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Abstract

It has long been recognized that certain bacterial groups exhibit cooperative behavioral

patterns. Bacteria accomplish such communication via exchange of extracellular signaling

molecules called pheromones(autoinducer or quorum sensing molecules). As the bacterial

culture grows, signal molecules are released into extracellular milieu accumulate, changing

water fluidity. Under such threshold conditions swimming bacterial suspensions impose a

coordinated water movement on a length scale of the order 10 to 100 micrometers compared

with a bacterial size of the order of 3 micrometers.Here, we investigate the non-local hy-

drodynamics of the quorum state and pattern formation using forced Burgers equation with

Kwak transformation. Such approach resulted in the conversion of the Burgers equation

paradigm into a reaction-diffusion system. The examination of the dynamics of the quorum

sensing system, both analytically as well as numerically result in similar long-time dynamical

behaviour.

Keywords : non-local hydrodynamics, pattern formation, reaction-diffusion equation, Kwak

transformation, Forced Burger equation, Kinematic viscosity.
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I Introduction

Historically, bacteria have been considered primarily as autonomous unicellular organisms with

limited collective behaviour ability. Presently it has become clear that bacteria are, in fact, highly

interactive[1]. The term quorum sensing[2] has been adopted to describe the bacterial intercom-

munication process which coordinates, among other variables, gene expression. Such event is
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usually, but not always expressed, when the population has reached a high cell density. Quorum

sensing bacteria produce and release chemical signal molecules, reffered to as autoinducers, that

increase in concentration as a function of cell density. The detection of a threshold autoinducer

concentration leads to an alteration in gene expression [3]. These processes include symbiosis,

virulence, competence, conjugation antibiotic production, motility, sporulation, and biofilm for-

mation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers,

while Gram-positive bacteria use processed oligo-peptides to communicate[4]. Once a threshold

concentration of the molecule is achieved, a co-ordinated changes in bacterial behaviour is ini-

tiated. The term quorum sensing does not, however, adequately describe all situations where

bacteria employ diffusible chemical signals [5]. Thus,for example, the size of the quorum is not

fixed, but will vary according to the relative rates of production and loss of signal molecule, i.e

it is dependent on the prevailing local and non-local environmental conditions.

It is also possible for a single bacterial cell to switch from the ”non-quorate” to the ”quorate”

state, as has been observed for Staphylococcus aureus trapped within an endosome in endothe-

lial cells[6]. Moreover, it should be remembered that quorum sensing, as the determinant of

cell population density, is only one of many different environmental signals which bacterial cells

must integrate in order to determine their optimal survival strategy [7, 8]. Thus, the quorum

sensing can be termed as one integral component of the global gene regulatory networks which

are responsible for facilitating bacterial adaptation to the environmental stress.

In the presence of bacteria, the fluidity of the water changes, as bacterial suspensions im-

pose the coordinated water movement on a length scale of the order ( 10- 100) micrometers in

comparison to a bacterial size of the order of 3 micrometers. The aim of this paper is to inves-

tigate quorum states using non-local hydrodynamics[9]. We consider bacterial packing density

in water as a bacterial fluid or living fluid. Given that assumption, fluid behaviour will be quite

different from that of a simple fluid. Thus a framework of non-local hydrodynamics will be con-

sidered here addressing bacterial interaction. Within this non-local hydrodynamical framework,

viscosity is generated by self-induced noise. Such viscosity leads actively moving bacteria into

the meta-stable states required to support quorum, given the non-local nature of the stresses

mediated by autoinducers. In the present case, the Forced Burgers equation has been applied so

as to investigate the non-local hydrodynamics present in the quorum sensing system. We will

then address the Kwak transformation which transfer the forced Burger equation to the reaction

diffusion system. Moreover we analyze the whole system briefly and study pattern formation

in the quorum sensing system ( specifically quorum state) using numerical simulation. In the

following sections, we show the dynamical behavior of interacting bacteria and their locational

displacement in the fluid which can be demonstrated as a communication property in ”living

fluids”.
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II The dynamics of quorum sensing

Let us consider u(x, t) as the concentration of the cell-to-cell signalling which function as

pheromones (also called as autoinducers as they function in part to stimulate their own synthe-

sis).This is the bacterial population means of determining its numerical size (or density). If we

now assume that ν is the viscosity of the modified fluid known as bacterial fluid or living fluid,

this viscosity will then become a most important parameter for the long-time dynamics of the

quorum sensing system. In our approach, we consider F as a dissipative force (energy lost from

the quorum sensing system when motion takes place). The loss from the degrees of freedom is

converted into radiation ( usually, bioluminesence for the Quorum Sensing(QS) system). At an

increased velocities, the force of friction increases as a higher power of the relative velocity and

the QS Molecules (QSM) travelling through modified fluids at high Reynolds number (Re = vL
ν ),

where ν → viscosity of the fluid. The rate of change of concentration of lux I per unit volume

is explicitly dependent on the concentration of AHL through the activation of expression of

the operon by such complex. Here forced Burger’s equation is able to describe this complex

biochemical phenomenon. Thus the Burger’s equation ut + uux − νuxx = 0 with boundary and

initial condition represents a known quasilinear parabolic mathematical solution. This approach

was first appeared in the paper by Bateman [10] and its use was extended by Burgers [11, 12]

making it very useful in understanding the non-local behaviour of QS systems. Indeed, this is

a very convenient approach in addressing turbulent liquid flow modes. A complete solution is

presented by Hopf[13].

Here, we model the QS system as the forced Burgers equation via ut + uux − νuxx = F (x).

This forced Burgers equation can be transformed by the transformation J(u) = (u, ux,−1
2u

2)

with v = ux and w = −1
2u

2 into a reaction diffusion system as

ut = νuxx + wx + F (x) u(2x, t) = u(0, t)

vt = νvxx + wxx + F ′(x) v(2x, t) = v(0, t)

wt = νwxx + νv2 + u2v − uF (x) w(2x, t) = w(0, t)

The given initial condition are specified as u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x).

Here, we use the Kwak transformation[12] in a slightly different manner than originally used by

Kwak[14]. Thus, our model for the quorum sensing system can be descried as

ut = uxx − uux + h(x) (1)

With h(x) = F (x)
ν2

By setting u = u, v = ux and w = −1
2u

2, we obtain the new system as

ut = uxx + wx + h(x) (2)

vt = vxx + wxx + h′(x) (3)

wt = wxx + v2 + u2v − uh(x) (4)
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III Analytical Results

Presently, we address the steady state solution of Eq.(1) and Eq.(2). Consider solution of Eq.(1)

finite and with a unique steady state solution for small force. Our proposed model for the

quorum sensing mechanism ut + uux − νuxx = F (x)
transform→ ut = uxx − uux + h(x) by letting

u = νũ, t = 1
ν t̃, h(x) = F (x)

ν2
. so that the viscosity appears in the forcing term.

Mean value of u is

m(t) =
1

2π

∫ 2π

0
u(x, t)dx (5)

Rate of change of m w.r.t time

ṁ(t) =
1

2π

∫ 2π

0
h(x, t)dx (6)

The force h will be assumed to have zero mean so that by Eq.(5) the mean of concentration of

QSM u(x, t) is conserved.

The solution of the Eq.(1) is treated as a solution of the reaction diffusion system by intro-

ducing a nonlinear change of variables. Let u be the solution of Eq.(1) and J(u) = (u, ux,−1
2u

2).

Then (u, v, w) = J(u) satisfy Eq.(1). The mean of u in Eq.(2) is conserved since u has zero

mean and the mean of v is also conserved if u satisfy the periodic boundary condition. The

mean of w is not conserved [15].

To conserve the mean of w, we modify Eq.(2) with

w̃(x, t) = w(x, t)− 1

2π

∫ 2π

0
w(x, t)dx

such that the drift free reaction-diffusion system becomes

ut = uxx + w̃x + h(x)

vt = vxx + w̃xx + h′(x)

w̃t = w̃xx + v2 + u2v − uh(x)− 1

2π
(u2x − uh)dx

REMARK:

•1. If v(x, 0) = ux(x, 0) then v(x, t) = ux(x, t) ∀ t ≥ 0

•2. For any steady state solution of Eq.(2) ux = v.

•3. For any steady state solution of Eq.(2) 1
2π

∫ 2π
0 (u2x − uh)dx = 0

•4. Let w̃(x, t) = w(x, t)− 1
2π

∫ 2π
0 w(x, t)dx, ξ̃(x, t) = w̃(x, t) + 1

2u
2(x, t) and ξ(x, t) = w(x, t) +

1
2u

2(x, t), Then ξ̃ = ξ as steady state.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2017. ; https://doi.org/10.1101/098053doi: bioRxiv preprint 

https://doi.org/10.1101/098053
http://creativecommons.org/licenses/by-nc-nd/4.0/


The steady state solution of the proposed model for QS system in Eq.(7)

ut = uxx − uux + h(x) (7)

is also the steady state solution to the transformed reaction-diffusion system of the Burger’s

equation.

ut = uxx + w̃x + h(x)

vt = vxx + w̃xx + h′(x)

w̃t = w̃xx + v2 + u2v − uh(x)− 1

2π
(u2x − uh)dx

(8)

Conversely, any steady state solution (u, v, w̃) of Eq.(8) is necessarily of the form v = ux, w̃ = w

with w = −1
2u

2 and u is the steady state solution of Eq.(7).

REMARK:

•1. Every solution to the forced Burger’s equation (ut = uxx−uux+h(x)) satisfies the inequality

||u||L2
(0,2π)

≤
√

2c||h||L2
(0,2π)

for t ≥ t0 with

t0 = cln

{ ∫ 2π
0 u20dx

c2
∫ 2π
0 h2dx

}

and c is the Poincare constant.

•2. The steady state solution u of forced Burger’s equation satisfies the following inequalities

||u||L2
(0,2π)

≤ c||h||L2
(0,2π)

||ux||L2
(0,2π)

≤
√
c||h||L2

(0,2π)

•3. There is a unique steady state solution to the forced Burger’s equation (ut = uxx−uux+

h(x). When h satisfies

||h||L2
(0,2π)

< 2[3c1c]

where c is the Poincare constant and c1 is the Sobolev constant.

IV Results

In this section, we briefly study the quorum sensing system with the forced burger equation using

different numerical technique such as ’Up-wind nonconservative’,’Up-wind conservative’,’Lax-

Friedrichs’,’MacCormack’ schemes and parabolic method to find the the pattern formation of

this complex biological system.
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IV.1 Up-wind scheme

If we consider the forced Burgers equation in the quasilinear form Eq.(1) then we obtain a finite

difference method by a forward in time and backward in space discretization of the derivatives.

We refer this as the Up-wind nonconservative scheme. Although this method is consistent with

QS system and it is adequate for the smooth solutions. It is not converge in general to discon-

tinuous weak solution as the grid is refined.

To prevent the Up-wind nonconservative scheme from converging to non-solutions, there is

a simple condition that we can implement, then the method convert to conservation form. This

technique is called the numerical flux function. Then the methods that conform to this scheme

are called conservative methods.

Figure 1: Up-wind nonconcervative with initial condition piecewise constant(Shock)and Up-wind

concervative with initial condition piecewise continuous

Figure 2: Up-wind nonconcervative with initial condition Gaussian
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Figure 3: Up-wind nonconcervative with initial condition piecewise constant(expansion)

Figure 4: Up-wind nonconcervative with initial condition piecewise continuous

Figure 5: Up-wind concervative with initial condition piecewise constant(Shock)
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Figure 6: Up-wind concervative with initial condition Gaussian

Figure 7: Up-wind concervative with initial condition piecewise constant(expansion)

IV.1.1 Lax-Friedrichs

Then we use Lax-Friedrichs method with different initial condition for our nonlinear systems.

This numerical scheme is based on finite difference. This methods can be described as the

forward in time and center in space. The LaxFriedrichs method is classified as having second-

order dissipation and third order dispersion.
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Figure 8: Lax-Friedrichs with initial condition piecewise constant (Shock)and Lax-Friedrichs

with initial condition piecewise continuous

Figure 9: Lax-Friedrichs with initial condition Gaussian

Figure 10: Lax-Friedrichs with initial condition piecewise constant (expansion)
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IV.1.2 MacCormack

Another method of the same type is known as MacCormack’s method. In this method, we use

first forward differencing and thereafter backward differencing to achieve second order accuracy.

Unlike first-order upwind scheme, the MacCormack does not introduce diffusive errors in the

solution. However, it is known to introduce dispersive errors (Gibbs phenomenon) in the region

where the gradient is high.

Figure 11: MacCormack with initial condition piecewise constant (Shock) and MacCormack

with initial condition piecewise continuous

Figure 12: MacCormack with initial condition Gaussian
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Figure 13: MacCormack with initial condition piecewise constant (expansion)

IV.2 Parabolic Method

Finally, we use the parabolic method to approximate our system, which reduced the equation

(1) to investigate the propagation of periodic surface waves in bacterial fluid or living fluid. The

approximation is derived to splitting the wave field. As a computational method we discretize

the time derivative by a forward dierence to obtain the explicit method.

Figure 14: Viscid Burgers equation by Parabolic method with initial condition piecewise con-

stant (Shock) and Viscid Burgers equation by Parabolic method with initial condition piecewise

continuous
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Figure 15: Viscid Burgers equation by Parabolic method with initial condition Gaussian

Figure 16: Viscid Burgers equation by Parabolic method with initial condition piecewise constant

(expansion)

Our model of forced Burgers equation clearly demonstrate the long time collective behaviour

of the quorum sensing system where viscosity of the bacterial fluid or living fluid plays the central

role. If the viscosity is very high then, we can find the turbulence and the chaotic behaviour

in the system . The above figures( 17, 18, 19) indicate that quorum sensing takes place when

the viscosity of the fluid is small. Thus, based on analytical and numerical results one conclude

that if the Burgers equation is transformed to reaction diffusion system then both of them gives

us similar long time behaviour for the quorum sensing system.

IV.3 Viscosity and pattern formation

The necessity of mathematical models for morphogenesis is evident. Pattern formation is cer-

tainly based on the interaction of many components. Since the interactions are expected to be

nonlinear, our intuition is insufficient to check whether a particular assumption really accounts
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for the experimental observation. By modelling, the weak points of an hypothesis become evi-

dent and the initial hypothesis can be modified or improved. Models contain often simplifying

assumptions and different models may account equally well for a particular observation. This

diversity should however be considered as an advantage: multiplicity of models stimulates the

design of experimental tests in order to discriminate between the rival theories. In this way,

theoretical considerations provide substantial help to the understanding of the mechanisms on

which development is based [16].It should be noted that the regulatory behaviors mentioned

above are nontrivial consequence of the model. In our system, we observed that the quorum

takes place in a certain range of viscosity [0.01, 0.32]m2/s which is considered as very small

viscosity of the bacterial fluid or living fluid ( see Figure 18 to Figure 24).

Figure 17: Spatio temporal behaviour with concentration profile of the QS system with small

viscosity when pattern begin and pattern end

Figure 18: Spatial feature of the QS system without viscosity before Pattern formation begin

and Pattern formation of the QS system with small viscosity and initial condition piecewise

constant (Shock)
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Figure 19: Spatial feature of the QS system with small viscosity when Pattern formation begin

Figure 20: Spatial feature of the QS system with small viscosity when Pattern is forming
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Figure 21: Spatial feature of the QS system with small viscosity when Pattern formation end

Figure 22: Pattern formation of the QS system with small viscosity and initial condition Gaus-

sian
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Figure 23: Pattern formation of the QS system with small viscosity and initial condition piece-

wise constant (expansion)

Figure 24: Pattern formation of the QS system with small viscosity and initial condition piece-

wise continuous

The pattern formation of the quorum sensing system is shown in Figure 26 to Figure 29

with small viscosity. The density of the quorum sensing molecule can be consider as a order
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parameter in the batch culture of the bacteria. Kinematic viscosity of the living fluid( or bac-

terial fluid) and density of quorum sensing molecules change the quorum state to non quorum

state. We have demonstrated how the forced Burger equation with Kawak transformation to

reaction-diffusion system describe the interactions of few chemicals providing an efficient way to

understand numerous aspects of pattern formation of the complex biological phenomenon. QS

concentration profiles, periodic and wave-like patterns can be generated out of an initially more

or less non-homogeneous state. The regulatory properties of these mechanisms agree with many

biological observations, for instance, the regeneration of a pattern with or without maintenance

of viscosity, insertion of new structures during growth in the largest bacteria batch culture or

the generation of strictly periodic structures during quorum sensing growth. By a hierarchical

coupling of several such systems, highly complex pattern can be generated. One pattern directs

a subsequent pattern and so on. Complex structures are well known from physics, for example

the case of turbulence. In contrast, the complex patterns discussed here are highly reproducible

(as well in their time development as in their spatial organization), a feature of obvious impor-

tance in biology.

Experiments indicate that biological quorum sensing systems are, as the rule, much more com-

plex than expected from the theoretical models. On the one hand, to bring a QS molecule from

one bacterial cell to the next and transmit the signal to the bacterial cell’s is often realized

in biology by a complex chain of biochemical events, but described in the model by the mere

diffusion of quorum sensing molecules. On the other hand, the quorum sensing molecules may

involve in several steps; for instance, a small diffusible molecule may be able to activate a par-

ticular gene, that, in turn, controls the synthesis of the small molecule. So, very often bacteria

can change the pattern formation in the quorum state of the system. This biological process is

very much dynamic in nature. The dynamic of QS system completely depend on the non-local

hydrodynamics and the kinematics viscosity of the living fluid ( or bacterial fluid).

V Conclusion

The set of mathematical equations presented here describe the product of interactions between

solutes and solvents, and address the possibility that such interactions may generate emerging

properties of central importance in the origin of biological systems.The central concept addresses

the defining dynamic properties that limit and control the reciprocal interactions of entities such

as bacteria and the properties of the solvent which they inhabit. Analysis of such interactions

indicate emerging properties, not present in the primary structures allowing the generation of

a distinct third set of events that have macroscopical properties absent in the interacting ele-

ments on their own. Addressing the emerging properties which give rise to such macroscopic

meta-structural entities, with definable attributes and geometries, are proposed on basis of the

dynamic aspects of reaction diffusion in solute solvent interactions. The inescapable conclu-

sions related to the nature of biology and its genesis by emergence inherent in the constituting
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elements, definable mathematically by the use of the dynamics based non trivial interaction.
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