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Successful conservation of complex ecosystems, their function and associated services, requires

deep understanding of their underlying dynamics and potential instabilities. While the study of

ecological dynamics is a mature and diverse field, the lack of a general model that uses basic

ecological parameters to predict system-level behaviour has allowed unresolved contradictions to

persist. Here, we provide a general model of a mutualistic ecological community and show for

the first time how the conditions for instability, the nature of ecological collapse, and potential

early-warning signals, can be derived from the basic ecological parameters. We also resolve open

questions concerning effects of interaction heterogeneity on both resilience and abundance, and

discuss their potential trade-off in real systems. This framework provides a basis for rich investi-

gations of ecological system dynamics, and can be generalised across many ecological contexts.

The relationships between various aspects of system complexity and system stability have

recieved much attention in ecology[1, 2, 3], and in other fields (e.g. economic[4] and social[5]

systems). Definitions of ecosystem stability are wide-ranging and, under deterministic dynamic

models, extend across local asymptotic stability [6, 7], persistence[8, 9, 10], productivity (to-

tal abundance)[11], alternative steady states and catastrophic transitions[12, 13, 14, 15]; under

stochastic dynamic models, these are extended further to include temporal community-level and

species-level stability [16, 17, 18, 19, 20], and empirical signals of critical transitions [21, 22, 23, 24].

Similarly, the system properties associated with complexity and stability have a wide span, in-

cluding biodiversity and connectance[25, 26], the strength and correlation of interactions[27, 28,

7], interaction asymmetry[29, 30, 31], and structural features such as degree heterogeneity and

modularity[8, 32, 33, 28, 27, 11, 10, 34]. The type of ecological systems studied has progressed from

random to competitive communities[16, 17, 35], to exploitative communities (food-webs)[36, 37, 10],

mutualsitic communities[8, 32, 33, 28, 27, 11], and to competitive-exploitative-mutualistic mixed

communities[38, 11]. Inconsistencies have emerged within this body of literature and an integrated

framework that reveals how basic ecological parameters lead to these higher level phenomena is

urgently needed [1, 39]. Here we develop such a framework using a general mutualistic model (two

mutualistic groups of species, plants and pollinators for example, with competitive intra-group
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interactions). The ‘basic’ free parameters defining the model include per capita intrinsic growth

rate r (which we adjust to simulate changes in environmental stress), per capita self-regulation

strength s, competitive and mutualistic interaction strength (C, M), and resource handling time

h. We focus initially on a mean field version of the full model[40], which preserves the essential

features of a mutualistic system, but is simple enough to be mathematically tractable. We use this

to identify necessary conditions for the presence of alternative stable states, then the transitions

between them and their potential leading indicators.

Presence and dynamics of alternative stable states

Understanding of alternative steady states, critical transitions and hysteresis within ecological

contexts, in terms of the basic underlying ecological parameters, remains incomplete. We begin

our analysis of these phenomena by first examining steady-state solutions, and the associated

eigenvalue distributions of the relevant Jacobian matrices (definitions of ‘dot’ and ‘semicircle’

eigenvalues, λd(J) and λs(J) respectively, and the difference between them, the ‘spectral gap’ ∆̃,

are provided in Methods and SOM). In cases where the dynamics are dominated by the ‘dot’

eigenvalue, the full set of basic free parameters can be conveniently reduced to a parameter space

of three dimensions - handling time h, intrinsic growth rate r, and the ratio of total mutualistic

strength to total competitive strength ρ = kmm
s+kcc

(see Methods). Solutions within this space can be

partitioned into topologically equivalent regions (strata) of stability ([41]) (Fig.1), and these are

strongly determined by handling time h. Only when h > 0 does bistability emerge (H12), with two

basins of attraction representing positive abundance and zero abundance, separated by an unstable

equilibrium (Fig.1). Indeed, this region (H12) provides a clear set of conditions for the appearance

of alternative stable states in mutualistic ecosystems: (i) a non-linear functional response, reflected

by the saturating coefficient for handling time, h > 0; (ii) mutualistic interactions that are stronger

than competitive interactions, ρ > 1, and (iii) a negative intrinsic growth rate larger than a minimal

value rmin = − 1
h
(1−

√
1
ρ
)2 ≤ 0.

Dynamics within stratum H12 are clearly of particular interest and this space can be further

described by the cusp structure [42] (Fig.1) using two control parameters r, ρ and one state variable

- the equilibrium species abundance x∗. All values of x∗ shown are equilibrium states and these

comprise three sheets: an upper sheet of locally stable positive equilibrium abundances (x∗ > 0);

a lower sheet of locally stable zero abundance (x∗ = 0); and (iii) the middle sheet of unstable

equilibrium abundance (the border between the two ‘basins of attraction’). Critical transitions

can happen where the upper and middle sheets intersect (the‘fold curves’ shown as red solid lines

in Fig.1). When the two fold curves are projected back onto the plane of the control surface, the

result is a cusp-shaped curve (green line in Fig.1) which forms the border of parameter stratum

H12. If we suppose the system is forced through the parameter strata by varying the growth rate,

r, the resultant dynamics (including the possibility of critical transitions) depends not only on r

but on the previous state (the sheet occupied). Consequently, hysteresis can be observed in these
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results, which is measured here by the width of parameter stratum H12 (the absolute value of rmin)

and relevant partial derivatives of rmin show the width of H12 to be negatively proportional to

the inverse square of handling time h, and positively related to the relative mutualistic strength ρ

(SOM). Hence, the stronger the mutualistic interactions and the greater the efficiency of resource

handling, the wider the parameter stratum H12, and the greater the extent of hysteresis. A

consequence of this is that more strongly mutualistic systems tolerate what can be interpreted as

harsher conditions (lower r), but this capability is associated with a ‘cost’ of a greater difficulty

in recovering from collapse. While the occurence of such critical transitions has been studied in

many types of systems (e.g. [39, 5, 4]), the precise nature of these transitions has recieved less

attention, and this is the focus of the following section.

Nature of critical transitions

We find that critical transitions in mutualistic systems follow one of two possible forms, and which

of these occurs is strongly determined by whether the ‘dot’ or ‘semicircle’ eigenvalue dominates

(reaches zero first) as the transition is approached; a similar claim has recently been made for

physical many-body systems[43]. Where the ‘dot’ eigenvalue dominates, the associated leading

eigenvector is an identity vector 1. The effect of reduced r (increased environmental stress) is

therefore the same for each species, resulting in similar trajectories, and simultaneous population

collapse during a critical transition. We name this a consistent transition (see Fig.2a,b). When the

‘semicircle’ eigenvalue dominates, the leading eigenvector has mixed negative and positive values.

At the point of transition (which occurs at larger values of r compared to consistent transitions,

equivalent to less harsh environmental conditions), the impacts on individual species are different

in magnitude and even in sign, causing a range of trajectories. Some species abundances increase

while others decrease or even collapse. We name this a splitting transition (see Fig.2a,b), and

note that these have also been observed in numerical experiments [33]. The occurrence of splitting

transitions (compared to consistent transitions) increases with the difference between the ‘semi-

circle’ eigenvalue and the ‘dot’ eigenvalue (−∆̃), and this can be understood in terms of a new

parameter α, the ratio between the ratio of the mutualistic spectral gap to competitive spectral

gap ∆ and the ratio of mutualistic strength to competitive strength ρ, i.e. α = ∆
ρ

. As α combines

several parameters, we can evaluate their effect: the probability of a splitting transition increases

with competitive strength c, decreases with both self-regulation (s) and the number of mutualistic

interactions km, and is unaffected by mutualistic strength m (SOM).

Early warning of critical transitions

Of practical relevance is the question of empirically assessing proximity to critical thresholds, and

here, whether this is different for the two identified types of transitions. We extend our analysis to

transient stochastic dynamics and focus on two empirically observable aspects of species abundance

time-series: variance of the total abundance of n species, V c, and the degree of synchronization
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among species η, which measures correlation through time of all viable species abundances (see

SOM for details and Fig.2); both of these measures have been used previoulsy as ‘early-warning’

indicators ([21, 22]). We find that V c is negatively and inversely related to the ‘dot’ eignevalue

λd(J) and that V c therefore is indeed expected to increase sharply towards consistent-type criti-

cal transitions (as λd(J) approaches zero). Moreover, because the partial derivative of λd(J) also

increases (as r decreases), the derivative of V c also increases, providing further indication of thresh-

old proximity. At the same time, the spectral gap also increases, leading to significantly greater

synchronization (η) among species (see SOM for details, and Fig.2). However, for splitting transi-

tions, the ‘dot’ eigenvalue remains negative and changes relatively slowly with r (as it is relatively

far from zero). Consequently, total variance V c is low compared with consistent transitions and

the derivative of V c has no significant increasing trend, since it only increases markedly when

λd(J) is close to zero. Similarly, increases in synchronisation (η) are very weak prior to splitting

transitions. As the splitting transition occurs, species abundances become un-correlated (Fig.2 and

SOM). Thus, unlike the lead-up to consistent transitions, prior to splitting transitions the total

variance V c, its derivative, and the synchronization among species, are not expected to provide

clear empirical signals that anticipate critical transitions. Changes in the relevant eigenvalues

have a marked effect on stability, and on the nature and predictability of critical transitions. We

turn now to the influence of network structure on these, and on another closely-linked ecological

property, total abundance.

Effects of degree heterogeneity

The importance of structural aspects of ecological systems in determining higher level properties,

such as stability, is well-recognised [8, 32, 33, 28, 27, 11, 10, 34]. For mutualistic systems, the degree

of heterogeneity in the number of inter-species links is strongly correlated to nestedness [44], and

defines the frequency distribution of more or less specialist/generalist species. Conflicting evidence

exists however for the effect of this heterogeneity on stability (specifically persistence, the survival

of all species, and resilience, the post-perturbation recovery rate) and also on total abundance

[9, 10, 8, 11]. To study heterogeneity effects, we release the restriction of all species having the same

number of mutualistic interactions (km) and specify a vector describing the number of mutualistic

interactions for each species (km), within which the total mutualistic strength is held constant

(SOM). We approximate the structure of real mutualistic systems by creating interaction networks

with power-law (‘scale-free’) degree distributions (with exponent γ, noting the relationship to the

‘fitness coefficient’, β, by γ = 1/β+1 [45]; SOM). As a starting point we assess how the abundance

of individual species with different numbers of interactions (km) is affected by the heterogeneity of

their interaction network (β), finding that species with more connections (higher km) have greater

abundance, and that this is increased further as the heterogeneity of their network is increased

(larger β; Fig.4a). As might be expected for the community as a whole, mean abundance is greater

when growth rates (r) are higher and mutualism is stronger (larger ρ). However, the relationship
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of mean abundance to heterogeneity (β) under changing r and ρ is more complex: a critical r value

exists (which decreases as ρ increases), above/below which heterogeneity increases/decreases mean

abundance (Fig. 4b). The effect of heterogeneity on total abundance therefore depends on both

the strength of mutualism (ρ) and on the intrinsic growth rate (r), as shown in Fig.4a-c. Previous

results that heterogeneity increases total abundance [11] are therefore confirmed, but seen to be

special cases of weak mutualism and intrinsic growth rates below the identified critical value.

We find increased degree heterogeneity (larger β) has the potential to increase the deviation

amongst species abundance, and where this happens there is a reduction in the abundance of the

rarest species (ARS). This matters because ARS is strongly negatively correlated with the largest

eigenvalue of the relevant Jacobian matrix (J), hence determining both the apparent resilience [11]

and the occurrence of the first species extinction (which we distinguish from the full collapse of

all species). The degree to which heterogeneity drives resilience is however strongly determined by

the strength of mutualistic relationships. If mutualism is weak (ρ < 1), degree heterogeneity has

almost no effect on ARS (or the first extinction (Fig.5a, where ρ = 0.5). Under strong mutualism

(ρ ≥ 1), r is found to be a key control of the dependence of ARS on β: when r is relatively large

(sufficient to yield stable finite abundance for all species over the simulated range 0 < β < 4),

increasing heterogeneity first decreases ARS to a minimum at β ≈ 1 then subsequently increases

it asymptotically (this response being more exaggerated under stronger mutualism); with pro-

gressively lower r, the β−dependence of ARS becomes more muted, and increased heterogeneity

provides no more than a delaying factor for the inevitable loss of species, if ρ is reduced to 1.

However, in addition to these reductions in apparent resilience, which are essentially determined

by changes in J, we find a subsequent converse effect which enhances resilience. As degree hetero-

geneity is increased, a reduction occurs in the largest eigenvalue of the shadow Jacobian matrix J̃

(with qualitatively similar form to that of changes in ARS with β and r, SOM). This serves to in-

crease the resilience of the species that remain following the first extinction, and the persistence of

the community under lower values of r (e.g. harsher environmental conditions; SOM). This effect

increases asymptotically with β, and more dramatically under stronger mutualism (larger ρ). In

light of these findings, a question emerges naturally as to whether trade-offs between abundance

and resilience exist in real ecological systems. We see that stronger mutualism (larger ρ) provides

a benefit in terms of abundance, and under increased heterogeneity (β >∼ 2; γ <∼ 1.5) we see

greater resilience for both the first and last species extinctions under reduced r (harsher condi-

tions). However, higher heterogeneity incurs a ‘penalty’ in terms of abundance under relatively

high intrinsic growth rates, and this happens at increasingly lower r as the strength of mutualism

is increased. For real systems subject to variation in r, the necessity for resilience perhaps sets a

lower feasible limit for β (upper limit of γ ≈ 1.5). Empirical evidence ( [46, 47, 48]) for approx.

1 ≤ γ ≤ 1.25 fits with the notion of parameters which avoid the loss of resilience under higher

gamma values, while perhaps hedging against relative losses of abundance due to volatility in en-
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vironmental conditions (driving variation in r). Further work is required to test this proposition.

We have explored additional related deviations from the mean field model relating to the trade

off between the strength and number of mutualistic interactions, variance in the basic parameters

and differences in species numbers of the two interacting groups, details of which are provided in

the SOM.

Deep insights come from connecting basic parameters to system-level phenomena, and in the

case of mutualistic systems we see the crucial importance of both non-linear handling-time and

mutualistic strength in determining the presence of alternative stable states and the nature of

transitions between them. Further, there is potential practical relevance in understanding dif-

ferent types of critical transitions where they occur; in the present context, splitting transitions

potentially pose greater risks compared to consistent transitions, being triggered under less harsh

environmental conditions and preceded by hard-to-detect early-warning indicators. The structure

of mutualistic interaction networks is seen to play a key role in mediating potential trade-offs be-

tween abundance and stability, and this also has potential practical relevance for the conservation

of ecosystems and their function. Similar investigations of food-webs and mixed (mutualistic, com-

petitive, exploitative) interaction systems are necessary in order to develop a broad understanding

of ecological dynamics, and these are possible using the present theoretical framework.
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METHODS

The General Model We start with the general case of a community composed of n species,

divided into two groups: np primary producers and na species of what can be regarded as animals,

such as insects, seed dispersers (n = np + na). Species belonging to the same group are in direct

competition, while mutualistic interactions occur between species belonging to the different groups.

The deterministic dynamics of the n species are described by a system of n differential equations,

written in matrix form as: dx
dt

= x
(
r− sx−Cx + Mx

1+hMx

)
= F(x,P), where x is the vector of

species abundances, P = [r, s,C,M, h] is the set of parameters, including vectors of per capita

intrinsic growth rates r (which can be adjusted to simulate changes in environmental stress), per

capita self-regulation strength s, competitive interactions matrix C, mutualistic interactions matrix

M, and handling time h. The competitive interaction matrix C represents the competitive effects

among species within the same group, constructed from the competitive adjacency matrix Gc. M

represents the mutualistic effects between species of the different groups, constructed from the

mutualistic adjacency matrix Gm.

We suppose that this mutualistic system has a feasible equilibrium where abundances of all

species are strictly positive, hence: r−sx∗−Cx∗+ Mx∗

1+hMx∗ = 0, where x∗ = [x∗1, . . . , x
∗
i , . . . , x

∗
n] > 0

is the vector of equilibrium abundances of all n species. The Jacobian matrix at equilibrium can

then be written: J = diag(x∗) · J̃ = diag(x∗) · (−diag(s)−C+diag(φ) ·M), where φ = [φ1, · · · , φn]

and φi = 1
(1+h

∑n
j=1Mijx∗j )2

is the ‘effective mutualistic strength’ on species i at equilibrium, caused

by positive handling time (h > 0).

The stochastic dynamics of the n species can be written in matrix form as: dx = F(x,P)dt+

Σ · dW, where F(x,P) represents the deterministic dynamics of each species; dW represents a

vector of derivatives of independent Wiener processes (Gaussian noise with mean 0 and variance

1); Σ is a diagonal matrix with identical diagonal elements equal to σ, representing the variances

and covariances of n independent Gaussian noise elements. The variance–covariance matrix V of

its stationary probability distribution can be approximately obtained by solving the continuous

Lyapunov equation equation [49, 50, 51]: VJ + J>V = −Σ2 = −diag(σ2). This connects the

deterministic Jacobian matrix J (at equilibrium) with the variance–covariance matrix V of the

stationary probability distribution for stochastic dynamics.

The Mean Field Model We exclude structural features of the interactions such as degree

heterogeneity and modularity, thus all n species have an equal number of mutualistic interactions

(km) and competitive interactions (kc); variance is excluded from all parameters P = [r, s,C,M]

using a mean field approximation[8, 32, 28]; and each group contains an equal number of species

(np = na = n
2
) (see SOM for full implications).

Under these conditions the equilibrium condition equation is degenerated to a scalar equation

r− sx∗− kccx∗ + kmmx∗

1+hkmmx∗
= 0, where x∗ > 0 is the same equilibrium abundance for all n species.
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Transforming this to a quadratic provides two possible equilibrium abundance solutions, where the

‘lower solution’ is always unstable: x∗1,2 =
ρ+rhρ−1±

√
(ρ+rhρ+1)2−4ρ

2hkmm
, where ρ = kmm

s+kcc
is the ratio of

total mutualistic to total competitive strength. The Jacobian matrix at the feasible equilibrium

is reduced to: J = x∗(−s − cGc + φmGm), where φ = 1
(1+hkmmx∗)2

is the reduced version of the

‘effective mutualistic strength’ .

The eigenvalue distributions of the Jacobian matrix J essentially conform to Allesina and

Tang’s theory[6, 7, 52], that the eigenvalues include two parts: a single eigenvalue equal to the

(expected) row sum of the matrix, and secondly the bulk of other eigenvalues which are approx-

imately distributed as an semicircle centred at −E (the negative expectation of all off-diagonal

elements). The eigenvalues of J can be calculated from the eigenvalues of the mutualistic and

competitive adjacency matraces Gm and Gc. (see also the SOM for discussion of divergencies from

[6, 7, 52]). Thus, we can define three components of the eigenvalues of the Jacobian matrix. First,

the ‘dot’ eigenvalue equal to the row sum, calculated as λd(J) = f(r, h, ρ) (see SOM). Second, we

name the right most (largest) value in the semicircle as the ‘semicircle’ eigenvalue, defined by:

λs(J) = x∗(−s + c + φmλs(Gm)), where λs(Gm) is the estimated ‘semicircle’ eigenvalue of the

mutualistic adjacency matrix (conditioned by n and km). Third, we define the difference between

the ‘dot’ eigenvalue and the ‘semicircle’ eigenvalue as the ‘spectral gap’ of the Jacobian matrix:

∆̃ = λd(J)− λs(J) = x1c(kc + 1)(−1 + φ∆)), where ∆ = m(km−λs(Gm))
c(kc+1)

is the ratio of the spectral

gaps of the mutualistic and competitive interaction matrices. If the spectral gap ∆̃ > 0, i.e. the

‘dot’ eigenvalue is larger than the ‘semicircle’ eigenvalue (therefore also larger than all the eigen-

values in the semicircle), we refer to the ‘dot’ eigenvalue dominating the eigenvalue distribution

of the Jacobian matrix. If the spectral gap ∆̃ < 0, the ‘dot’ eigenvalue is ‘submerged’ into the

semicircle, and the ‘semicircle’ eigenvalue dominates. Therefore, the largest eigenvalue of J is

defined λ1(J) = max(λd(J), λs(J)). The Jacobian matrix for the mean field model is symmetric,

i.e. J = J> and therefore the variance–covariance matrix V with stochastic dynamics simplifies to

V = −σ2

2
J−1.
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