 2011). The models shed

also light on the mechanism of S1 burst generation, their synchronisation across neurons, and

suggest that spike patterns may encode time-varying cortical state at fast temporal scales.
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Mechanism of bursting

By means of a simple phenomenological model, the STPM, we showed that bursting in the

primary somatosensory cortex results from the combination of intense synaptic bombardment

and a refractory period. Such fast bursting triggered and sustained by an intense synaptic input

has been termed “forced bursting” (Izhikevich, 2006).

The shape of a fitted recovery function in both models agrees well with the contribution of

an afterhyperpolarisation (AHP) mediated potassium current and an afterdepolarisation (ADP)

mediated either by persistent (Brumberg et al., 2000; Bal & McCormick, 1996) sodium or low-

threshold calcium current (Jahnsen & Llinás, 1984): The initial dip, which we interpret as

refractoriness, might reflect the AHP and the inactivation of sodium channels, whereas the

subsequent over-shoot might correspond to the ADP. We note, however, that the over-shoot

might be an artifact due to trial-to-trial variability (Figure 4C). We also demonstrated in a toy

model that the over-shoot is not critical for bursting responses – the absolute refractory period

combined with intense but transient inputs is sufficient to produce bursts with similar (but not

identical) statistics (Figure 1C).

The STPM could also account for the correlations between interspike intervals (serial cor-

relations). However, in a few neurons we found serial correlations differing from the ones it

predicted. Since in these neurons processes occurring at long time scales could shape the spike

patterns, we fitted them with the GLM, which considers spike-history effects extending to mul-

tiple interspike intervals. We found that the GLM with a horizon of 8 ms provided an optimal

fit to these data in agreement with the time scales of short-term synaptic plasticity (Tsodyks &

Markram, 1997) and firing-rate adaptation (Benda & Herz, 2003). The latter is often mediated

by the slow AHP currents providing another link between a biophysical process and the recovery

function of our phenomenological model.

The significant serial correlations could be also explained by a model which includes trial-

to-trial variations of the input intensity (gain modulation). We found that introducing such

variations in the model results in the over-estimation of the serial correlations estimated from

the simulated data. In addition, these variations may lead to the over-estimation of the recovery

function in form of the overshoot appearing briefly after the absolute refractory period. Although

such an overshoot is also present in the recovery function estimated from the data, we believe

that it is not an artifact of the estimation method. First, the modulation must be strong

(γ = 0.8) to produce a visible overshoot, whereas we found that modest modulation (γ = 0.2) is

consistent with the serial correlation and EEG correlation estimated in the data. Secondly, we

found that GLM is robust with respect to such modulation introduced in the simulated model,
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but still it uncovers an overshoot in the experimental data. Nevertheless, in the future it would

be instructive to extend the spike-train models (STPM and GLM) with the fluctuating gain

factor and fit it directly to the data.

We were able to reproduce qualitatively both the average and single-trial features of the

burst responses in a more realistic leaky integrate-and-fire neuron. Although such models are a

gross simplification of the real neurons both in terms of spiking mechanism and morphological

features, it has been suggested that the LIF may faithfully reproduce some features of spike

generation (Brette, 2015). In the model, the within-burst interval was controlled by the time

required to reach the threshold from the hyperpolarised state (membrane time constant), and the

gradual decay of the amplitude of PSTH peaks was due to the short-term synaptic depression.

The latter mechanism can be related to the depletion of the available vesicles in the pre-synaptic

terminal (Markram & Tsodyks, 1996). However, it would be possible to replace it with some

other form of adaptation (Brette & Gerstner, 2005). Both mechanisms lead to extinction of the

initial synaptic drive, which explains the burst-like transient response to the step-like thalamic

inputs. We note, however, that without recordings from thalamocortical projection neurons we

can not infer the inputs of the cortical neurons. Our models are still compatible with temporally

structured inputs.

The trial-to-trial variability of the model was due to variable arrival times of the thalamic

inputs, but also due to the intra-cortical inputs. The latter were configured such that the neu-

ron was in the “high-conductance state” reproducing the property of cortical neurons receiving

constant bombardment of inhibitory and excitatory inputs (Destexhe et al., 2003). Apart from

decreasing the membrane time constant thus allowing for rapid repeated discharges, these intra-

cortical inputs introduced substantial trial-to-trial variability that could explain the observed

spike pattern distribution.

Previous studies have shown that most of the bursting neurons in the S1 macaque cortex are

characterised by broad spikes, which suggests that they are pyramidal neurons or spiny stellate

neurons (Baker et al., 2003). This is confirmed by intracellular recordings in barrel cortex

showing that regular spiking neurons but not intrinsic bursting neurons followed the phase of

high-frequency oscillations in surface recordings (Jones et al., 2000). Our results are consistent

with these findings and strengthen the evidence that a subclass of S1 neurons activated by

median nerve stimulation belongs to the regular spiking neurons. However, a subset of neurons

analysed here (5 of 17 neurons) did also fire bursts that were not locked to the median nerve

stimulation showing that at least some of them may belong to the intrinsic bursting class.
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Burst synchronisation

A striking feature of the S1 bursting is that the signature of the burst also appears in macroscopic

signals such as the EEG. The visibility of the burst in the surface recordings was interpreted as a

sign of strong synchronisation between the neurons (Jones et al., 2000), which could be mediated,

for example, by fast synaptic potentials or gap junctions (Draguhn et al., 1998). By extending

our model to a population of uncoupled neurons, we demonstrated that the sub-millisecond

synchronisation between multiple neurons does not require a fast coupling mechanisms, but

results from shared synaptic inputs arriving through thalamocortical fibers. Provided that the

biophysical properties of the receiving population and axonal conduction times vary in a narrow

range, these inputs will elicit synchronous bursts of spikes. The required precision in the arrivals

of afferent spikes could be achieved by means of a plasticity rule that selects inputs arriving

synchronously at the cortical synapses (Gerstner et al., 1996).

Role of spike patterns

Trial-to-trial variations in S1 responses can be classified into a set of spike patterns defined by the

occurrences of spikes within 10-ms-long bursts (Telenczuk et al., 2011). Such temporal patterns

of neuronal responses were first identified in cat striate cortex and crayfish claw (Dayhoff &

Gerstein, 1983), and later in the temporal cortex of monkeys, cat lateral geniculate nucleus

(Fellous et al., 2004) and in the rat hippocampus (Diba & Buzsaki, 2007; Schmidt et al., 2009).

Here, we proposed a model in which the occurrence of spike patterns is regulated by the

input intensity, that is the rate of incoming spikes; in contrast precise timing of the input was

not necessary. The temporal information stored in the spike patterns is complementary to the

output rate (spike count) in the sense that the spike patterns with identical number of spikes (and

therefore the same output rate) could still provide extra information concerning its inputs. For

example, the early (110) doublet is more common for high input intensity; the opposite is true

for the late (011) doublet (Figure 5B). This mechanism could be especially useful for encoding

inputs that would normally exceed the maximum firing rate set by the refractory period.

In one study the stimulus intensity was related to the within-burst intervals of spike responses

recorded in the dorsal lateral geniculate nucleus (dLGN) (Funke & Kerscher, 2000). Our results

are consistent with this hypothesis. In the STPM, the within-burst intervals are constrained

by the refractory period, but their length can also vary as a function of the synaptic drive

(intensity function). In addition, the length of refractory period may not be fixed but it might

be modulated by the firing rate. It has been shown that models allowing for this modulation

may better describe the spike times in response to the time-varying stimulation (Koyama &

22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2017. ; https://doi.org/10.1101/098210doi: bioRxiv preprint 

https://doi.org/10.1101/098210
http://creativecommons.org/licenses/by/4.0/


Kass, 2008).

Short trains of spikes are also well suited to evoke specific synaptic response or trigger synaptic

plasticity (Lisman, 1997; Song et al., 2000; Swadlow & Gusev, 2001; Tsodyks & Markram, 1997;

Maass & Zador, 1999), they are optimally placed to represent neuronal variables in a form that

is easily processed, stored and transmitted (Leibold et al., 2008; Tiesinga et al., 2008). In this

spike-timing-based view, neural systems take advantage of the temporal information encoded

into spike patterns to represent slowly-changing cortical states (such as attention or waking).

Alternatively, spike patterns could also allow for more reliable representation of neuronal inputs

(Toups et al., 2012). These rate-based and spike-timing-based interpretations of spike patterns

are not contradictory and could even act as independent communication channels (Tiesinga

et al., 2008).

We showed that the distribution of spike patterns over neurons and the amplitude of the

averaged population signal are regulated by input magnitude, which could reflect gating of

neuronal signals through attention, expectation, sleep and waking (Fontanini & Katz, 2008; Shu

et al., 2003; Steriade et al., 2001). Similar gain control mechanisms were implemented in realistic

neural models through, for example, concurrent modulation of excitation and inhibition (Hô &

Destexhe, 2000; Chance et al., 2002; Vogels & Abbott, 2009) or short-term synaptic depression

(Rothman et al., 2009). More generally, multiplicative noise can account for the variability and

co-variability of neuronal responses in the thalamus and many cortical areas, including the lateral

geniculate nucleus, V1, V2 and MT (Goris et al., 2014).

Population correlates of spike patterns

Macroscopic signatures of the bursts were shown to match the somatosensory-evoked potentials

in monkey epidural EEG and human scalp EEG, so the high-frequency EEG burst might link the

non-invasive macroscopic recordings and microscopic neuronal activity (Curio, 2000; Telenczuk

et al., 2011). We could reproduce this puzzling relation between the single-neuron spike patterns

and the macroscopic EEG signals by means of the STPM with the gain modulation. To model

the high-frequency EEG signals, we used the high-pass filtered average response of the population

(population PSTH). This choice was motivated by previous studies on the origins of the high-

frequency EEG signals: while the low-frequency field potentials are known to correlate mostly

with the synaptic currents (Buzsáki et al., 2012; Mazzoni et al., 2015), it has been recently

demonstrated that the population spike rate is a better predictor of high-frequency >400 Hz

EEG power (Telenczuk et al., 2015, 2011). Based on these results we conclude that the link

between the microscopic and macroscopic activity could be partially explained by the neuronal
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correlations mediated by the common gain modulation.

To sum up, our modelling shows how the characteristic features of the spike burst, i.e.,

its frequency and amplitude, can be related to the biophysical properties of neurons, such as

refractory period and short-term synaptic depression, whereas the internal burst composition is

controlled by the background activity and gain modulation. As a conclusion we argue that the

brain could use small within-burst timing differences to encode the dynamical cortical state at

time scales amenable to neuronal processing.
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Rauch, A., Camera, G. L., Lüscher, H., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells

respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90:1598

–1612.

Rothman, J. S., Cathala, L., Steuber, V., & Silver, R. A. (2009). Synaptic depression enables

neuronal gain control. Nature 457:1015–1018.

Schmidt, R., Diba, K., Leibold, C., Schmitz, D., Buzsáki, G., & Kempter, R. (2009). Single-Trial
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Figure 1: Modelling responses to median nerves stimulation of neurons recorded in primary
somatosensory cortex of macaque monkeys. (A) Sketch of the experimental paradigm. (B)
Raster plot of 60 sample responses of a single neuron (top) and the PSTH calculated from
all 956 trials (bottom, sbt = spikes per bin per trial, bin size 0.2 ms). (C) Simulation of the
spike-train probability model (STPM) with sample parameters: exponentially decaying intensity
function (left, red line) and recovery function implementing an absolute refractory period of
τref = 1.2 ms (right). The simulated PSTH (left, black line) contains characteristic peaks
separated by intervals approximately equal to τref (left, thin vertical black lines). Note the
similarity to the PSTH calculated from spikes of cortical neurons triggered by the median nerve
stimulation (compare with bottom panel of B).
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Figure 2: Models with refractoriness can reproduce the experimental spike trains. (A) Inten-
sity function (left) and recovery (right) functions of the spike-train probability model (STPM)
fitted to experimental data (an example for a single neuron). (B) Comparison of PSTHs of the
training data (top, dark blue line), validation data (light blue line), and model data (red line).
Note the overlap between the lines, which is a sign of the match between the model and both
the training and validation sets. The difference between the model PSTH from the validation
PSTH (model residuals, bottom) is equivalent to the intrinsic variation between the training and
validation set (F = 1.02, p > 0.01, see Methods for definition). (C) Fitted intensity (left) and
recovery functions (right) of the generalised linear model (GLM, bin size 0.25 ms). (D) Correla-
tion coefficients between the residuals (for the STPM shown in the bottom panel in (B)) and the
validation PSTH (for the STPM shown light blue in (B)) calculated for three different models:
the STPM, the STPM without refractoriness (non-refr. STPM) and the GLM. The horizontal
dashed line denotes the correlation coefficient between the difference of PSTH of validation and
training dataset with the training dataset PSTH. (E) The empirical cumulative distribution of
the inter-spike intervals of the experimental spike trains rescaled according to the conditional
intensity function of all three fitted models (time-wrapping test). If the model perfectly repro-
duced the experimental inter-spike intervals the cumulative distribution should line up with the
diagonal. This procedure was repeated for two different bin sizes (0.05 ms, left; and 0.25 ms,
right). (F) The Kolmogorov-Smirnov (K-S) distance of the model (maximum divergence of the
model’s cumulative distribution from diagonal in (E)) decreased with an increasing bin size in
both STPM and GLM. This dependence on bin size was less pronounced for the GLM.
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Figure 3: The STPM explains trial-to-trial variability of the data. (A) Single-neuron responses
averaged over all trials (PSTH, same as in Figure 1B) reveal that spikes occur preferentially at
discrete latencies (delimited by vertical lines and indexed by ‘x’ for the first peak, ‘y’ for the
second peak, and ‘z’ for the third peak). (B) In single trials multiple spikes are elicited in diverse
combinations of preferred latencies resulting in significant trial-to-trial response variability. Spike
combinations are classified into spike patterns: The time axis was first divided into three windows
aligned to the peaks of the PSTH. Each trial was then assigned a binary string (spike pattern
‘xyz’, from ‘000’ to ‘111’), where 1 represents the occurrence and 0 the absence of a spike in
a window. Spike timings of eight representative sample responses assigned to each pattern are
shown as raster plots. (C) Frequency at which the spike patterns occurred over repeated trials
for the neuron in (A). (D) Firing pattern distribution obtained from the data (white bars, same
as C), the STPM (red bars) and the non-refractory STPM (blue bars). The firing rate of the
Poisson model was estimated by a PSTH with bin size 0.05 ms. Inset compares the PSTHs
obtained from each model (color-coded like the bars in main panel). (E) Scatter plot of two
consecutive interspike intervals (ISIs) within spike triplets calculated from the experimental
data (filled circles) and responses simulated with STPM (empty circles). Serial correlations
(Pearson’s correlation coefficient) found in the experimental intervals (rdata) differ only slightly
from the respective correlations predicted by the STPM (rmodel, see values in the legend, solid
and dashed lines represent the best linear fit to the experimental and model data, respectively).
(F) Repeated Monte-Carlo simulations (n = 1000) of the STPM fitted to experimental data
provide the distribution of serial correlations consistent with the STPM (empty bars); the serial
correlations estimated directly from experimental data (vertical arrow, rdata) are likely to be
drawn from the same distribution (two-sided bootstrap test, p = 0.81).
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gain

inputs

Figure 4: Input modulation may explain deviations of spike train statistics from the STPM and
GLM. (A) The STPM was extended by including a multiplicative gain factor, which acts on
the input function. The gain factor was randomly selected from a uniform distribution [0.2,
1.8] in each trial. The model was simulated with an exponentially decaying intensity function
(dashed line in (B); maximum amplitude, 4000 spikes/s, time constant, 3 ms) and a step recovery
function (dashed line in (C); refractory period, 1.4 ms). (B) Intensity function of the STPM
(red) and GLM (blue) fitted to the simulated spike trains. The intensity function manifests
deviations from the real intensity function used in the simulation (dashed line; gray-shaded area
corresponds to the amplitude range of intensity function taking into account the gain factor).
(C) Recovery function of the STPM (red) and GLM (blue) fitted to the simulated spike trains.
The STPM-estimated recovery function displays a characteristic overshoot soon after end of the
absolute refractory period (1.4 ms; dashed line – real recovery function underlying the spike
trains). (D) Root-mean-square error of the intensity and recovery functions estimated with
the STPM and GLM. (E) The serial correlation of the model with gain modulation (arrow) is
significantly larger (p < 0.01) than predicted in absence of modulation (bar plot – histogram of
1000 serial correlation coefficient obtained from Monte Carlo simulations of the STPM with the
intensity and recovery functions shown in (B) and (C, red line)).
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Figure 5: Coordination of spike patterns in the population. (A) Simulation of 5000 identical
units described by the STPM (Figure 2C) with gain modulation of the strength γ = 0.2. From
the simulated spike trains of all neurons the population PSTH was calculated and then high-pass
filtered to obtain an estimate of the high-frequency EEG population response. (B) Distributions
of spike patterns of a single neuron in 1000 repetitions of the simulation with a low (0.8, blue) and
a high (1.2, red) gain. (C) The population PSTH before (top panel) and after high-pass filtering
(bottom panel) varies with the gain (blue: 0.8, red: 1.2). (D) Single-neuron spike pattern and
root-mean-square (RMS) amplitude of the high-pass filtered population PSTH are correlated
because both the spike pattern and the PSTH depend on the gain. (E) The simulated population
RMS amplitudes correlate with experimental hf-EEG RMS related to the same pattern (hf-EEG
RMS) (Telenczuk et al., 2011).
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Figure 6: A leaky integrate-and-fire (LIF) model produces variable spike patterns. (A) Sample
traces of the membrane potential Vm(t) of a leaky integrate-and-fire model (see Methods for de-
tails) for three repetitions of the simulation. The ticks mark the threshold crossings, which lead
to spike emission (color matched to the color of Vm trace). (B) Post-stimulus time histogram
(firing rate) of spike trains obtained from 500 repetitions of the simulation. Vertical dashed lines
delineate the events used for spike pattern analysis in (D). (C) Spike raster from all repetitions
of the simulation. The “stim” arrow denotes the onset of the simulated thalamic inputs. (D)
Distribution of spike patterns obtained in the simulation of a LIF neuron (inset: PSTH). (E)
Distribution od spike patterns and PSTH (inset) for a model with modified parameters. In-
creasing the pre-synaptic firing rates of intracortical connections leads to higher coincidence of
101 and 011 patterns. In panels (A)-(D) the following parameters were used: wexc=0.0072 µS,
τexc=0.9 ms, fexc=10 Hz, winh=0.02252 µS, wTh=0.035 µS, nTh=28, fTh=700 Hz, U=0.65. In
panel (E) four parameters were modified from this baseline: fexc=30 Hz, wTh=0.05µS, fTh=300
Hz, U=0.7. All definitions and values of the remaining parameters are listed in Table 1.
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Parameter Symbol Units Value References

LIF neuron:

– membrane capacitance Cm nF 0.5 (Johnston & Wu, 1995)
– leak conductance gL µS 0.025 (Johnston & Wu, 1995)
– rest potential Vrest mV -70 (Johnston & Wu, 1995)
– spike threshold Vthr mV -40 (Johnston & Wu, 1995)
– reset potential Vreset mV -70 (Johnston & Wu, 1995)

Cortical excitatory inputs:

– synaptic weight wexc µS 0.0072 (*)
– synaptic time constant τexc ms 0.9 (*) (Stern et al., 1992)
– synaptic reversal potential Eexc mV 0 (Johnston & Wu, 1995)
– number of connections nexc – 200 (Douglas & Martin, 2007)
– firing rate fexc Hz 10 (*)

Cortical inhibitory inputs:

– synaptic weight winh µS 0.022 (*)
– synaptic time constant τinh ms 4 (Johnston & Wu, 1995)
– synaptic reversal potential Einh mV -70 (Johnston & Wu, 1995)
– number of connections ninh – nexc (Douglas & Martin, 2007)
– firing rate finh Hz fexc

Thalamocortical inputs:

– synaptic weight wTh µS 0.035 (*)
– time constant τTh ms τexc
– reversal potential ETh mV Eexc

– number of connections nTh – 28 (*) (Douglas & Martin, 2007)
– firing rate fTh Hz 700 (*) (Hanajima et al., 2004)
– use of synaptic resources U – 0.6− 0.9 (*) (Gil et al., 1997, 1999)
– decay of synaptic conductance τ1 ms τexc
– recovery time τrec ms 700 (Gil et al., 1997)

Table 1: List of parameters used in the leaky integrate-and-fire model. “Value” column indicates
typical parameter values or ranges found in the literature (where available). (*) denotes the
parameters which were adjusted to fit the experimental data.
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