
Common object representations for visual production and recognition

Judith E. Fan1,2, Daniel L. K. Yamins3,4 and Nicholas B. Turk-Browne1,2

1Department of Psychology, Princeton University
2Princeton Neuroscience Institute, Princeton University

3McGovern Institute for Brain Research, Massachusetts Institute of Technology
4Department of Psychology, Stanford University

Abstract

Production and comprehension have long been viewed as inseparable components of language. The

study of vision, by contrast, has centered almost exclusively on comprehension. Here we investigate

drawing — the most basic form of visual production. How do we convey concepts in visual form, and

how does refining this skill, in turn, affect recognition? We developed a crowdsourcing platform for

collecting large amounts of drawing and recognition data, and applied a deep neural network model of visual

cortex to explore the hypothesis that drawing recruits the same abstract object representations that subserve

visual recognition. Consistent with this hypothesis, we discovered that drawings contain the features most

important for recognizing objects in photographs, and that learning to make more recognizable drawings of

objects generalizes to enhanced recognition of those objects. These findings could explain why drawing is

so effective for communicating visual concepts, they suggest novel approaches for evaluating and refining

conceptual knowledge, and they highlight the potential of deep networks for understanding human learning.
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Since the earliest etchings onto cave walls were made 40,000 years ago in modern-day Spain (Pike et1

al., 2012) and Indonesia (Aubert et al., 2014), people have devised many ways to render their thoughts in2

visual form, employing media ranging from stone and clay to paper and digital displays. The most basic and3

direct among these visualization techniques is drawing, in which a person produces marks that form an image.4

Drawing constitutes just one of several methods for externalizing mental representations in graphical form,5

an ability we term visual production. Drawn images predate symbolic writing systems (Clottes, 2008), are6

pervasive in many cultures (Gombrich, 1989), and are produced prolifically by children (Kellogg, 1969).7

Why is drawing such a core aspect of human behavior and culture? For one, drawings are efficient carriers8

of meaning — just a few strokes can express the identity of a face (Bergmann, Dale, & Lupyan, 2013), a9

suggested route (Agrawala & Stolte, 2001), complex logical relations (Bauer & Johnson-Laird, 1993), or an10

intention to act (Galantucci, 2005). Moreover, despite large differences in the appearance of drawings of objects11

versus physical objects, drawings are just as recognizable (Biederman & Ju, 1988; Biederman & Gerhardstein,12

1993; Gibson, 1971). Here we provide a computational framework for understanding the effectiveness of13

drawings in conveying visual concepts. These investigations are guided by the overarching hypothesis that the14

act of drawing an object recruits the same mental representation used for recognizing the object.15

A first prediction of this hypothesis is that drawings — although impoverished in many ways — retain16

precisely those features that enable recognition of real-world objects. To test this prediction, we employed a17

biologically inspired deep neural network model of the ventral visual pathway (Yamins et al., 2014; Hong,18

Yamins, Majaj, & DiCarlo, 2016) to characterize the features expressed in drawings quantitatively. We com-19

pared these feature representations in different layers of the model to those that support the identification of20

objects in photos. This led to the discovery of a striking isomorphism in the representations of object categories21

in drawings and photos.22

A second prediction is that learning how to draw might refine the representations shared by both drawing23

and recognition. To test this prediction, we trained people to draw a set of objects and examined, across sev-24

eral experiments, how their drawings of these objects improved and what effect this had on recognition of the25

objects. To quantify drawing performance, we assessed how well the deep neural network model could recog-26

nize the object being drawn. We found that it performed better in classifying drawings after training and that27

these improved drawings exhibited less feature-level overlap with each other, suggesting that practice drawing28

these objects had differentiated their underlying representations. This was further reflected in a psychophysical29

recognition task as enhanced categorical perception of the objects that people had learned to draw.30

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2017. ; https://doi.org/10.1101/097840doi: bioRxiv preprint 

https://doi.org/10.1101/097840
http://creativecommons.org/licenses/by-nc-nd/4.0/


These findings provide a first direct demonstration, to our knowledge, that visual production can alter ob-31

ject representations. Although drawing has long been used by behavioral scientists to investigate the contents32

of conceptual representations in children (Minsky & Papert, 1972) and in clinical populations (Folstein, Fol-33

stein, & McHugh, 1975; Bozeat et al., 2003), prior studies have relied on qualitative assessments of drawings,34

which limit their explanatory power (Kosslyn, Heldmeyer, & Locklear, 1977; Karmiloff-Smith, 1990; Cohen35

& Bennett, 1997; Bozeat et al., 2003), or on quantitative measures of low-level properties (e.g., pixel distance36

and area), which fail to capture high-level object identity information (Tchalenko, 2009; Fay, Garrod, Roberts,37

& Swoboda, 2010; Perdreau & Cavanagh, 2014). The approach taken here of using deep convolutional neural38

network models to characterize the high-level properties of drawings enhances the scientific potential of visual39

production as a window into human cognition. While there is precedent for this kind of anlaysis in the machine40

learning literature (Yu, Yang, Song, Xiang, & Hospedales, 2015), predicting and explaining human learning41

and behavior with these models is innovative and could find broad applicability across many fields, including42

cognitive development, education, communication, and human-computer interaction.43

Results44

Generalized object representations45

Recognition of visual objects is achieved by a set of hierarchically organized brain regions known as the ventral46

visual stream (Goodale & Milner, 1992; Rolls, 2000; Malach, Levy, & Hasson, 2002). Simple visual features47

encoded in lower areas (e.g., orientation, spatial frequency in V1) are successively combined and transformed48

into more complex features across levels of the hierarchy (Gross, Rocha-Miranda, & Bender, 1972; Hung,49

Kreiman, Poggio, & DiCarlo, 2005), allowing for read out of abstract object properties from higher areas (e.g.,50

category, identity in inferior temporal [IT] cortex). Recently, these computations have been modeled using51

deep convolutional neural networks. Such models can approach human-level performance in challenging object52

recognition tasks and learn features that predict neural population responses in multiple sites along the ventral53

stream, including V4 and IT (Krizhevsky, Sutskever, & Hinton, 2012; Yamins et al., 2014; Khaligh-Razavi &54

Kriegeskorte, 2014). As such, they present an attractive candidate for investigating object recognition when it55

requires invariance across image domains, such as the recognition of drawings.56

We tested the hypothesis that training a deep convolutional neural network to recognize photographs of57

objects across variable views (Yamins et al., 2014; Hong et al., 2016; Fig. 1A) would provide a sufficiently58

robust basis set of high-level features to enable the model to also recognize drawings. We further predicted59
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that the model’s representations of drawings and photographs should become progressively more similar across60

successive layers, and peak at the highest layer (approximating IT), consistent with the notion that drawings61

possess the same abstract features used to recognize natural objects. However, because of large differences62

between drawings and photographs at the pixel level, we expected their representation in early layers of the63

model to be much more distinct.64

To evaluate these predictions, we employed a deep convolutional neural network (Yamins et al., 2014;65

Hong et al., 2016) that had been optimized exclusively to recognize photographs of objects and had never seen66

a line drawing before. We then tested the model on a large number of drawings (Eitz, Hays, & Alexa, 2012)67

and photographs (Deng et al., 2009) of objects belonging to 105 real-world categories, none of which was68

included in the training set. Each image elicited a pattern of feature activations at every layer in the model, each69

pattern being equivalent to a vector in a feature space with the same number of dimensions as units in that layer.70

Separately for drawings and photographs, we averaged the feature vectors within each object class for a given71

layer, then computed a layer-specific matrix of the Pearson correlation distances between these average vectors72

across classes (Kriegeskorte et al., 2008). Each of these 105x105 representational distance matrices (RDMs)73

provides a compact description of the layout of objects in the high-dimensional feature space inherent to each74

layer of the model (Fig. 1B).75

The matrices for drawings and photographs computed based on the top model layer are strikingly similar76

by visual inspection and as quantified by correlation (r = 0.547, p < 0.001). By contrast, the matrices from77

the bottom layer exhibited low similarity (r = 0.144, p < 0.001), which, although statistically reliable, was78

substantially lower than that of the top layer (independent correlations test, p < 0.001). Indeed, similarity79

increased over successive layers in the model (Spearman correlation of similarity with layer number, r = 0.94380

p < 0.001; Fig. 1C). To explicitly test the model’s accuracy in recognizing drawings, we trained a 105-way81

support vector machine (SVM) linear classifier on the feature vectors from a given model layer for 80% of the82

drawings in each class and tested it on the remaining drawings. Consistent with the representational distance83

analyses, 105-way classification was highly accurate for the top layer (64.8% vs. chance=0.95%, s.e.m. = 1.1%84

across 5 cross-validation splits), and substantially more so than in the bottom layer (18.6%, cross-validated,85

s.e.m. = 0.6%).86

The model was trained to identify photographs based on human-provided labels, so we interpret this suc-87

cessful recognition of drawings as mirroring how humans would recognize the drawings. To validate this88

assumption, we recruited an independent cohort of human participants (N=327) to provide labels for drawings89

from a subset of these categories. As expected, human and computer recognition performance (d’) was highly90
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Figure 1: A: Features were extracted from drawings and photos using a neurally predictive, deep convolutional
neural network model previously optimized for performance on object recognition tasks involving natural pho-
tographs but not drawings. Each feature reflects the activation of a single unit in a given layer of the neural
network. B: Representational distance matrices (RDMs) of model features for each image domain, displaying
the overall layout of objects in high-dimensional feature space. Each entry shows correlation distance (1-r) be-
tween feature vectors for a pair of objects. Darker values reflect relatively proximal pairs of objects. Reflecting
the presence of higher-order structure (i.e., clustering of objects with similar features), each top-layer matrix
shows clear block-diagonality. C: Cross-domain similarity between image domains increases as a function of
model layer. Error bars represent 1 s.e.m., estimated by jackknife resampling of objects. D: Human participants
(N=327) provided labels for drawings from a subset of these categories (64 of 105). We found that human and
computer recognition performance (d’) was highly consistent across objects.
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consistent across objects (r = 0.649, p < 0.001; Fig. 1D). Thus, the model’s pattern of correct identifications91

and confusion errors was similar to that of humans performing the same task.92

Together, these results show that building a computational model that achieves the level of visual abstrac-93

tion required to recognize real-world objects under high image variation yields converging feature representa-94

tions for object drawings and photographs. In other words, the high-level features that support natural object95

recognition are captured in drawings, allowing a model embodying these features to easily generalize to artifi-96

cial line drawings. This is consistent with our broader hypothesis that the abstract representation of an object97

formed during recognition may provide the basis for producing a recognizable image of the object by drawing.98

A further implication of these results is that drawings may be so effective at conveying visual concepts in part99

because they take advantage of computational mechanisms already in place (i.e., along the ventral stream) to100

extract abstract information, such as object identity, from natural visual input.101

Visual production training102

If drawing an object involves accessing the representation used to recognize it, then learning how to draw the103

object better may refine this representation and improve recognition. Here we test for improved recognition in104

the deep neural network model; in the next section we test for improved recognition in humans. We hypothe-105

sized that training people to draw objects would enhance the model’s ability to recognize their drawings of these106

objects, and that this occurs because they learn to emphasize those features of an object that distinguish it from107

other objects. This makes the specific prediction that the model’s top-layer representations of the trained objects108

should differentiate from each other. Such differentiation has traditionally been induced using recognition tasks109

(Goldstone, 1998), but here we examine it as a consequence of training in visual production.110

A natural starting point for examining learning is to identify objects for which untrained participants have111

trouble producing recognizable drawings — that is, objects whose drawings are frequently confused by the112

model with drawings of other objects. To identify confusable groups of objects, we exploited clustering of113

objects in the model’s top-layer representations of drawings (Eitz et al., 2012). From these clusters, we defined114

eight visual “categories” that each contained eight objects. Each participant was randomly assigned two of these115

categories (Fig. 2A). During training, participants drew four randomly selected objects in one category (Trained)116

multiple times. Before and after training (Fig. 2B), participants produced one drawing of each of those objects,117

of each of the other four objects in that category (Near), and of all of the objects in the second category (Far).118

These conditions allow us to assess the specificity of training effects: Trained objects provide a measure of119

object-specific learning, Near objects provide a measure of category-specific learning, and Far objects provide120
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a baseline measure of generic task-level or motor improvement. We hypothesized that the Trained objects would121

become more recognizable to the model after training, relative to both their recognizability before training and122

to the recognizability of the Near and Far objects.123

Training was conducted via an online game we developed (“Guess My Sketch”), in which participants124

(N=593) were repeatedly cued to convey particular object concepts to a digital avatar (representing the model)125

via drawings (Fig. 2C). Approximately half of the participants were cued with words and the other half with126

images. When the participant’s drawing was submitted on each trial, the avatar listed its top three guesses as to127

the identity of the cued object, thus providing participants with immediate feedback about the quality of their128

drawing. These guesses were generated by submitting the drawing bitmap to the model running on a server in129

real-time and passing the top-layer responses though a 64-way classifier pre-trained on photos of the objects130

from all categories. The classifier returned a list of 64 margin values, corresponding to the level of confidence131

that the test image belonged to each object class. The rank of the cued object in this list provided a measure of132

the goodness-of-fit of the submitted drawing to the cued object’s representation in the model and thus served as133

our primary index of drawing quality (lower rank means better performance).134
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Figure 2: Each participant was randomly assigned two of eight possible object categories. B: During training,
participants (N=593) practiced drawing four randomly selected objects in one category (Trained) multiple times.
Before and after training, participants drew the other four objects in the same category (Near), and the objects
in the second category (Far). C: On each trial, participants were cued with a trial-unique photo (N=311) or word
(N=282) that referred to a target object for them to draw. The neural network model guessed the identity of the
drawn object in real time, providing participants immediate feedback about the quality of their drawing. The
rank of the cued object in the list of all 64 guesses returned by the neural network model, ordered by confidence,
was used to track changes in performance.

Because objects were randomly assigned to condition across participants, we expected no differences in135

mean rank for Trained, Near, and Far objects in the pretest. Indeed, a 3 (condition: Trained, Near, Far) x 2136
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(cue type: word, image) repeated-measures ANOVA revealed no main effect of condition (F2,587 = 1.16, p =137

0.315). There was a main effect of cue type (F2,587 = 14.8, p < 0.001), with image-cue performance (M=8.69,138

SD=6.55) exceeding word-cue performance (M=10.24, SD=7.58). However, cue type did not interact with139

condition (F2,587=0.147, p = 0.863).140

During the training phase, participants drew the four Trained objects five times each, in a randomly in-141

terleaved order. To assess changes in performance over training, we computed the mean rank across objects142

for each repetition and assessed its relationship to repetition number. Across participants, the trend was reli-143

ably negative (mean Spearman’s r = -0.075; t = 3.37, p = 0.0007), demonstrating that drawings improved with144

practice (Fig. 3A).145

A B C

trained near

**

D
***

trained near trained

******

Figure 3: A: Drawing performance (mean target rank) as a function of training repetition. B: Mean change
in drawing performance for Trained and Near objects, relative to control Far objects. Decrease in target rank
reflects improvement. C: Change in mean feature distance among objects in Trained and Near conditions,
relative to Far. D: Mean change in root-mean-squared feature distances among early drawings (first three) and
late drawings (final three) of Trained objects. *p < 0.05. **p < 0.01. ***p < 0.001. Error bars represent
within-participant s.e.m. Pairwise comparisons are based on two-sided significance tests.

To assess learning across conditions, we compared differences between pretest and posttest performance146

(Near and Far objects only appeared during these phases). For each object in all conditions, we calculated the147

change in rank (∆rank = rankpost − rankpre), then averaged these ∆rank values across objects in each condition.148

We then performed the same type of ANOVA across participants as for the pretest analysis, revealing a signifi-149

cant difference in rank change between conditions (F2,1182 = 7.67, p < 0.001). There was no main effect of cue150

type (F1,591=1.66, p = 0.198), nor an interaction between condition and cue type (F2,1182 = 0.162, p = 0.851),151

so we collapse across cue type in subsequent analyses. Drawings of Trained objects were better recognized by152

the model following training (∆rank < 0: t592 = 4.04, p < 0.001, two-sided in this and all subsequent t-tests);153
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no such improvement was found for Near objects (t592 = 0.511, p = 0.609) or Far objects (t592 = 1.22, p =154

0.223). The improvement for Trained exceeded that of Near (t592 = 3.44, p < 0.001) and Far (t592 = 2.91, p155

= 0.004), which themselves did not differ (t592 = 1.15, p = 0.252). Taken together, these results indicate that156

production training primarily resulted in object-specific benefits (Fig. 3B). In particular, improved classifica-157

tion performance for Trained objects was driven primarily by an increase in the hit rate (+5.2%, percentage of158

trials, pooling across participants; p < 0.001, bootstrap resampling of participants), with marginally significant159

decreases in the rate that Trained drawings were misclassified as being Near (-1.3%, p = 0.080) or Far (-1.2%,160

p = 0.082) objects.161

The improved rank score for Trained objects shows that their high-level feature representations became162

more linearly discriminable. We investigated two potential sources of this differentiation (not mutually ex-163

clusive): increased feature distances among Trained objects (“separation”) or decreased feature variance of164

individual Trained objects (“sharpening”).165

To test for separation, we first extracted the model’s top-layer feature representation of all drawings from166

the pretest and posttest and computed a matrix of the correlation distances between these feature vectors167

(Fig. 3C). Then, for each Trained object, we compared its distance before training with other Trained ob-168

jects before training (pre/pre) vs. after training (pre/post). The same difference was calculated for Near and169

Far objects as controls. Increased distance for pre/post vs. pre/pre in the Trained condition relative to the Near170

and Far baselines would indicate that drawing induced separation of object representations. Consistent with171

this possibility, a one-way repeated-measures ANOVA revealed a main effect of condition (F2,1773 = 3.12, p =172

0.044). Planned comparisons confirmed that Trained objects separated more than Near objects (t592 = 3.48, p =173

0.0005) and Far objects (t592 = 3.46, p = 0.0005), which did not differ from each other (t592 = 0.005, p = 0.996).174

To test for sharpening, we tracked changes in the distance between feature vectors from the top layer across175

successive drawings of the same object during training. For each Trained object, we constructed a distance176

matrix relating drawings across all repetitions (Fig. 3D); this analysis was not possible for Near or Far objects177

because they were only drawn at the start and end of the study. We quantified change in feature variability178

in two ways: by comparing root-mean-squared feature distances among early drawings (first three) and late179

drawings (final three), and by measuring the trend in feature distances across pairs of successive drawings.180

We found that late drawings were reliably more similar to one another than early drawings (mean ∆ =-0.061,181

s.e.m. = 0.005, p < 0.001, bootstrap resampling of participants), and that this reflected a gradual decrease in182

the amount by which successive drawings differed across repetitions (Spearman’s r =-0.211, s.e.m. = 0.022,183

p < 0.001, bootstrap resampling of participants).184
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To evaluate the respective contributions of separation and sharpening to the improvement in drawing per-185

formance (as quantified by the model), we regressed both of these measures on the change in rank for Trained186

vs. Far objects. Across participants, we found that sharpening (β=7.62, t590 = 2.53, p = 0.012) but not sepa-187

ration (β=0.02, t590 = 0.004, p = 0.997) predicted model performance. This suggests that decreased variability188

was most directly responsible for the increased discriminability of Trained objects.189

The results so far have been interpreted as a consequence of repeatedly drawing the Trained objects.190

However, as these objects were being drawn, participants also received additional perceptual experience with191

them. This experience could have induced perceptual learning, providing an alternative explanation for the192

benefit for Trained over Near and Far objects, which were only encountered in the pretest and posttest.193

To evaluate this alternative, we conducted a second training study. For each participant in the original194

cohort, we recruited a new participant to repeat the same sequence of trials. However, instead of drawing195

during the training phase, they were instead presented with the finished drawing produced by their matched196

participant from the original cohort (Fig. 4A). In some ways, this provides even more perceptual experience,197

as they always viewed the completed, most recognizable drawing, rather than incomplete, ambiguous versions.198

To keep participants engaged, they were instructed to “guess what the computer thinks the drawing looks like”199

by typing in a label, and they received bonus points when their guess matched the model’s top guess, which200

occurred on 36.7% of trials.201

We found that viewing finished drawings yielded only modest changes in drawing performance for Trained202

objects (t592 = 1.72, p = 0.086), and no reliable improvement for Trained objects relative to Far (t592 = 0.580, p203

= 0.562) or Near objects (t592 = 1.21, p = 0.228). Again, neither Near (t592 = 0.160, p = 0.873) nor Far (t592 =204

1.27, p = 0.205) objects improved relative to their pretest baseline, nor differed significantly from one another205

(t592 = 0.714, p = 0.475). Together, these results suggest that mere exposure to drawings is insufficient for206

improving the ability to produce recognizable drawings (Fig. 4B).207

Although viewing completed drawings did not improve drawing performance, this only captures part of208

the perceptual experience of drawing. In particular, completed drawings are the result of composing a series209

of individual strokes into parts, and parts into whole drawings, over time. We hypothesized that observing210

these stroke-level dynamics may be more beneficial for learning how to draw, because they convey information211

about the procedure for composing a drawing that may be subsequently used to support successful drawing. To212

evaluate this possibility, another cohort of naive participants was recruited to each repeat the same sequence of213

trials of a participant in the original cohort, except that training now involved viewing a stroke-by-stroke replay214
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of each drawing being produced (Fig. 4C). Again, their task was to guess the object being drawn, and they215

matched the model’s top guess on 35.9% of trials.216

We found that observing dynamic reconstructions of drawings produced reliable pre-post improvement for217

Trained objects (t592 = 2.880, p = 0.004), which significantly exceeded that of Far (t592 = 2.09, p = 0.037) and218

Near (t592 = 2.55, p = 0.011) objects. These findings suggest that observing the process of drawing construction219

improves participants’ subsequent ability to make recognizable drawings of those objects they had previously220

observed being drawn (Fig. 4D). We again found no reliable pre-post changes in performance for Near (t592 =221

0.448, p = 0.655) or Far (t592 = 0.606, p = 0.545) objects, and these conditions did not differ from one another222

(t592 = 0.751, p = 0.453).223
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Figure 4: Two additional cohorts of participants (N=593 per cohort), each member of which was matched with
a participant in the original cohort, were recruited to repeat the same sequence of trials. Rather than drawing
during the training phase, these participants attempted to predict the top guess returned by the neural network
model about a drawing produced by their matched participant. A: One group viewed only finished drawings. B:
Change in drawing performance for Trained and Near objects, relative to control Far objects. Decrease in target
rank reflects improvement. C: The other group observed stroke-by-stroke reconstructions of each drawing being
produced. D: Change in drawing performance for Trained and Near objects, relative to control Far objects. *p
< 0.05. **p < 0.01. Error bars represent within-participant s.e.m.
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Consequences for object recognition224

Above we showed that training participants how to draw objects resulted in drawings that were more recogniz-225

able to a deep neural network model of the ventral visual stream. The model was pre-trained and its parameters226

fixed, so these changes in the rank of the cued object can be interpreted as evidence that the object representa-227

tions of participants were refined by the training. However, although suggestive, this is only indirect evidence228

for the claim that these refined representations are the ones in the ventral visual stream that subserve human229

object recognition abilities. Participants may have improved their drawings without any change in their internal230

visual representation of these objects (i.e., in the ventral stream), for example, as a result of object-specific231

motor learning of stroke sequences.232

To evaluate more directly how learning to draw impacts human recognition we conducted a transfer study233

(N=72) in which the drawing training phase was bookended by a recognition pretest and posttest. Motivated234

by the earlier finding that the feature representation of Trained objects in the top, IT-like layer of the model235

differentiated with training, we hypothesized that drawing would increase the perceptual discriminability be-236

tween Trained objects. We tested this hypothesis using a categorical perception paradigm (Goldstone, 1998;237

Livingston, Andrews, & Harnad, 1998), predicting that training would cause morphs between Trained objects238

to be perceived as more categorically distinct — that is, morphs in the middle of the range should become more239

consistently recognized as the majority object, resulting in a steeper slope of the psychometric function relating240

the morphing proportion to object labels. The rationale for this prediction is that differentiation should reduce241

features shared between object representations such that intermediate morphs are represented more in terms of242

the distinguishing features of the majority object, supporting more consistent identification of that object.243

We adapted our training task in several ways to enhance our ability to measure the hypothesized perceptual244

changes. Estimating the parameters of psychometric curves requires many trials, so we used a reduced stimulus245

set of two categories with four objects each (furniture: table, bench, bed, chair; cars: sedan, limo, SUV, smart-246

car; Fig. 5A). To enable morphing of these objects, we commissioned an artist to design 3D models of each247

object with the same number of vertices per category, and then generated intermediate objects via interpolation248

between these endpoint objects. To increase the probability of inducing transfer effects, we also increased the249

number of training trials per object from 5 to 16. Finally, we removed feedback from the training phase to more250

cleanly isolate the consequences of production as such.251

Each participant was randomly assigned one of the two categories and was trained to draw two of the ob-252

jects in that category (Trained). The other two objects (Control) served as a baseline for changes in recognition.253

On each training trial, participants were cued with one of the Trained endpoint objects (trial-unique viewpoint)254
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and then made a drawing of it. Before and after training, participants performed a recognition task in which255

they discriminated morphs of the two Trained objects or morphs of the two Control objects. On each trial of256

this task, participants were briefly presented with a morph and made a forced-choice judgment about which257

of the two objects they saw (Fig. 5B). Responses were fit with a logistic function, separately for Trained and258

Control pairs, and for pretest and posttest. Our key prediction concerned the slope parameter from the fitted259

logistic: enhanced perceptual discriminability should lead to a greater increase in slope for Trained vs. Control260

pairs (Fig. 5C).261

bed chair

tablebench

SUV smart car

sedan limo

furniture car

morph level

p(
“s

ed
an

”)

pre
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Δslope = post - preSUV smartcar

limo sedan
1s

(stim)

1.5s
(ISI)

A

B C

Figure 5: A: Stimuli in the categorical perception experiment belonged to two object categories (furniture, cars)
containing four objects each (table, bench, bed, chair; sedan, limo, SUV, smartcar). Morphs were generated by
linearly interpolating between endpoint objects. B: Before and after training, participants performed an object
recognition task. On each trial, participants were briefly presented (duration = 1000ms) with a morph between
either the two Trained endpoints or the two Control endpoints, and made a 2AFC judgment about which of
the two objects they saw. C: Psychometric data were fit with a logistic function, whose slope parameter was
predicted to increase as a consequence of training, if drawing impacts recognition.

Slope estimates did not differ between Trained and Control pairs during the pretest (p = 0.473, boostrapped262

resampling), which was expected since there was no difference between conditions prior to training. After263

training, the slope for the Trained pair reliably increased (p = 0.004; Fig. 6A), and more than for the Control264

pair (p = 0.005), whose slope did not change (p = 0.533). The threshold parameter did not change significantly265

for either condition (Trained: p = 0.092; Control: p = 0.308). These results show that visual production training266
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can generalize to a recognition task, lending key support to our hypothesis that production and recognition267

engage a common high-level representation for objects.268
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Figure 6: Mean change in slope parameter of logistic function fit to psychometric data from pretest and posttest
for Trained and Control object pairs. A: Production participants (N=72) drew the two Trained objects 16 times
during training. B: Observation participants (N=72) viewed stroke-by-stroke reconstructions of each drawing
made by their matched Production participant. *p < 0.05. **p < 0.01. Error bars represent 1 s.e.m.

The question raised earlier about the role of perceptual experience during drawing is especially salient in269

this study, which employed a perceptual measure. That is, enhanced perceptual discrimination for the Trained270

pair may reflect perceptual learning due to greater visual exposure to these objects while they were being271

drawn repeatedly. To address this, we conducted another experiment modeled on the earlier dynamic replay272

experiment, in which a new sample of participants (N=72) viewed stroke-by-stroke reconstructions of drawings273

during training, but did not produce any drawings themselves. Although such observation improved drawing274

performance in the earlier experiment, we hypothesized that transfer to a recognition task would require more275

significant representational changes, as would be induced by drawing, and thus that this group might not show276

improved perceptual discrimination.277

Indeed, there was no reliable change in slope for either the Trained pair (p = 0.475; Fig. 6B) or Control278

pair (p = 0.332), and no difference between these conditions (p = 0.169). Moreover, there was an interaction279

between training group and condition (p = 0.002), with a larger increase in slope for Trained vs. Control in the280

participants who were trained to draw than in those who observed somebody else drawing. The threshold pa-281

rameter did not change for either condition (Trained: p = 0.838; Control: p = 0.147). These results suggest that282

the generalization of drawing training to perceptual discrimination was driven by aspects of visual production283

beyond observation of the consequences of action.284
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Discussion285

The present study investigated the relationship between the ability to recognize objects — a biological endow-286

ment shared with other species – and to produce images of objects by drawing – a relatively recent development287

from human prehistory. We examined the hypothesis that these two behaviors are at least partly served by a288

common representational substrate for objects.289

We discovered that a deep neural network model trained only on photos succeeded in recognizing draw-290

ings, suggesting that this kind of abstraction can arise from the same neural architecture evolved to make sense291

of natural visual inputs (Sayim, 2011). These findings provide a computational basis for understanding how line292

drawings can drive object recognition so effectively (Biederman & Ju, 1988; Walther, Chai, Caddigan, Beck,293

& Fei-Fei, 2011). We also found that learning how to draw increased the discriminability of trained object294

representations, as quantified by improved recognition performance and reduced feature overlap in the model295

and by enhanced categorical perception of trained objects in human participants. These findings are reminiscent296

of the way other generative behaviors such as memory retrieval (Slamecka & Graf, 1978; Crutcher & Healy,297

1989; Karpicke & Roediger, 2008) and self-explanation (Chi, De Leeuw, Chiu, & LaVancher, 1994; Williams298

& Lombrozo, 2013) can powerfully guide learning.299

The learning mechanisms responsible for such changes are not yet known, but a promising avenue for-300

ward is to build on extant theories of how differentiation between mental representations occurs. Two broad301

classes of candidate mechanisms may be particularly worthwhile to test: (1) strengthening of diagnostic fea-302

tures of objects through increased weighting of relevant dimensions (Goldstone, 1998), and (2) weakening303

of features that overlap between objects through competitive dynamics (Norman, Newman, Detre, & Polyn,304

2006). These mechanisms are not mutually exclusive, as certain learning rules, such as non-monotonic plas-305

ticity (Lewis-Peacock & Norman, 2014), can produce both strengthening and weakening depending on the306

amount of activation. Nevertheless, they do make different predictions about learning outcomes under certain307

conditions. For instance, in the context of prolonged competition between two similar objects (e.g., alternating308

drawing of sheep vs. goat), the first mechanism could stabilize and refine object representations in a generalized309

manner, whereas the second mechanism would exaggerate differences specifically along the axis separating the310

competing objects in representational space.311

The claim that visual production recruits and refines the same high-level object representation used during312

visual recognition may appear to be in tension with the distinction between vision-for-action and vision-for-313

recognition, which are functionally segregated into dorsal and ventral streams, respectively (Goodale & Milner,314

1992). However, our findings can be reconciled with this view by considering the type of action investigated315
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here. Namely, our drawing task involves producing a recognizable image of an object held in mind rather316

than reaching toward or manipulating a physical object in the world. Couched this way, the act of drawing317

coincides with a core function of the ventral stream – the computation of abstract, geometric properties of318

objects that are diagnostic of their identity (DiCarlo, Zoccolan, & Rust, 2012). We do not claim that ventral319

stream representations are sufficient for visual production, as rendering a physical image still requires translating320

these features into a motor program to execute the appropriate sequence of actions.321

Indeed, future studies could investigate how processes engaged uniquely during visual production but322

not recognition affect object representations. For example, the role of motor execution could be examined by323

having participants trace over previously-made drawings, and the role of mental construction could be exam-324

ined by having participants simulate drawing objects without producing a physical image. The rich sensory325

feedback generated during production may play an important role in learning, as the visual traces of current326

and prior movements provide an explicit basis for performance monitoring and error-based updating (Wolpert,327

Diedrichsen, & Flanagan, 2011; Taylor, Hieber, & Ivry, 2013). The functional value of these external traces328

is important to understand because they are unique to visual production and not shared with other generative329

cognitive processes known to influence learning, such as selective attention (Chun & Turk-Browne, 2007; Un-330

capher & Rugg, 2009; Fan & Turk-Browne, 2013) and memory retrieval (Slamecka & Graf, 1978; Crutcher &331

Healy, 1989; Karpicke & Roediger, 2008).332

In the present study, the benefits of training for production and recognition were specific to the objects333

participants had practiced drawing. However, a hallmark of learning is generalization; thus, an important334

goal for future research is to understand the training conditions under which participants improve (or worsen)335

their ability to draw objects they did not practice, a form of skill learning also known as structural learning336

or learning-to-learn (Braun, Aertsen, Wolpert, & Mehring, 2009; Lake, Salakhutdinov, & Tenenbaum, 2015).337

Various factors merit detailed investigation, including the amount of training, variability in the objects and cat-338

egories practiced (Schmidt & Bjork, 1992; Wrisberg & Liu, 1991), the type of performance feedback returned339

(Taylor et al., 2013; Nikooyan & Ahmed, 2015), and the effects of progressive training sequences from simpler340

to more complex visual forms, as advocated in classic instruction manuals (Ruskin, 1881).341

Humans draw for many reasons: including to depict, to record, to plan, to explain, and to create (Tversky,342

2010). Just as investigations of both verbal comprehension and production are indispensable to theories about343

linguistic communication, a more complete understanding of visual communication will require examining344

how visual recognition and production interact to support behavioral goals. Ultimately, inquiries into the psy-345

chological basis of visual production may shed new light upon the origins of symbolic writing systems for346

communication, and the nature of our ability to apprehend abstract meanings from visual artifacts.347
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Methods348

Model-based feature analysis of drawings and photos349

Imageset. We obtained 8,400 drawings of 105 common, real-world objects from an existing corpus (Eitz et350

al., 2012). From the Imagenet database (Deng et al., 2009), we acquired 22,843 photographs of the same 105351

objects, depicting diverse exemplars from each object category embedded in natural backgrounds.352

Computational model. We extracted their features using a deep convolutional neural network model that had353

been developed using hierarchical modular optimization, a procedure for efficiently searching among mixtures354

of convolutional neural networks for candidate hierarchical model architectures that achieve high performance355

on basic-level object recognition (Yamins et al., 2014). This training procedure was performed on an indepen-356

dent image dataset containing millions of photographs from hundreds of object categories other than the 105357

categories in our study (Deng et al., 2009). In addition to approaching human-level performance in recognizing358

these objects, the higher layers of the model quantitatively predict neural population responses in high-level359

visual cortex (e.g., V4 and IT; Yamins et al., 2014; Hong et al., 2016). As such, this model was an attractive360

candidate for investigating object recognition invariant to image domain.361

Two generations of the hierarchical convolutional neural network model were employed here. The first-362

generation model (Yamins et al., 2014) was used for the initial experiments, including to extract features from363

drawings and photographs for the representational distance analyses (Fig. 1) and to provide object-label feed-364

back to participants in the visual production experiment (Fig. 2). The second-generation model (Hong et al.,365

2016), which became available partway through the study, was used for all subsequent feature analyses, owing366

to its superior performance, resulting from adding error backpropagation to the training of filter weights.367

Representational distance analysis. Separately for drawings and photographs, we averaged the feature vectors368

within each object class for a given layer and then computed a layer-specific matrix of the Pearson correlation369

distances between these average vectors across classes (Kriegeskorte et al., 2008). Formally, this entailed370

computing: RDM(R)i j = 1− cov(~ri,~r j)√
var(~ri)·var(~r j)

, where ~ri and ~r j are the mean feature vectors for the ith and jth371

object classes, respectively. Each of these 105x105 representational dissimilarity matrices (RDMs) provides372

a compact description of the layout of objects in the high-dimensional feature space inherent to each layer of373

the model. Following Kriegeskorte et al. (2008), we measured the similarity between object representations374

in different layers by computing the Spearman rank correlations between the RDMs for those corresponding375

layers.376
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Estimates of standard error for the Spearman correlation between RDMs (i.e., between domains or between377

layers) were generated by jackknife resampling of the 105 object classes. This entails iterating through each of378

the 105 subsamples that exclude a single class, computing the correlation on each iteration, then aggregating379

these values. Specifically, the jackknife estimate of the standard error can be computed as: s.e.( jackkni f e) =380 √
n−1

n ∑
n
i=1(x̄i− x̄(.))2, where x̄i is the correlation based on leaving out the ith object class and x̄(.) = 1

n ∑
n
i x̄i, the381

mean correlation across all subsamples (of size 104). This estimate of standard error allows us to construct 95%382

confidence intervals and compute two-sided p-values for specific comparisons (Tukey, 1958; Efron, 1979).383

Classification of drawings. Model features were also used to train linear SVM classifiers (http://scikit-384

learn.org/) with L2 regularization to evaluate the degree to which category information was linearly accessible385

in each model layer. Linear classifiers determine a linear weighting of the feature activations which best pre-386

dicts classification labels on a sample set of training images. Predictions are then made for images held out387

from the training set, and accuracy is assessed on these held-out images. The robustness of classifier accuracy388

scores was determined using stratified 5-fold cross validation on 80% train/20% test class-balanced splits.389

Visual production training experiment390

Stimuli. In order to identify groups of objects that are drawn similarly prior to training, we applied a clustering391

algorithm (affinity propagation with damping = 0.9; Frey & Dueck, 2007) to the features extracted from the392

105-object drawing corpus described above (Eitz et al., 2012). This yielded 16 clusters containing between 3393

and 20 objects each. Among clusters containing at least 8 objects, we defined 8 visual categories containing 8394

objects each (Table 1). Each participant was randomly assigned two of these categories, and only the 16 objects395

from these two categories appeared as drawing targets during their session.396

Category Objects Mutual Confusion Rate
1 airplane, blimp, crocodile, fish, helicopter, ship, trumpet,violin 24.4%
2 bed, bench, chair, couch, harp, ladder, laptop, table 59.0%
3 bell, frying pan, hat, pear, shoe, socks, tablelamp, teapot 29.3%
4 cat, cow, elephant, horse, kangaroo, pig, rabbit, sheep 55.7%
5 banana, dolphin, duck, mosquito, mouse, seagull, shark, swan 41.0%
6 floor lamp, fork, guitar, hammer, microphone, shovel, snake, spoon 37.1%
7 cactus, crab, giraffe, lobster, palm tree, pineapple, tiger, zebra 39.2%
8 SUV, bicycle, bus, motorbike, race car, train, truck, van 77.3%

Table 1: Objects belonged to eight visual categories, each containing eight items. These categories were derived
by applying a clustering procedure to the high-level feature representation of drawings from the Eitz et al.
(2012) corpus. Mutual confusion rate reflects the percentage of human labeling errors that involved another
object belonging to the same category as the target object (uniform = 11%).
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Experimental procedure. A total of 593 unique participants, who were recruited via Amazon Mechanical397

Turk (AMT), completed the experiment. Owing to the novelty of the paradigm employed in this study, we398

could not rely upon preexisting studies to estimate effect sizes. Instead, we used our experimental design as a399

guide to develop a target sample size that included a few participants (i.e., at least 5) for each of the 56 possible400

assignments of condition (Trained, Near, and Far) to pairs of categories (out of eight total), and for each of401

the image-cue and verbal-cue task conditions (see below). Participants were paid a base amount of $1.50402

and up to a $3.00 bonus for high task performance. In this and all subsequent studies, participants provided403

informed consent in accordance with the Princeton IRB. Allocation of participants to groups was conducted404

anonymously via AMT, and thus the investigators were effectively blinded to the assignment of participants to405

group and condition during data collection.406

Drawings were generated as part of a game (“Guess My Sketch”) in which participants earned points by407

communicating visual concepts to a blue avatar (Fig. 2C). Participants initiated each trial by clicking a central408

gray square (500 x 500 pixels). Then, a red avatar cued participants to draw an object with either a photo409

(N=311) or word (N=282). In the image-cue condition, each trial used a unique photograph of the target object410

on a natural background and participants were instructed to “make a drawing in which someone else is likely to411

recognize the object depicted ” but were informed that the drawing did not have to exactly depict what was in412

the photo. In the verbal-cue condition, the label of the target object appeared below the square. After cue offset413

the blue avatar appeared, prompting the participant to begin drawing.414

Drawing responses were collected on a digital canvas (500 x 500 pixels) embedded in a web browser415

window using Raphael Sketchpad (https://ianli.com/sketchpad). Participants drew in black ink (pen width =416

5 pixels) using the mouse cursor, and were not able to delete previous strokes. There were no restrictions on417

how long participants could take to make their drawings, and on average they spent 30.7 s per drawing (95%418

confidence interval = 8 - 86s). After clicking a submit button, the blue avatar listed its top three guesses as to419

the identity of the drawn object, thus providing participants with immediate feedback about the quality of their420

drawing. Participants earned points if any of these guesses were correct, proportional to its position in the top421

three.422

These guesses were produced from a 64-way support vector machine (SVM) linear classifier. The classifier423

was pre-trained on model responses to photographs of the objects used in this study. On each drawing trial, the424

features of the submitted drawing were extracted from the model’s top layer in real time and passed through the425

classifier. The output was a list of 64 margin values, corresponding to the level of confidence that the drawing426

belonged to each object class. The three objects with the most positive margin values (highest confidence) were427

returned to the participant as guesses. In the verbal-cue condition, when none of the top three guesses were428
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correct, the rank of the target object in this ordered margin list was also returned to the participant (e.g., “Too429

bad...‘giraffe’ would have been my 9th guess.”). This target rank provides a non-parametric measure of the430

goodness-of-fit of the submitted drawing to the representation of the target object in the model, and so it was431

used as the primary dependent measure of drawing quality.432

Model validation: category assignments. To validate the model’s representations of the drawings from this433

experiment, we extracted their features from the top layer. Separately for the image-cue and verbal-cue condi-434

tions, we computed the average feature vectors for all drawings of the same object and computed correlation435

matrices of these average vectors. In both cue conditions, the objects within each of the 8 categories were436

more similar to each other (image-cue: r = 0.633, verbal-cue: r = 0.623) than to objects in other categories437

(image-cue: r = -0.083, verbal-cue: r = -0.072; ps<0.001 based on object-level resampling). The matrices438

from the two cue conditions were also highly similar to each other (Spearman’s r = 0.897), showing that the439

model successfully captured object identity in both task settings. Moreover, both matrices were highly similar440

to that computed based on top-layer features of drawings of these 64 objects from the Eitz et al. (2012) drawing441

corpus (image-cue/original: r = 0.789; verbal-cue/original: r = 0.818).442

Model validation: measuring human drawing recognition. To validate object-label feedback from the clas-443

sifier, an independent cohort of human participants (N=327) provided three labels for each drawing from the444

image-cue condition, in order of confidence, from the set of 64 object labels. To compute d’ and compare445

human and model recognition performance, we analyzed only the top label provided by humans and the model.446

We found that human and model recognition (d’) were highly consistent across objects (Spearman’s r = 0.649,447

Fig. 1D). We additionally computed the mutual confusion rate, defined as the percentage of (first-guess) label-448

ing errors that involved another object belonging to the same category as the target object. If these errors were449

spread uniformly over all distractors, the expected mutual confusion rate would be: 7/63 = 0.11. All categories450

exhibited mutual confusion rates reliably above uniform responding (across objects within category: t7s > 2.76,451

ps < 0.028), which further validates category assignments.452

Control experiment: viewing finished drawings. 593 participants were recruited via AMT and paid a base453

amount of $2.00 and up to a $3.00 bonus for high task performance. Each participant was matched with one of454

the original participants and received the same sequence of trials. On each training trial, they were presented455

with the finished drawing produced by the matched participant. Participants had the goal of predicting the456

model’s top guess for the drawing (this deviated from the target label on approximately 60% trials). Participants457

typed their response into a text field, and only the labels of the 64 objects in the set were accepted. They had to458

wait 4000 ms before being able to submit their response, to encourage them to pay attention to the criteria used459
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by the model to classify drawings. Participants drew all objects once each before and after training, allowing460

us to measure the consequences of viewing finished drawings on drawing performance.461

Control experiment: observing stroke dynamics. 593 participants were recruited via AMT and paid a base462

amount of $2.00 and up to a $3.00 bonus for high task performance. Again, each participant was matched with463

one of the original participants and received the same sequence of trials. On each trial, they observed a stroke-464

by-stroke reconstruction of the drawing produced by their matched participant, with a stroked added every 500465

ms. They performed the same prediction task with 4000-ms waiting period from the start of the animation,466

ensuring that at least eight strokes appeared (or all of the strokes if eight or fewer). Participants drew all objects467

once each before and after training, allowing us to measure the consequences of observing stroke dynamics on468

drawing performance.469

Statistics. Before performing statistical tests, we visualized data and examined assumptions. Quantile-quantile470

plots revealed a reasonable approximation to normality, an assumption of the paired t-test. Mauchly’s test of471

sphericity indicated that the assumption of sphericity for the repeated-measures ANOVAs had not been violated.472

All p-values reported are two-sided. We also found that employing non-parametric analysis techniques (i.e.,473

bootstrap resampling) gave similar results, suggesting that the choice of test (and assumptions therein) does not474

impact our conclusions. We did not have a prespecified way of handling outliers in this study, so we report475

analyses with all data included.476

Categorical perception experiment477

Stimuli. The four objects in each of the two categories were selected to allow the construction of a quartet of478

3D mesh models (Autodesk Maya) sharing the same vertices, thereby enabling quantitatively precise morphing479

and full control over category-orthogonal image parameters (e.g., pose, size, background). This resulted in six480

axes (‘morphlines’) connecting all pairs of objects within each category and 12 total axes for both categories.481

For each axis, we derived a perceptually uniform space from which to sample morphs, in order to increase482

sensitivity for measuring the slope of the psychometric function. As a first step, we rendered a series of 12483

morphs for each axis, linearly interpolated between the endpoint objects. Each morph was rendered from a484

10◦ viewing angle (i.e., slightly above) at a fixed distance on a gray background in 40 viewpoints (i.e., each485

rotated by an additional 9◦ about the vertical axis). We recruited a separate cohort of 40 participants via AMT to486

provide 288 identification judgments each for random subsets of these morphs, yielding 80 baseline judgments487

per morph (two per viewpoint). For each morph (e.g., sedan/limo), we computed the proportion of trials that488

the morph was identified as being one of the endpoint objects (e.g., sedan) and fit these data with a logistic489
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function to derive a population psychometric curve. We used this curve to estimate the morphing levels that490

produced 0% (or the minimum), 20%, 40%, 60%, 80%, and 100% (or the maximum) identifications as one491

of the endpoint objects. The resulting six morphs per axis evenly spanned the subjective transition between492

endpoints and were included in the training study.493

Category Objects
Cars sedan, limo, SUV, smartcar
Furniture table, bench, bed, chair

Table 2: Endpoint objects included in transfer experiments.

Experimental procedure. Based on initial piloting, we developed a target sample size of 72 participants,494

across whom all condition and object assignments would be fully counterbalanced. Of the original group495

of 72 participants recruited from AMT, 25 were excluded because their data could not be fit with a logistic496

function in at least one condition either before or after drawing training. This occurred either because of497

non-monotonicity in their psychometric curves (i.e., inconsistent responding) or hypersteepness of the slope498

parameter (i.e., approaching infinity). We recruited additional participants to fill these sessions to ensure that499

the design was counterbalanced. In total, 97 participants completed the task and received $5.00.500

At the beginning of each training session, participants were familiarized with each of the eight endpoint501

objects that might appear. On each familiarization trial, an animation of one of the objects continuously rotating502

was played. Objects appeared on a gray background at the same viewing angle, distance, and viewpoints used in503

the experiment. The name of the object was displayed in large font above the animation (“This is a SEDAN.”).504

The participant viewed the object completing at least one full rotation (6 s) before proceeding to the next object.505

After familiarization, participants completed three phases of the experiment: pretest discrimination, draw-506

ing training, and posttest discrimination. During training, participants practiced drawing two objects (Trained)507

from one category; the other two objects (Control) from that category served as a baseline. The Trained ob-508

jects were drawn 16 times each during the training phase (32 total trials), in a randomized order and cued with509

trial-unique viewpoints. No feedback was provided but the task was otherwise identical to the earlier drawing510

training study.511

Before and after training, participants were tested on perceptual discrimination of the Trained object pair,512

as well as the unpracticed Control object pair. All 12 morphs (six morphs per pair) were shown 12 times each513

during both the pretest and posttest, always from a trial-unique viewpoint. On each trial, participants were514

briefly presented (1000 ms) with the morph and made a forced-choice judgment about which of the two objects515

they saw by clicking one of two labeled buttons that appeared below the image. The assignment of labels516
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to buttons was randomized across trials. Participants who did not achieve greater than 80% accuracy on the517

unambiguous 0%/100% endpoint objects in the pretest phase did not proceed to the training phase.518

For each participant and for both the pretest and posttest, we constructed psychometric curves for the519

Trained and Control object pairs, relating different morphing levels to the proportion of trials (out of 12) in520

which a given object was chosen. These curves were fit with a logistic function p(x) = 1
1+e−k(x−x0)

using the521

Levenberg-Marquardt algorithm as implemented in Scipy (https://www.scipy.org/), where p(x) is the proportion522

of trials on which the first object was chosen, k represents the slope, and x0 the midpoint of the sigmoid. If523

drawing enhances the discriminability of Trained objects, then morphs in the middle of the range to become524

more consistently recognized as the majority object, and k for the Trained pair should increase from pretest to525

posttest more than for the Control pair.526

Control experiment: observing stroke dynamics. For each of the 72 sessions in the main experiment, we527

recruited a naive participant to repeat the same sequence of trials, except that during the training phase, they528

observed a stroke-by-stroke reconstruction of the drawing produced by their matched participant, with a stroked529

added every 500 ms. Of this initial new cohort of 72 participants, 16 were excluded because their data could530

not be fit with a logistic function in at least one condition either before or after drawing training. As in the main531

experiment, we recruited additional participants to fill these sessions to ensure that the design was counterbal-532

anced. In total, 88 participants completed the task and received $5.00. Before and after training, all participants533

were tested on perceptual discrimination of the Trained and Control object pairs.534

Statistics. Before performing statistical tests, we visualized data and examined assumptions. Quantile-quantile535

plots revealed that data did not follow a normal distribution, so classical inference tests (e.g., ANOVA, t-test)536

that rely upon assumptions of normality were not appropriate. Instead, we employed bootstrap resampling537

(Efron & Tibshirani, 1986) to construct 95% confidence intervals and compute p-values for key parameters and538

comparisons of interest (i.e., change in slope from pretest to posttest). This entailed resampling 72 participants’539

worth of data with replacement, then computing the mean, on each of 10,000 iterations, for each experiment.540

The two-sided p-value was defined as the proportion of these iterations on which this mean fell below zero,541

multiplied by two.542

Code availability543

The code for the analyses presented in this article will be made publicly available in a figshare repository upon544

acceptance of this manuscript, and shared with editors and reviewers upon request.545
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