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Abstract1

Neurons in the primary somatosensory cortex (S1) respond to peripheral stimulation with syn-2

chronised bursts of spikes, which lock to the macroscopic 600 Hz EEG waves. The mechanism of3

burst generation and synchronisation in S1 is not yet understood. Using models of single-neuron4

responses fitted to unit recordings from macaque monkeys, we show that these synchronised5

bursts are the consequence of correlated synaptic inputs combined with a refractory mechanism.6

In the presence of noise these models reproduce also the observed trial-to-trial response variabil-7

ity, where individual bursts represent one of many stereotypical temporal spike patterns. When8

additional slower and global excitability fluctuations are introduced the single-neuron spike pat-9

terns are correlated with the population activity, as demonstrated in experimental data. The10

underlying biophysical mechanism of S1 responses involves thalamic inputs arriving through11

depressing synapses to cortical neurons in a high-conductance state. Our findings show that12

a simple feedforward processing of peripheral inputs could give rise to neuronal responses with13

non-trivial temporal and population statistics. We conclude that neural systems could use refrac-14

toriness to encode variable cortical states into stereotypical short-term spike patterns amenable15

to processing at neuronal time scales (tens of milliseconds).16

Significance statement17

Neurons in the hand area of the primary somatosensory cortex respond to repeated presentation18

of the same stimulus with variable sequences of spikes, which can be grouped into distinct19

temporal spike patterns. In a simplified model, we show that such spike patterns are product20
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of synaptic inputs and intrinsic neural properties. This model can reproduce both single-neuron21

and population responses only when a private variability in each neuron is combined with a22

multiplicative gain shared over whole population, which fluctuates over trials and might represent23

the dynamical state of the early stages of sensory processing. This phenomenon exemplifies24

a general mechanism of transforming the ensemble cortical states into precise temporal spike25

patterns at the level of single neurons.26

1 Introduction27

Neurons usually generate highly variable responses to repeated presentations of the same stim-28

ulus. This variability might originate from thermal noise in ion channels (Chow & White, 1996;29

Schneidman et al., 1998), recurrent activity in the network (Destexhe et al., 2003; van Vreeswijk30

& Sompolinsky, 1996) or modulation of neuronal excitability (Destexhe et al., 2001; Fontanini31

& Katz, 2008; Faisal et al., 2008). Over recent years many results have shown that a signif-32

icant fraction of this variability is shared across large populations of neurons. These shared33

fluctuations were attributed to the variations of incoming stimuli and modulation of excitability34

(Brody, 1999; Shadlen & Newsome, 1998; Goris et al., 2014; Ecker et al., 2014). However, most of35

these studies focused on spike-rate variations over long time scales, neglecting millisecond-range36

spike timing differences. Such short time scales might be especially important for neurons that37

fire brief bursts of spikes at a frequency reaching several hundred spikes per second separated38

by much longer intervals of silences (Evarts, 1964; Llinás & Jahnsen, 1982; Krahe & Gabbiani,39

2004). Since the transitions between bursting and tonic firing characterised by longer interspike40

intervals are dynamically controlled (Swadlow & Gusev, 2001) both time scales might be relevant41

for neuronal processing.42

Neurons in somatosensory cortices can encode their sensory inputs in the precise lengths (< 1043

ms) of interspike intervals (Estebanez et al., 2012; Panzeri et al., 2001; Witham & Baker, 2015),44

which suggests that high firing precision is important for the reliability of stimulus encoding.45

In the primary somatosensory cortex (S1) of macaque, single neurons respond to peripheral46

stimulation with barrages of spikes elicited at sub-millisecond precision (Baker et al., 2003).47

However, when presented repetitively, the same stimulus produces variable responses in terms48

of the number of elicited spikes and the lengths of interspike intervals, which might limit the49

amount of information they can carry. It is, however, possible that such trial-to-trial variability50

represents an alternation between several classes of reliable responses, called spike patterns51

(Toups et al., 2012). Such spike patterns have been indeed observed in S1 (Telenczuk et al.,52
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2011), but neither the mechanism of their generation nor their functional significance has been53

identified.54

Here, we propose a mechanism that explains the precise patterns of single-neuron responses55

as an interplay between synaptic inputs and intrinsic refractory properties of the neuron (Berry56

& Meister, 1998; Czanner et al., 2015). To test this hypothesis, we develop simple models57

capturing the two processes, and we are able to fit the parameters of the models to extracellular58

recordings of single-unit activity in the somatosensory cortex.59

2 Methods60

2.1 Experimental methods61

Neuronal responses were evoked in the hand representation of the primary somatosensory cortex62

of two awake Maccaca mulatta monkeys by electrical median nerve stimulation at the wrist63

(pulse width: 0.2 ms; repetition rate: 3 Hz; intensity: 150% motor threshold); see also Figure64

1A. Single-unit activity was recorded extracellularly using a 16-channel Eckhorn drive [Thomas65

Recording GmbH; Giessen, Germany; Eckhorn & Thomas (1993)]. Each of the platinum/glass66

electrodes (electrode impedance: 1 MΩ) was advanced into cortex (area 3b) until well-isolated67

neurons were found with one of the electrodes. The receptive fields of the neurons were tested68

by means of manual tapping using a stylus.69

In addition, we recorded epidural EEG signals with two electrodes placed in the vicinity of70

the micro-electrode array. The signals were then high-pass filtered (>400 Hz) to obtain the71

high-frequency EEG (hf-EEG).72

All experimental procedures were performed according to Home Office UK (Scientific Proce-73

dures) Act 1986 regulations and institutional ethical guidelines.74

2.2 Spike sorting75

From the extracellular recording we obtained spike waveforms that were first band-pass filtered76

(1 kHz – 10 kHz) and then sampled with a frequency of 20 kHz. Action potentials of neurons sur-77

rounding the microelectrode were detected in the extracellular recordings by means of amplitude78

thresholding; the threshold was chosen manually to detect spikes whose amplitude was signifi-79

cantly above noise level. The wave shapes of the detected action potentials were parametrised80

by their amplitude, width and projection coefficients on two main principal components. The81

spike timings of single units were determined based on these shape features using a manual clus-82

ter cutting method that allowed for identification of clusters of arbitrary shapes (Lewicki, 1998;83
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Hazan et al., 2006). To ensure correct clustering the procedure was performed by two operators84

and then checked for consistency.85

In order to validate the spike discrimination, we checked the extracellular action potentials86

generated by a putative single neuron for the consistency of the wave shape and amplitude.87

Additionally, we searched for interspike intervals (ISIs) shorter than 1 ms; if such short intervals88

were found the clustering procedure was repeated. Spike trains with evidence of poor spike89

sorting (inconsistent wave shapes or ISIs < 1 ms) were excluded from subsequent analyses.90

2.3 Spike pattern classification91

From 46 neurons identified in the two monkeys we selected 17 neurons that responded with92

bursts of spikes. Bursting neurons were defined by responses with more than one spike for at93

least 4% of stimuli and a mode of the interspike interval histogram shorter than 1.8 ms (Baker94

et al., 2003).95

Among these 17 neurons we identified neurons that also fired spontaneous bursts by counting96

the number of interspike intervals in the post-stimulus period (> 30 ms after the stimulus) that97

were shorter than 1.8 ms. In this time window the initial response dies out and baseline firing98

rate is re-established. Neurons that fired at least 10% of bursts in this window were labelled as99

spontaneous bursters.100

In each neuron we summed spikes over all trials, and we identified prominent peaks in the101

obtained peri-stimulus time histograms (PSTH; bin width 0.2 ms, Figure 3A). As the within-102

burst spike composition varied from trial to trial, each trial was described with a binary string103

whose entries (one or zero) represented the occurrence or non-occurrence of a spike in a sequence104

of bins bracketing the major peaks of the overall PSTH: the borders between the bins were105

placed manually in the troughs of the PSTH (Figure 3A, B: vertical lines). Each binary string106

corresponded to one spike pattern; the length of the string equalled the total number of peaks107

in the PSTH.108

In addition, we averaged the concomitant hf-EEG responses over trials concurring to each of109

the identified spike patterns of a single neuron.110

2.4 Spike-train probability model111

To reproduce the distribution of emitted spikes in a single neuron, we chose a minimal model112

(spike-train probability model, STPM) that could replicate the observed high variability in the113

cortical responses (Softky & Koch, 1993; Destexhe et al., 2001) and manifest refractoriness114

(decreased probability of spiking for some time after producing a spike).115
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We assumed that a spike emission is a random point process with the probability116

p (spike in interval [t, t+ dt]|{ti}) = λ(t|{ti})dt, (1)

where {ti} denotes the spiking history earlier than time t, and λ(t|{ti}) is the conditional inten-117

sity.118

The conditional intensity λ(t|{ti}) is assumed to have a Markov property, i.e., it is conditioned119

only on the time tlast of occurrence of the last spike at time: λ(t|{ti}) = λ(t, tlast). A further120

assumption is that the firing-rate modulation and refractory effects are multiplicative, thus121

reflecting the reduction of spike probability due to, for example, inactivation of sodium channels122

or hyperpolarisation caused by opening of potassium channels (Berry & Meister, 1998):123

λ(t|tlast) = q(t)w(∆t), (2)

where q(t) is the intensity function, w(∆t) is the recovery function, and ∆t = t− tlast is the time124

interval since the last spike.125

The parameters of the model, the intensity function q(t) and the recovery function w(∆t),126

are defined on a per-bin basis, and they are fitted to experimental data by means of a maximum127

likelihood approach. To capture fine temporal details of the neuronal responses (for example,128

response onset and interspike intervals) the intensity and recovery functions were defined with129

a short sampling interval (0.05 ms). The log-likelihood function L(q;w|{ti}) is obtained by log-130

transforming the probability function of an inhomogeneous Poisson process with the conditional131

intensity (2) (Dayan & Abbott, 2001; Johnson & Swami, 1983):132

L(q;w|{ti}) = −
∫ T

0

q(t)w(t− tlast)dt+
∑
i

ln[q(ti)w(ti − tlast)]. (3)

where T is the duration of response (T = 30 ms), i is the spike index, and ti denotes the times133

of occurrence of recorded spikes. The likelihood L of obtaining the experimental spike train ti is134

maximised with respect to the parameters q(t) and w(∆t) by means of an iterative expectation-135

maximization (EM) algorithm, which guarantees that the global maximum is reached (Miller,136

1985). In addition, we ensure that after 5 ms the model neuron recovers from refractoriness by137

setting the recovery function to unity for long intervals, i.e., we require w(∆t > 5 ms) = 1 (for138

example, see Figure 2A).139

To study the effects of refractoriness on the modelled responses, we compared the results to140

the STPM without refractory period (non-refractory STPM, w(∆t) = 1 for all ∆t > 0). The141
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model is fully characterised by its intensity function q(t), which can be estimated directly from142

the experimental PSTH (bin width set to 0.05 ms to allow for sufficient temporal precision).143

2.5 Generalised linear model144

One limitation of the STPM is that the history effects are restricted to the last spike only. To145

evaluate effects evoked beyond the last spike, we considered the generalised linear model (GLM;146

Truccolo et al. (2005); Czanner et al. (2015)) with conditional intensity λGLM(t|{ti}) of the form147

λGLM(t|{ti}) = exp

(
s(t) +

∑
i

h(t− ti)

)
(4)

where s(t) is the driving force and h(τ) is the spike history kernel.148

Note that the intensity function q(t) of the STPM can be identified with exp(s(t)), and the149

recovery function w(∆t) corresponds to exp (
∑

i h(t− ti)). In contrast to the STPM, in the150

GLM the effects of the previous spikes can extend infinitely back in time. In practice, we reduce151

the number of free parameters of the GLM by restricting the history horizon above which the152

spikes can not contribute to the responses any more; we thus set h(t > tmax) = 1. The horizon153

tmax = 8 ms was selected to maximise the Akaike Information Criterion (AIC), which balances154

the goodness of fit with the number of free parameters of the model (for example, see Figure155

2C).156

The likelihood of the GLM is defined analogously to the spike-train probability model:157

L(s;h|{ti}) = −
∫ T

0

λGLM(tj |{ti < t})dt+
∑
j

lnλGLM(tj |{ti < t}) (5)

= −
∫ T

0

exp

(
s(t) +

∑
i

h(t− ti)

)
dt+

∑
j

(
s(tj) +

∑
i

h(tj − ti)

)
(6)

where the sums go over all spikes.158

Since the log-likelihood function is a convex function of the parameters, they can be found159

using standard optimization techniques. In the results presented here we used the conjugate160

gradient optimization.161

We compared the goodness-of-fit of the STPM and the GLM using the time-wrapping method162

(Brown et al., 2002): The inter-spike intervals in the experimental data were rescaled to account163

for temporal variations in firing probability. If the model perfectly reproduced the data the164

distribution of the rescaled inter-spike intervals would be uniform (the diagonal in Figure 2E).165
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2.6 Model validation166

To validate the model, the dataset was divided into two non-overlapping subsets of equal size: a167

training and a validation set. The trials for each set were selected randomly from all stimulation168

repetitions. The parameters of the model were fitted to the training set. Based on these pa-169

rameters 1000 spike trains were simulated. The goodness-of-fit was evaluated separately for two170

statistics X, that is, the PSTH (with bin size 0.2 ms) and the spike pattern distribution. For171

each of the two statistics, the model error was evaluated as the normalised differences between172

the simulated Xmodel and validations spike trains Xvalidate (cf. Rauch et al., 2003):173

Err(Xmodel,Xvalidate) =
N∑
i=1

(
Xmodel

i −Xvalidate
i

)2
Xvalidate

i

, (7)

where X = XN
i=1 is either the PSTH or the spike pattern distribution of model (Xmodel) or174

validation (Xvalidate) set; N is the size of the vector and equals the number of bins (N = 70 for175

T=14 ms and 0.2-ms bins) or the number of identified spike patterns (N ≤ 16 for binary words176

of length less or equal to 4).177

The model error Err(Xmodel,Xvalidate) was compared against the error between the training178

and validation sets Err(Xtrain,Xvalidate) (reference error). The significance of the difference179

between the model and reference errors was quantified by means of the F-test with (N−1, N−1)180

degrees of freedom (Barlow, 1989) where181

F = Err(Xmodel,Xvalidate)/Err(Xtrain,Xvalidate). (8)

2.7 Serial correlations182

From the responses of single neurons we identified spike triplets defined as three consecutive183

spikes separated by intervals shorter than 4 ms. In this analysis, to increase the number of184

intervals, we broadened the analysis window to 50 ms after the stimulus. Next, we calculated185

Pearson’s correlation between the interspike intervals (ISIs) of the first and the second spike186

and the second and the third spike in the triplet (rdata). We compared the estimated rdata to187

the correlation coefficient calculated from surrogate data (rmodel) for the same number of trials,188

which were generated by the STPM model with parameters fitted to the experimental spike189

trains. The significance of the differences between correlation coefficients found in simulated190

and experimental ISIs was evaluated by means of a bootstrap test. To this end, 1000 estimates191

of rmodel were obtained from independently simulated datasets, and the resulting coefficients192

were compared to rdata. The p value was taken as the smaller of two values multiplied by 2:193
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1) the fraction of bootstrap trials for which rmodel was greater than rdata or 2) the fraction of194

bootstrap trails for which rmodel was smaller than rdata (two-sided bootstrap test).195

2.8 Population model196

To model the relation between spike patterns of a single neuron and the response of the popu-197

lation, we extended the STPM to a population of uncoupled neurons receiving common inputs.198

The population response was calculated from a simulated ensemble of 5000 identical neurons.199

The parameters of the STPM were fitted to the responses of the analyzed neuron, and these200

parameters were shared by all 5000 model neurons. In each trial j the intensity function of201

all neurons was modulated by a multiplicative gain factor Gj that was drawn from a uniform202

distribution on the interval [1 − γ, 1 + γ], where 0 ≤ γ ≤ 1 is the strength of modulation. The203

intensity function in trial j was then qj(t) = Gjq(t). From the obtained single-trial single-neuron204

responses the total population response was calculated by summing the binned spike responses205

of all neurons (bin size 0.2 ms) and subsequent band-pass filtering (400 – 1200 Hz) corresponding206

to the analysis of EEG data.207

Next, we randomly selected a single neuron from the population and used its spikes for208

further analysis. We classified the spike patterns of this neuron in single trials based on the209

occurrence/omission of spikes in a discrete sequence of spiking “windows”. The band-pass filtered210

population response was then averaged over trials with respect to the type of concomitant spike211

pattern. This procedure, when applied to the model, reproduced the analysis that was applied to212

the experimental data and described above (see “Spike pattern classification”). The root mean213

square (RMS) amplitude of the pattern-specific average was compared with the experimentally-214

obtained hf-EEG related to the same spike pattern (Telenczuk et al., 2011). The similarity of the215

values across different spike patterns was quantified by means of Pearson’s correlation coefficient.216

2.9 Biophysical model217

In order to understand the mechanisms of burst generation, we developed a simplified single-218

neuron model. The model consists of a linear neuron with a spiking threshold (leaky integrate-219

and-fire), which receives conductance-based inputs through depressing synapses (short-term220

synaptic depression). The membrane potential in the model follows the standard membrane221

equation:222

Cm
dV

dt
= −gL(V − Vrest)− Isyn (9)
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where Cm is the membrane capacitance, gL is the leak conductance, Vrest is the resting po-223

tential, and Isyn are the synaptic currents. When the membrane potential reaches the threshold224

Vthr a spike is generated and the potential is reset to Vreset putting the cell into a hyperpolarised225

state. The synaptic currents Isyn are conductance-based inputs from ninh inhibitory and nexc226

excitatory neurons. The times of synaptic inputs are drawn from a homogeneous Poisson process227

with equal rates for excitatory and inhibitory inputs fexc = finh. Each spike results in a transient228

increase of the synaptic conductance with an exponential time course:229

g(t− tsp) = w exp

(
t− tsp
τ

)
(10)

for t ≥ tsp and 0 otherwise. Here tsp is the time of the spike, w is the synaptic weight and τ is230

the synaptic time constant. The reversal potentials for excitation and inhibition are Eexc and231

Iinh, respectively.232

In addition to the intracortical inputs, the neuron receives excitation from nTh thalamo-233

cortical excitatory neurons. The thalamocortical neurons are silent in absence of peripheral234

stimulation and generate Poisson-distributed spikes 7.68 ms after the onset of the median nerve235

stimulus (the delay takes account of the propagation delays from periphery to the cortex). The236

strength of thalamocortical excitatory synapses providing the feedforward inputs to the model237

decays with the pre-synaptic activity following the short-term synaptic depression mechanism238

(Tsodyks & Markram, 1997) with parameters U = 0.65 and τrec = 700 ms.239

Eight parameters of the model were adjusted to reproduce the experimental PSTH: weights of240

excitatory (wexc), inhibitory (winh) and thalamocortical (wTh) synaptic inputs, excitatory synap-241

tic time constant (τexc), firing rates of cortical (fexc) and thalamocortical (fTh) pre-synaptic242

neurons, number of thalamocortical synapses (nTh), and use of synaptic resources by thalamo-243

cortical synapse release (U). Other parameters were fixed to values found in the literature. The244

values of other parameters are given in Table 1.245

3 Results246

Neurons in area 3b of macaque monkeys show brief (< 10 ms) bursts of activity in response to247

stereotypical electrical stimulation of the median nerve (0.2 ms pulse, 1.5 time motor threshold248

applied transcutaneously to the median nerve); see also Figure 1A. In a dataset of 46 neu-249

rons recorded extracellularly using movable platinum-glass electrodes (Eckhorn drive, Thomas250

Recordings) we found 17 neurons that responded with burst of spikes (defined as trains of two251

or more spikes with interspike intervals shorter than 1.8 ms). When averaged over several rep-252
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etitions of the stimulation the responses gave rise to a post-stimulus time histogram (PSTH)253

with prominent peaks coincident with the within-burst spikes (Figure 1B). The appearance of254

such PSTH peaks points to the precision of the burst timing with respect to the onset of the255

stimulus.256

Some of these bursting neurons also elicited spikes in absence of median nerve stimulations257

(5 neurons fired at least 10% of bursts in the window [30, 300] ms after the stimulus). The258

evoked and spontaneous bursts differed slightly with respect to mode of the within-burst interval259

distribution [evoked: 1.82 (1.71) ms; spontaneous: 1.32 (0.41) ms, mean (standard deviation)260

across neurons] and burst length [evoked: 2.76 (1.26) spikes per burst; spontaneous: 2.18 (0.39)261

spikes per burst], but these differences were not statistically significant (t-test, p > 0.01).262

To understand the mechanisms underlying bursting of neurons in the primary somatosensory263

cortex, we propose a phenomenological model of the single-neuron response to the median nerve264

stimulation. The model is based on two experimental observations: 1) Upon presentation of265

strong sensory stimuli, layer IV cortical neurons are bombarded with intense and coincident266

synaptic inputs from thalamocortical neurons (Bruno & Sakmann, 2006; Hanajima et al., 2004;267

Swadlow & Gusev, 2001; Gil et al., 1999; Cruikshank et al., 2007). 2) After emitting a spike,268

neurons are refractory, which limits their maximum firing rate (Berry & Meister, 1998; Gray,269

1967; Kara et al., 2000). In order to illustrate the effects of these two phenomena on neuronal270

responses, we simulated a probabilistic model (the spike-train probability model, STPM, see271

Methods) with an exponentially decaying intensity function and an absolute refractory period272

τref = 1.2 ms (Figure 1C). The PSTH of the simulated spike responses qualitatively reproduces273

main features of the PSTH obtained from experimental data. Specifically, the absolute refractory274

period leads to an appearance of multiple peaks in the PSTH (three peaks visible in Figure 1C:275

at 6 ms, 7.8 ms, and 9.5 ms after the stimulus) that are typical for cortical burst responses276

triggered by peripheral nerve stimulation (compare Figure 1C, left with Figure 1B, bottom).277

Moreover, in agreement with experimental findings, the first peak of the PSTH is the narrowest278

and tallest (half-amplitude width: 0.75 ms; peak-to-trough amplitude: 1773 spikes/s in Figure279

1C), reflecting the precise spike timing that is induced by the high amplitude of the intensity280

function at the response onset. The subsequent decay of the intensity function leads to a gradual281

widening of the peaks and a decrease of their amplitude (second peak: 1.25 ms, 1002 spikes/s;282

third peak: 1.25 ms, 290 spikes/s).283

Refractoriness explains the intra-burst intervals. We demonstrated that the STPM with284

a decaying intensity function and an absolute refractory period can produce a PSTH that agrees285
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qualitatively with the responses of neurons in primary somatosensory cortex of macaques. In286

order to test whether the STPM can also quantitatively reproduce the fine details of neuronal287

responses recorded in vivo, we inferred the intensity and recovery functions directly from the288

data. The two functions were defined on per-bin basis and were treated as the free parameters289

of the model. These parameters were then fitted to the experimental spike trains using a convex290

optimisation technique guaranteeing the identification of the most optimal model (see Methods,291

Figure 2A).292

The fitted intensity function peaks shortly after the stimulus onset (< 10 ms) and decays back293

to baseline when the burst is terminated (Figure 2A, left). The intensity function still contains294

three distinct peaks, but they are less prominent compared to the peaks in the PSTH (Figure 1B).295

This smoothing can be attributed to the decoupling of synaptic inputs, which are represented296

by the intensity function, from the refractoriness, which is represented by the recovery function297

(Figure 2A, right). Although the maximum of the intensity function is much above the rate at298

which individual neurons can fire spikes, the refractoriness limits the firing rate of the model299

neuron. In agreement with the properties of biological neurons, the fitted recovery function300

is equal to 0 for the first 1 ms after emitting a spike (absolute refractory period), but after a301

few milliseconds fully recovers from the refractoriness returning to the rest state (w(t) ≈ 1).302

Interestingly, immediately after the absolute refractory period the recovery function over-shoots303

for about 1 ms, largely exceeding the rest value. The fast (� 1 ms) fluctuations following304

this over-shoot represent statistical noise due to the finite size of the data set. Altogether, the305

parameters of the STPM disentangle the synaptic inputs from the refractory effects.306

The STPM provides a parsimonious description of bursting in S1 cortex. The sim-307

ulated peri-stimulus time histogram (Figure 2B, red line) matches closely the one obtained from308

the experimental data (Figure 2B, dark blue line). In order to demonstrate that this good match309

is not a result of an over-fitting, we performed cross-validation. First, the data set was divided310

randomly into two subsets: training data and validation data. The model was fitted only to311

the first subset, and then the results of the simulation were validated on the second (Figure 2B,312

light blue line). We found that the difference of the fitted PSTH from the validation set was of313

the same magnitude as the variation within the dataset (see Methods, F-test, p > 0.01). This314

test indicated that the model optimally captured the features of both training and validation315

set without considerable over-fitting.316

The parameters of the model were fitted to each of the 17 neurons yielding similar results.317

Importantly, an application of the cross-validation procedure revealed that in 12 out of the318
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17 neurons the PSTH simulated with the model was not significantly different from the PSTH319

calculated from the recorded spike trains (F = 0.65−1.59, p > 0.01). In the remaining 5 neurons320

the modelled PSTH deviated significantly from the validation PSTH (F = 2.33− 4.88, p < 0.01,321

F-test). This sub-population of neurons may have differing firing properties that would need322

more sophisticated models (implementing, for example, bursting mechanisms; see Discussion).323

To further analyse the cases in which the simulated spike trains differed from the data,324

we subtracted the model PSTH from the validation data PSTH (Figure 2B, bottom). The325

resulting residuals still contained fluctuations aligned to the peaks of the PSTH. This indicated326

that the model does not fully capture the shape of the PSTH. Indeed, the correlation coefficient327

between the residuals and the PSTH of the validation set was significantly positive (bootstrapped328

95% confidence intervals, Figure 2D) meaning that the residuals contain some remnants of the329

averaged neuron response. Altogether, these results show that the STPM model is sufficient for330

describing trial-averaged responses in the majority of recorded neurons.331

Poisson-like variability explains the occurrence of temporal spike patterns in re-332

peated trials. Having shown that the interplay between the intensity and recovery functions333

of the STPM can account for a large part of the trial-averaged response of a single neuron, we334

tested whether the model can also explain the trial-to-trial variability of the spiking of cortical335

neurons.336

In order to quantify the trial-to-trial variability of neuronal responses, we sorted single-trial337

spike trains according to the occurrence of spikes in pre-defined temporal windows (Figure 3A-338

C). Each spike train was assigned a binary word based on occupancy of preferred firing windows339

that were aligned to the peaks of the PSTH. We call such a string of spikes and silences a340

spike pattern. We found that the distribution of spike patterns in the experimental data was341

similar to the distribution obtained from the STPM (Figure 3D). In contrast, when the recovery342

function was constrained to 1 for all bins and the intensity function estimated from the data343

(non-refractory STPM) some spike patterns appeared at frequencies much different from the344

experimental data (for example, spike patterns 010, 110, 001 and 111 in Figure 3D), despite345

the fact that the overall PSTHs were almost identical (Figure 3D, inset). The differences of346

spike pattern frequencies can thus be understood as the effect of refractoriness; without it the347

probabilities of firing in each window are independent of the occurrence of spikes in the previous348

windows, in which case the frequency of a spike pattern can be directly predicted from the349

trial-averaged response (PSTH).350

To quantify the similarity between the experimental and modelled spike patterns, we used351
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a cross-validated chi-square statistics (see equation (7) in the Methods). In 12 of 17 examined352

neurons the spike-pattern distribution of the STPM was similar to the experimental distribution,353

and for 5 cells they were significantly different (F-test, p < 0.01); in 2 of these 5 neurons the354

PSTH was not accurately predicted by the STPM precluding the possibility of predicting the355

trial-to-trial variations. In the remaining 3 neurons there were substantial differences in the356

frequency of selected spike patterns, which might reflect the mis-estimation of the recovery357

function. Overall, these results show that in most neurons the STPM with time-dependent358

inputs and refractoriness can account not only for the trial-averaged but also the trial-to-trial359

variability of responses to somatosensory stimulation.360

Within-burst intervals manifest significant correlations. Next, we investigated whether361

the correlations between consecutive interspike intervals (serial correlations) may play a role362

in the generation of spike patterns. The STPM predicts that the response should be fully363

determined by the current input and the interval since the last spike. However, the calculation364

of the serial correlations in the experimental data obtained from S1 showed that two consecutive365

interspike intervals are not independent (Figure 3E). Since significant serial correlations might be366

induced by the firing-rate variations alone, we compared the experimental serial correlations with367

the ones obtained with the STPM, which does not assume any correlations between interspike368

intervals. In the example shown in Figure 3E the serial correlations are indeed accounted for369

by the STPM model meaning that the spiking history prior to the last spike does not affect the370

response.371

In 12 out of 17 neurons the experimental and model serial correlations were not significantly372

different (two-sided bootstrap test, p > 0.01, Figure 3F) confirming that for most neurons the373

spiking memory did not extend over the last spike. In 3 neurons the coefficient could not374

be determined because of a low number of triplets identified in responses. In 2 neurons the375

correlation coefficients were larger in the data than in the fitted STPM model (bootstrap test,376

p < 0.01).377

We also compared the STPM with a generalised linear model (GLM, Figure 2C), which can378

account for spiking history extending over the last spike. The GLM showed a similar power in379

explaining both the average PSTH compared to the STPM (t-test, p < 0.01, Figure 2D, right380

box). However, it allowed for using larger bins without significant loss of goodness-of-fit (Figure381

2E, F). Finally, the introduction of spike history effects extending over multiple preceding spikes382

did not explain the significant serial correlations in every neuron. The GLM could account383

for the measured serial correlations in 13 out of 17 neurons. Overall, these results show that384
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refractoriness is sufficient to explain the statistics in the within burst intervals obtained in most385

recorded neurons.386

Trial-to-trial input variations induce significant serial correlations The significant se-387

rial correlations found in two neurons could result from variability of the inputs that they receive.388

Although the peripheral stimulation of the median nerve used to evoke the somatosensory re-389

sponses was well controlled over the duration of the recording, it is possible that the effective390

input to the cortex was modulated at the early stages of somatosensory pathway (cuneate nu-391

cleus, thalamus) and by on-going activity in the cortex. On the other hand, the STPM was392

fitted under the assumption that the inputs and model parameters do no change in time, i.e.,393

that they are stationary.394

To test the effects of trial-to-trial variability on the estimated STPM parameters and the serial395

correlations, we simulated spike trains from the STPM with a step-like recovery function and an396

exponentially decaying intensity function (Figure 4B and C, dashed lines). In addition, in each397

trial we modulated the amplitude of the intensity function by a multiplicative gain, G, which was398

randomly drawn from uniform distribution on the interval [0.2, 1.8] (Figure 4A). Next, we fitted399

the simulated surrogate data with an STPM assuming that the intensity function was fixed and400

that the trial-to-trial variability resulted solely from the probabilistic nature of the model. The401

fitted intensity function (Figure 4B, red line) reflected the rapid onset and slower decay of the402

input after the stimulus, but its trace deviated from the “ground-truth” intensity function used403

in the simulation (compare the solid red and dashed gray curves in Figure 4B). Importantly, the404

intensity function contained small ripples akin to the ones visible in the intensity function fitted405

to experimental data (Figure 2A, left). Similarly, the fitted recovery function did not capture406

the step-like transition from refractoriness to baseline, but it manifested a prominent overshoot407

following the absolute refractory period and slower decay to baseline (Figure 4C); such time-408

dependence was reminiscent of the shape of recovery function estimated from the data (Figure409

2A, right).410

We also studied the effects of the gain modulation on the GLM. The intensity function411

estimated with this model still contained fluctuations absent in the function used for simulation,412

but their amplitude was reduced compared to the STPM. A greater improvement was observed413

in the GLM estimate of the recovery function, which approximated well the real function without414

a visible overshoot. Overall, both STPM and GLM mis-estimated some model parameters in415

presence of trial-to-trial variation, but we found that the GLM was more robust (Figure 4D).416

Finally, we estimated the serial correlation between the interspike intervals in presence of the417
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input modulation. We found that the serial correlation was significantly larger compared to the418

spike trains simulated with the STPM with no trial-to-trial variations (Figure 4E). This result419

shows that positive serial correlations can be obtained when neuronal responses vary from trial420

to trial reflecting changing inputs or excitability of the neuron. Since in our analysis in Figures421

3E and F we compared experimental serial correlations to the ones obtained from the STPM,422

which does not account for the input variability, our estimate of serial correlations could reflect423

input modulation.424

In summary, we show that the trial-to-trial variations of the input can explain several aspects425

of the STPM fitted to experimental data, in particular the ripples in the fitted intensity func-426

tions, overshoot following the refractoriness in the recovery function, and significant correlations427

between consecutive interspike intervals.428

Trial-to-trial input variations induce correlations between single-neuron and popu-429

lation responses. Simultaneous recordings of single-neuron spike patterns and macroscopic430

population signals (high-frequency, > 400 Hz, epidural EEG) have shown that the spike patterns431

are not private to each neuron but that they are coordinated across a population of neurons re-432

sponding to peripheral stimulation (Telenczuk et al., 2011). Such a coordination could possibly433

by achieved with a millisecond range-synchronisation of the neurons, but the mechanisms of such434

a synchronisation are not clear. Alternatively, it could be produced by the shared modulation435

of inputs or excitability. In order to test the latter hypothesis, we applied our probabilistic436

single-neuron model, the STPM, to a population of neurons receiving common gain modulation437

(Figure 5A).438

As before, we assumed that the gain varies from trial to trial due to fluctuations in excitability,439

synaptic strength, or background activity. In order to investigate the effect of the gain factor on440

the population response, we simulated 5000 identical, statistically independent model neurons441

with the parameters estimated from the experimental data. We found that the frequencies of442

individual spike patterns depended on the value of the gain factor: Some patterns (for example443

“100”) occur more frequently at low gain (G=0.8), while others (for example “110”) tend to444

occur more often at high gain (G=1.2, Figure 5B). Concurrently, the amplitude of the binned445

spike trains averaged across neurons (population PSTH) increased with the gain (Figure 5C).446

The concurrent dependence of population PSTH and single-neuron spike pattern distribu-447

tion on the gain factor may also explain the correlation between single-neuron responses and448

macroscopic population activity found in experimental data. Spike patterns that are more fre-449

quent at low gain coincide predominately with a low-amplitude population PSTH whereas spike450
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patterns elicited more frequently at high input gain, on average, coincide more often with a451

high-amplitude population PSTH. Consequently, the amplitude of the population PSTH might452

co-vary with single-neuron spike patterns. In particular, we found that the root-mean-square453

amplitude of the high-pass filtered PSTH (> 400 Hz) depends on the spike pattern used for454

grouping the trials (Figure 5D).455

To test whether gain modulation could explain the experimental results, we simulated the456

STPM model with trial-varying gain factor (see Methods) and compared the spike-pattern-457

specific high-frequency EEG (hf-EEG) amplitude calculated from experimental data with the458

simulated population response. We found that already for a modest level of the gain modulation459

(modulation strength γ=0.2) the root-mean-square amplitudes of the experimental hf-EEG and460

high-pass-filtered population PSTH of the model were strongly correlated (Figure 5E, an example461

for one neuron, Pearson’s r = 0.93).462

We found a positive correlation coefficient in 12 of 16 neurons that produced at least 3463

different patterns. This fraction is significantly above the chance level expected from uncorrelated464

quantities (two-sided binomial test, p<0.05). Thus, we conclude that gain modulation can465

introduce correlations between the single-neuron spike patterns and macroscopic population466

responses.467

Spike patterns emerge as input-driven phenomena in a simplified biophysical model468

of a cortical neuron. The probabilistic models presented so far are abstract, and their pa-469

rameters (intensity and recovery functions) can not be linked directly to biophysical properties470

of a neuron. To interpret the generation of spike patterns mechanistically, we developed a sim-471

plified biophysical model of a cortical neuron based on the leaky integrate-and-fire (LIF) model.472

Although this model does not reproduce faithfully all biological properties of realistic neurons,473

it captures their integration and spike generation properties, which are essential to the responses474

analysed here. We simulated the neuron with two types of synaptic inputs – tonic excitatory475

and inhibitory inputs, and phasic thalamic excitatory inputs representing the barrage of action476

potentials triggered by peripheral stimulation.477

In absence of thalamic inputs the model neuron elicits only few spikes due to spontaneous478

threshold crossings. However, in the model the median nerve stimulation is assumed to activate479

the thalamocortical fibers (28 synapses per cortical neuron), which then fire randomly according480

to a Poisson distribution with the rate of 700 spikes per second. These massive inputs trigger481

excitatory post-synaptic currents bringing the membrane quickly to the threshold. This results in482

a series of spike emissions accompanied by rapid successions of membrane de- and re-polarisations483
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(Figure 6A).484

We calculated the PSTH of the model by summing spike responses of n = 500 repetitions485

of the simulation. In each repetition the intracortical excitatory and inhibitory inputs, as well486

as the thalamocortical inputs, were drawn randomly from the Poisson distribution. In spite of487

this randomness, the model PSTH is composed of discrete peaks well separated by short valleys488

showing that the neuron fired precisely at preferred latencies (Figure 6B).489

The characteristic decay of the response in the somatosensory cortex observed in the ex-490

perimental data (Figure 1B) could be driven by the adaptation of the neuron to the intense491

stimulation either at synaptic (Markram & Tsodyks, 1996) or neuronal level (Benda & Herz,492

2003). Here, we model this process by means of short-term synaptic depression, which reflects493

the depression of thalamocortical synapses due to prolonged activity (Gil et al., 1997). The494

gradual decrease of synaptic drive makes the subsequent peaks smaller, broader, and separated495

by longer intervals (Figure 6B) as observed also in the experimental PSTH (Figure 1B). After496

10 ms of stimulation the thalamocortical synapses deplete, abolishing further discharges.497

In practice, the inputs to somatosensory cortex can also decay after a brief median nerve sim-498

ulation (0.2 ms) applied to the median nerve invalidating our assumption of sustained synaptic499

drive. However, it has been found that the thalamocortical projections can respond with pro-500

longed firing to brief presentation of the stimulus (Swadlow & Gusev, 2001). Interestingly, such501

responses also formed bursts of action potentials. If the axonal delays of multiple thalamocorti-502

cal neurons are matched at the submillisecond level, such bursts could provide oscillatory inputs503

cortical level. The effects of such input patterns on the cortical responses should be investigated504

in the future.505

The responses of the LIF model neuron vary from trial to trial (Figure 6C-D). This variability506

results from random cortical and thalamocortical inputs, which provide Poisson-distributed input507

spikes.508

In summary, the LIF model indicates that bursts in the somatosensory cortex can be driven509

by the input and do not always require intrinsic bursting mechanisms (reviewed by Krahe &510

Gabbiani (2004)). The number of spikes per burst and the within-burst intervals can be mech-511

anistically explained by the integrating properties of single neurons that are equipped with an512

intrinsic adaptation process or driven by synapses that show short-term depression. Strong tha-513

lamic inputs can produce precise population responses at preferred latencies, which can overcome514

the variability. At the single-trial level the variability of the thalamic input is expressed in the515

form of stereotyped spike patterns.516
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4 Discussion517

By means of simplified phenomenological models and a biophysical point-neuron model, we518

showed that within-burst variability of cortical S1 neurons can be decomposed into the private519

variability of each neuron and multiplicative input modulation that is shared by the entire pop-520

ulation. The private variability explains most of the differences between responses elicited in521

single trials and underlies the re-appearance of the same spike patterns over multiple repetitions522

of the stimulus. The shared gain modulation coordinates the responses of many responding neu-523

rons and explains the puzzling co-variability between single-neuron and macroscopic population524

responses demonstrated in experimental recordings (Telenczuk et al., 2011). The models shed525

also light on the mechanism of S1 burst generation, their synchronisation across neurons, and526

suggest that spike patterns may encode time-varying cortical state at fast temporal scales.527

Mechanism of bursting528

By means of a simple phenomenological model, the STPM, we showed that bursting in the529

primary somatosensory cortex results from the combination of intense synaptic bombardment530

and a refractory period. Such fast bursting triggered and sustained by an intense synaptic input531

has been termed “forced bursting” (Izhikevich, 2006).532

The shape of a fitted recovery function in both models agrees well with the contribution of533

an afterhyperpolarisation (AHP) mediated potassium current and an afterdepolarisation (ADP)534

mediated either by persistent (Brumberg et al., 2000; Bal & McCormick, 1996) sodium or low-535

threshold calcium current (Jahnsen & Llinás, 1984): The initial dip, which we interpret as536

refractoriness, might reflect the AHP and the inactivation of sodium channels, whereas the537

subsequent over-shoot might correspond to the ADP. We note, however, that the over-shoot538

might be an artifact due to trial-to-trial variability (Figure 4C). We also demonstrated in a toy539

model that the over-shoot is not critical for bursting responses – the absolute refractory period540

combined with intense but transient inputs is sufficient to produce bursts with similar (but not541

identical) statistics (Figure 1C).542

The STPM could also account for the correlations between interspike intervals (serial cor-543

relations). However, in a few neurons we found serial correlations differing from the ones it544

predicted. Since in these neurons processes occurring at long time scales could shape the spike545

patterns, we fitted them with the GLM, which considers spike-history effects extending to mul-546

tiple interspike intervals. We found that the GLM with a horizon of 8 ms provided an optimal547

fit to these data in agreement with the time scales of short-term synaptic plasticity (Tsodyks &548
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Markram, 1997) and firing-rate adaptation (Benda & Herz, 2003). The latter is often mediated549

by the slow AHP currents providing another link between a biophysical process and the recovery550

function of our phenomenological model.551

The significant serial correlations could be also explained by a model which includes trial-552

to-trial variations of the input intensity (gain modulation). We found that introducing such553

variations in the model results in the over-estimation of the serial correlations estimated from554

the simulated data. In addition, these variations may lead to the over-estimation of the recovery555

function in form of the overshoot appearing briefly after the absolute refractory period. Although556

such an overshoot is also present in the recovery function estimated from the data, we believe557

that it is not an artifact of the estimation method. First, the modulation must be strong558

(γ = 0.8) to produce a visible overshoot, whereas we found that modest modulation (γ = 0.2) is559

consistent with the serial correlation and EEG correlation estimated in the data. Secondly, we560

found that GLM is robust with respect to such modulation introduced in the simulated model,561

but still it uncovers an overshoot in the experimental data. Nevertheless, in the future it would562

be instructive to extend the spike-train models (STPM and GLM) with the fluctuating gain563

factor and fit it directly to the data.564

We were able to reproduce qualitatively both the average and single-trial features of the565

burst responses in a more realistic leaky integrate-and-fire neuron. Although such models are a566

gross simplification of the real neurons both in terms of spiking mechanism and morphological567

features, it has been suggested that the LIF may faithfully reproduce some features of spike568

generation (Brette, 2015). In the model, the within-burst interval was controlled by the time569

required to reach the threshold from the hyperpolarised state (membrane time constant), and the570

gradual decay of the amplitude of PSTH peaks was due to the short-term synaptic depression.571

The latter mechanism can be related to the depletion of the available vesicles in the pre-synaptic572

terminal (Markram & Tsodyks, 1996). However, it would be possible to replace it with some573

other form of adaptation (Brette & Gerstner, 2005). Both mechanisms lead to extinction of the574

initial synaptic drive, which explains the burst-like transient response to the step-like thalamic575

inputs. We note, however, that without recordings from thalamocortical projection neurons we576

can not infer the inputs of the cortical neurons. Our models are still compatible with temporally577

structured inputs.578

The trial-to-trial variability of the model was due to variable arrival times of the thalamic579

inputs, but also due to the intra-cortical inputs. The latter were configured such that the neu-580

ron was in the “high-conductance state” reproducing the property of cortical neurons receiving581

constant bombardment of inhibitory and excitatory inputs (Destexhe et al., 2003). Apart from582
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decreasing the membrane time constant thus allowing for rapid repeated discharges, these intra-583

cortical inputs introduced substantial trial-to-trial variability that could explain the observed584

spike pattern distribution.585

Previous studies have shown that most of the bursting neurons in the S1 macaque cortex are586

characterised by broad spikes, which suggests that they are pyramidal neurons or spiny stellate587

neurons (Baker et al., 2003). This is confirmed by intracellular recordings in barrel cortex588

showing that regular spiking neurons but not intrinsic bursting neurons followed the phase of589

high-frequency oscillations in surface recordings (Jones et al., 2000). Our results are consistent590

with these findings and strengthen the evidence that a subclass of S1 neurons activated by591

median nerve stimulation belongs to the regular spiking neurons. However, a subset of neurons592

analysed here (5 of 17 neurons) did also fire bursts that were not locked to the median nerve593

stimulation showing that at least some of them may belong to the intrinsic bursting class.594

Burst synchronisation595

A striking feature of the S1 bursting is that the signature of the burst also appears in macroscopic596

signals such as the EEG. The visibility of the burst in the surface recordings was interpreted as a597

sign of strong synchronisation between the neurons (Jones et al., 2000), which could be mediated,598

for example, by fast synaptic potentials or gap junctions (Draguhn et al., 1998). By extending599

our model to a population of uncoupled neurons, we demonstrated that the sub-millisecond600

synchronisation between multiple neurons does not require a fast coupling mechanisms, but601

results from shared synaptic inputs arriving through thalamocortical fibers. Provided that the602

biophysical properties of the receiving population and axonal conduction times vary in a narrow603

range, these inputs will elicit synchronous bursts of spikes. The required precision in the arrivals604

of afferent spikes could be achieved by means of a plasticity rule that selects inputs arriving605

synchronously at the cortical synapses (Gerstner et al., 1996).606

Role of spike patterns607

Trial-to-trial variations in S1 responses can be classified into a set of spike patterns defined by the608

occurrences of spikes within 10-ms-long bursts (Telenczuk et al., 2011). Such temporal patterns609

of neuronal responses were first identified in cat striate cortex and crayfish claw (Dayhoff &610

Gerstein, 1983), and later in the temporal cortex of monkeys, cat lateral geniculate nucleus611

(Fellous et al., 2004) and in the rat hippocampus (Diba & Buzsaki, 2007; Schmidt et al., 2009).612

Here, we proposed a model in which the occurrence of spike patterns is regulated by the613

input intensity, that is the rate of incoming spikes; in contrast precise timing of the input was614
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not necessary. The temporal information stored in the spike patterns is complementary to the615

output rate (spike count) in the sense that the spike patterns with identical number of spikes (and616

therefore the same output rate) could still provide extra information concerning its inputs. For617

example, the early (110) doublet is more common for high input intensity; the opposite is true618

for the late (011) doublet (Figure 5B). This mechanism could be especially useful for encoding619

inputs that would normally exceed the maximum firing rate set by the refractory period.620

In one study the stimulus intensity was related to the within-burst intervals of spike responses621

recorded in the dorsal lateral geniculate nucleus (dLGN) (Funke & Kerscher, 2000). Our results622

are consistent with this hypothesis. In the STPM, the within-burst intervals are constrained623

by the refractory period, but their length can also vary as a function of the synaptic drive624

(intensity function). In addition, the length of refractory period may not be fixed but it might625

be modulated by the firing rate. It has been shown that models allowing for this modulation626

may better describe the spike times in response to the time-varying stimulation (Koyama &627

Kass, 2008).628

Short trains of spikes are also well suited to evoke specific synaptic response or trigger synaptic629

plasticity (Lisman, 1997; Song et al., 2000; Swadlow & Gusev, 2001; Tsodyks & Markram, 1997;630

Maass & Zador, 1999), they are optimally placed to represent neuronal variables in a form that631

is easily processed, stored and transmitted (Leibold et al., 2008; Tiesinga et al., 2008). In this632

spike-timing-based view, neural systems take advantage of the temporal information encoded633

into spike patterns to represent slowly-changing cortical states (such as attention or waking).634

Alternatively, spike patterns could also allow for more reliable representation of neuronal inputs635

(Toups et al., 2012). These rate-based and spike-timing-based interpretations of spike patterns636

are not contradictory and could even act as independent communication channels (Tiesinga637

et al., 2008).638

We showed that the distribution of spike patterns over neurons and the amplitude of the639

averaged population signal are regulated by input magnitude, which could reflect gating of640

neuronal signals through attention, expectation, sleep and waking (Fontanini & Katz, 2008; Shu641

et al., 2003; Steriade et al., 2001). Similar gain control mechanisms were implemented in realistic642

neural models through, for example, concurrent modulation of excitation and inhibition (Hô &643

Destexhe, 2000; Chance et al., 2002; Vogels & Abbott, 2009) or short-term synaptic depression644

(Rothman et al., 2009). More generally, multiplicative noise can account for the variability and645

co-variability of neuronal responses in the thalamus and many cortical areas, including the lateral646

geniculate nucleus, V1, V2 and MT (Goris et al., 2014).647

Finally, macroscopic signatures of the bursts were shown to match the somatosensory-evoked648
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potentials in monkey epidural EEG and human scalp EEG, so the high-frequency EEG burst649

might link the non-invasive macroscopic recordings and microscopic neuronal activity (Curio,650

2000). Our modelling shows how the characteristic features of the underlying spike burst, i.e.,651

its frequency and amplitude, can be related to the biophysical properties, such as refractory652

period, whereas the small spike timing differences could be under control of the dynamical653

cortical state.654
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Figure 1: Modelling responses to median nerves stimulation of neurons recorded in primary
somatosensory cortex of macaque monkeys. (A) Sketch of the experimental paradigm. (B)
Raster plot of 60 sample responses of a single neuron (top) and the PSTH calculated from
all 956 trials (bottom, sbt = spikes per bin per trial, bin size 0.2 ms). (C) Simulation of the
spike-train probability model (STPM) with sample parameters: exponentially decaying intensity
function (left, red line) and recovery function implementing an absolute refractory period of
τref = 1.2 ms (right). The simulated PSTH (left, black line) contains characteristic peaks
separated by intervals approximately equal to τref (left, thin vertical black lines). Note the
similarity to the PSTH calculated from spikes of cortical neurons triggered by the median nerve
stimulation (compare with bottom panel of B).
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Figure 2: Models with refractoriness can reproduce the experimental spike trains. (A) Inten-
sity function (left) and recovery (right) functions of the spike-train probability model (STPM)
fitted to experimental data (an example for a single neuron). (B) Comparison of PSTHs of the
training data (top, dark blue line), validation data (light blue line), and model data (red line).
Note the overlap between the lines, which is a sign of the match between the model and both
the training and validation sets. The difference between the model PSTH from the validation
PSTH (model residuals, bottom) is equivalent to the intrinsic variation between the training and
validation set (F = 1.02, p > 0.01, see Methods for definition). (C) Fitted intensity (left) and
recovery functions (right) of the generalised linear model (GLM, bin size 0.25 ms). (D) Correla-
tion coefficients between the residuals (for the STPM shown in the bottom panel in (B)) and the
validation PSTH (for the STPM shown light blue in (B)) calculated for three different models:
the STPM, the STPM without refractoriness (non-refr. STPM) and the GLM. The horizontal
dashed line denotes the correlation coefficient between the difference of PSTH of validation and
training dataset with the training dataset PSTH. (E) The empirical cumulative distribution of
the inter-spike intervals of the experimental spike trains rescaled according to the conditional
intensity function of all three fitted models (time-wrapping test). If the model perfectly repro-
duced the experimental inter-spike intervals the cumulative distribution should line up with the
diagonal. This procedure was repeated for two different bin sizes (0.05 ms, left; and 0.25 ms,
right). (F) The Kolmogorov-Smirnov (K-S) distance of the model (maximum divergence of the
model’s cumulative distribution from diagonal in (E)) decreased with an increasing bin size in
both STPM and GLM. This dependence on bin size was less pronounced for the GLM.

814

29

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 18, 2017. ; https://doi.org/10.1101/098210doi: bioRxiv preprint 

https://doi.org/10.1101/098210
http://creativecommons.org/licenses/by-nd/4.0/


B

A

C

ABC00
0

10
0

01
0

11
0

00
1

10
1

01
1

11
1

patterns

0

5

10

15

20

25

30

35

p
e
rc

e
n
t 

o
f 

tr
ia

ls

Data

STPM

non-refractrory
STPM

D

6 8 10 12 14 16 18 20

time after stimulus (ms)

xyz

000

100

010

110

001

101

011

111

sp
ik

e
 p

a
tt

e
rn

s
0.05 sbt

0 35%

percent of trials

x y z

E F

Figure 3: The STPM explains trial-to-trial variability of the data. (A) Single-neuron responses
averaged over all trials (PSTH, same as in Figure 1B) reveal that spikes occur preferentially at
discrete latencies (delimited by vertical lines and indexed by ‘x’ for the first peak, ‘y’ for the
second peak, and ‘z’ for the third peak). (B) In single trials multiple spikes are elicited in diverse
combinations of preferred latencies resulting in significant trial-to-trial response variability. Spike
combinations are classified into spike patterns: The time axis was first divided into three windows
aligned to the peaks of the PSTH. Each trial was then assigned a binary string (spike pattern
‘xyz’, from ‘000’ to ‘111’), where 1 represents the occurrence and 0 the absence of a spike in
a window. Spike timings of eight representative sample responses assigned to each pattern are
shown as raster plots. (C) Frequency at which the spike patterns occurred over repeated trials
for the neuron in (A). (D) Firing pattern distribution obtained from the data (white bars, same
as C), the STPM (red bars) and the non-refractory STPM (blue bars). The firing rate of the
Poisson model was estimated by a PSTH with bin size 0.05 ms. Inset compares the PSTHs
obtained from each model (color-coded like the bars in main panel). (E) Scatter plot of two
consecutive interspike intervals (ISIs) within spike triplets calculated from the experimental
data (filled circles) and responses simulated with STPM (empty circles). Serial correlations
(Pearson’s correlation coefficient) found in the experimental intervals (rdata) differ only slightly
from the respective correlations predicted by the STPM (rmodel, see values in the legend, solid
and dashed lines represent the best linear fit to the experimental and model data, respectively).
(F) Repeated Monte-Carlo simulations (n = 1000) of the STPM fitted to experimental data
provide the distribution of serial correlations consistent with the STPM (empty bars); the serial
correlations estimated directly from experimental data (vertical arrow, rdata) are likely to be
drawn from the same distribution (two-sided bootstrap test, p = 0.81).
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Figure 4: Input modulation may explain deviations of spike train statistics from the STPM and
GLM. (A) The STPM was extended by including a multiplicative gain factor, which acts on
the input function. The gain factor was randomly selected from a uniform distribution [0.2,
1.8] in each trial. The model was simulated with an exponentially decaying intensity function
(dashed line in (B); maximum amplitude, 4000 spikes/s, time constant, 3 ms) and a step recovery
function (dashed line in (C); refractory period, 1.4 ms). (B) Intensity function of the STPM
(red) and GLM (blue) fitted to the simulated spike trains. The intensity function manifests
deviations from the real intensity function used in the simulation (dashed line; gray-shaded area
corresponds to the amplitude range of intensity function taking into account the gain factor).
(C) Recovery function of the STPM (red) and GLM (blue) fitted to the simulated spike trains.
The STPM-estimated recovery function displays a characteristic overshoot soon after end of the
absolute refractory period (1.4 ms; dashed line – real recovery function underlying the spike
trains). (D) Root-mean-square error of the intensity and recovery functions estimated with
the STPM and GLM. (E) The serial correlation of the model with gain modulation (arrow) is
significantly larger (p < 0.01) than predicted in absence of modulation (bar plot – histogram of
1000 serial correlation coefficient obtained from Monte Carlo simulations of the STPM with the
intensity and recovery functions shown in (B) and (C, red line)).
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Figure 5: Coordination of spike patterns in the population. (A) Simulation of 5000 identical
units described by the STPM (Figure 2C) with gain modulation of the strength γ = 0.2. From
the simulated spike trains of all neurons the population PSTH was calculated and then high-pass
filtered to obtain an estimate of the high-frequency EEG population response. (B) Distributions
of spike patterns of a single neuron in 1000 repetitions of the simulation with a low (0.8, blue) and
a high (1.2, red) gain. (C) The population PSTH before (top panel) and after high-pass filtering
(bottom panel) varies with the gain (blue: 0.8, red: 1.2). (D) Single-neuron spike pattern and
root-mean-square (RMS) amplitude of the high-pass filtered population PSTH are correlated
because both the spike pattern and the PSTH depend on the gain. (E) The simulated population
RMS amplitudes correlate with experimental hf-EEG RMS related to the same pattern (hf-EEG
RMS) (Telenczuk et al., 2011).
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Figure 6: A leaky integrate-and-fire (LIF) model produces variable spike patterns. (A) Sample
traces of the membrane potential Vm(t) of a leaky integrate-and-fire model (see Methods for
details) for three repetitions of the simulation. The ticks mark the threshold crossings, which
lead to spike emission (color matched to the color of Vm trace). (B) Post-stimulus time his-
togram (firing rate) of spike trains obtained from 500 repetitions of the simulation. Vertical
dashed lines delineate the events used for spike pattern analysis in (D). (C) Spike raster from
all repetitions of the simulation. The “stim” arrow denotes the onset of the simulated thalamic
inputs. (D) Distribution of spike patterns obtained in the simulation of a LIF neuron. Adjusted
model parameters: wexc=0.0072 µS, τexc=0.9 ms, fexc=10 Hz, winh=0.02252 µS, wTh=0.035 µS,
nTh=28, fTh=700 Hz, U=0.65. Definitions and values of all parameters are listed in Table 1.
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Parameter Symbol Units Value References

LIF neuron:

– membrane capacitance Cm nF 0.5 (Johnston & Wu, 1995)

– leak conductance gL µS 0.025 (Johnston & Wu, 1995)

– rest potential Vrest mV -70 (Johnston & Wu, 1995)

– spike threshold Vthr mV -40 (Johnston & Wu, 1995)

– reset potential Vreset mV -70 (Johnston & Wu, 1995)

Cortical excitatory inputs:

– synaptic weight wexc µS 0.0072 (*)

– synaptic time constant τexc ms 0.9 (*) (Stern et al., 1992)

– synaptic reversal potential Eexc mV 0 (Johnston & Wu, 1995)

– number of connections nexc – 200 (Douglas & Martin, 2007)

– firing rate fexc Hz 10 (*)

Cortical inhibitory inputs:

– synaptic weight winh µS 0.022 (*)

– synaptic time constant τinh ms 4 (Johnston & Wu, 1995)

– synaptic reversal potential Einh mV -70 (Johnston & Wu, 1995)

– number of connections ninh – nexc (Douglas & Martin, 2007)

– firing rate finh Hz fexc

Thalamocortical inputs:

– synaptic weight wTh µS 0.035 (*)

– time constant τTh ms τexc

– reversal potential ETh mV Eexc

– number of connections nTh – 28 (*) (Douglas & Martin, 2007)

– firing rate fTh Hz 700 (*) (Hanajima et al., 2004)

– use of synaptic resources U – 0.6− 0.9 (*) (Gil et al., 1997, 1999)

– decay of synaptic conductance τ1 ms τexc

– recovery time τrec ms 700 (Gil et al., 1997)

Table 1: List of parameters used in the leaky integrate-and-fire model. “Value” column indicates
typical parameter values or ranges found in the literature (where available). (*) denotes the
parameters which were adjusted to fit the experimental data.

819

34

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 18, 2017. ; https://doi.org/10.1101/098210doi: bioRxiv preprint 

https://doi.org/10.1101/098210
http://creativecommons.org/licenses/by-nd/4.0/

