
1 

 

Adaptive Cortical Parcellations for Source Reconstructed 

EEG/MEG Connectomes 

 

 

 

 

Seyedeh-Rezvan Farahibozorg
1,2

 

Richard N Henson
1 

Olaf Hauk
1 

1
MRC Cognition and Brain Sciences Unit, Cambridge, UK 

2
University of Cambridge, Cambridge, UK  

 

 

 

 

Corresponding author: 

Seyedeh-Rezvan Farahibozorg 

MRC Cognition and Brain Sciences Unit 

15 Chaucer Road 

Cambridge, UK, CB2 7EF 

Phone: +44 (0)1223 355294 

Email: rezvan.farahibozorg@mrc-cbu.cam.ac.uk 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2017. ; https://doi.org/10.1101/097774doi: bioRxiv preprint 

https://doi.org/10.1101/097774
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract  

There is growing interest in the rich temporal and spectral properties of the brain’s functional 

connectome that are provided by Electro- and Magnetoencephalography (EEG/MEG). However, the 

problem of leakage between brain sources that arises when reconstructing brain activity from EEG/MEG 

recordings outside the head makes it difficult to distinguish true connections from spurious connections, 

even when connections are based on measures that ignore zero-lag dependencies. In particular, 

standard anatomical parcellations for potential cortical sources tend to over- or under-sample the real 

spatial resolution of EEG/MEG. By using information from the cross-talk functions (CTFs) that objectively 

describe leakage for a given sensor configuration and distributed source reconstruction method, we 

introduce methods for optimising the number of regions of interest (ROIs) while simultaneously 

minimising the leakage between them. More specifically, we compare two image segmentation 

algorithms: 1) a split-and-merge (SaM) algorithm based on standard anatomical parcellations and 2) a 

region growing (RG) algorithm based on all the brain vertices with no prior parcellation. Interestingly, 

when applied to minimum-norm reconstructions of data from 102 magnetometers, 204 planar 

gradiometers and 70 EEG sensors, both algorithms yielded approximately 70 ROIs despite their different 

starting points, suggesting that this reflects the resolution limit of this particular sensor configuration 

and reconstruction method. Importantly, when compared against standard anatomical parcellations, we 

found significant improvements in both sensitivity and distinguishability of the ROIs. Furthermore, by 

simulating a realistic connectome with a single hub, we show that the choice of parcellation can have 

significant impact on the outcome of graph theoretical analysis of the source-reconstructed EEG/MEG. 

Thus, CTF-informed, adaptive parcellations allow a more accurate reconstruction of functional 

connectomes from EEG/MEG data. 
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1 Introduction 

Connectivity analyses  of source estimated Electro- and Magnetoencephalography (EEG/MEG) can 

provide a millisecond-by-millisecond map of functional and effective interactions (Bastos & Schoffelen 

2016; Greenblatt et al. 2012) among multiple brain areas in resting state as well as during task 

performance  (Brookes et al. 2016; Colclough et al. 2016; Palva et al. 2010). Consequently, there has 

been growing interest in reconstructing the human brain connectome to obtain time- and frequency-

resolved whole-brain networks (Palva & Palva 2012). Studies on structural and functional MRI 

connectomics have revealed important properties of the brain in health and disease, particularly 

concerning changes in “hubs” and the associated “rich club” of highly-connected regions (Bullmore & 

Sporns 2009; Crossley et al. 2014; van den Heuvel & Sporns 2011). The growing field of EEG/MEG 

connectomics is anticipated to take this approach further by vastly increasing the temporal and spectral 

resolution of the human connectome (Brookes et al. 2011; de Pasquale et al. 2010). However, the spatial 

resolution of EEG/MEG data is seriously limited, because several thousand sources of activation in the 

brain must be estimated from maximally a few hundred sensor recordings.  

The limited spatial resolution causes the so-called leakage or cross-talk problem for linear and 

linearly constrained distributed EEG/MEG source estimation: activity estimated in one region of interest 

(ROI) can be affected by leakage from locations outside this ROI, possibly including locations at large 

distances (Lachaux et al. 1999; Schoffelen & Gross 2009; Hauk et al. 2011). This poses serious challenges 

for the interpretation of connectivity results, since increased connectivity between two ROIs may not 

only be caused by true connections between the time courses of these ROIs, but also by signals leaked 

into these ROIs from other brain locations, thus leading to spurious connectivity findings (Colclough et 

al. 2015). This is particularly important for the estimation of whole-brain connectivity and applications of 

graph theoretical measures. For example, one ROI in a network may be identified as a hub (i.e. showing 

strong connections to several other ROIs) if it receives strong leakage from multiple other ROIs.  

Most previous EEG/MEG studies have adopted parcellations from structural or fMRI research for 

whole-brain connectivity analysis (Colclough et al. 2016; Brookes et al. 2016; Tewarie et al. 2016). Some 

studies have orthogonalised source-reconstructed timeseries across ROIs, in order to remove any zero-

lag correlation, such as that induced by leakage (Brookes et al. 2012; Hipp et al. 2012; Colclough et al. 

2015). While this may be suitable if connectivity is estimated from more slowly-varying amplitude 

envelopes of ongoing oscillatory activity, it also potentially removes true zero-lag connectivity that is not 

an artefact of cross-talk. Additionally, considering the spatial resolution of EEG/MEG, anatomical 
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parcellations may not be optimal and recent studies have suggested that EEG/MEG-based parcellations 

can be more informative (Brookes et al. 2016). The ideal parcellation should be sensitive to as much of 

the cortex as possible, with each ROI having high sensitivity to activity arising from itself, and low 

leakage from other ROIs. CTFs can be used to characterise leakage among different brain areas (Liu et al. 

1998; Hauk et al. 2011). Some previous studies have suggested using CTFs to minimise leakage between 

a small number of ROIs. Wakeman (2013), for example, sub-selected a number of vertices as 

representative for each of a few ROIs that had minimal cross-talk with the other ROIs, while Hauk and 

Stenroos (2014) proposed a method that optimises spatial filters for source reconstruction in order to 

produce zero cross-talk among a small set of brain sources and minimal cross-talk from other sources.  

While these methods are optimised for the case of few spatially distinct sources, their extension to 

whole-brain connectivity analysis is limited. Palva et al. (2010) introduced a parcellation for graph 

theoretical analysis of single subject data by taking into account the source-sensor geometry of 

EEG/MEG. They used a clustering algorithm to parcellate the cortex into 365 (i.e. equal to the number of 

sensors) patches, based on phase synchrony patterns estimated from simulated data generated from 

white noise in source space. Korhonen et al. (2014) introduced sparse weights to collapse the source 

space based on the forward and inverse modelling of simulated noise in the source space. Their method 

aims at assigning optimum vertices to a fixed set of ROIs and extracting the ROI time course as a 

weighted sum of the assigned vertices. This method utilises phase coherence between the true and 

estimated sources in order to maximise the fidelity of assigned vertices to the recipient ROI. Unlike the 

aforementioned Palva et al.’s method (2010) the sparse weights approach is suitable for group as well as 

single subject analysis and is based on the anatomical parcellations. The sparse weights approach 

provides a novel way of extracting ROI time courses based on the spatial limitations of EEG/MEG, 

however, obtaining an adaptive parcellation that can optimise both the number and location of ROIs, as 

well as vertex selection within those ROIs, with respect to EEG/MEG spatial limitations has remained a 

challenge (Korhonen et al. 2014; Bullmore & Bassett 2011).  

Here, we utilise CTFs as a direct measure of spatial leakage to address the aforementioned 

limitations systematically. For this purpose, we have implemented two CTF-informed image 

segmentation algorithms (Gonzalez & Woods 2007) that parcellate the cortical surface into the 

maximum number of distinguishable ROIs. In the first approach, we have started from standard 

anatomical parcellations and modified the ROIs using a CTF-informed split-and-merge (SaM) algorithm. 

The main idea is to merge ROIs that produce highly overlapping CTFs, split ROIs that produce 

distinguishable patterns of cross-talks, remove ROIs to which EEG/MEG show low sensitivity, and for 
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each ROI identify a group of representative vertices that show high sensitivity and specificity to that 

particular ROI as compared to the rest of the brain. This approach is suitable for studies that require a 

particular anatomical labelling of ROIs. In the second approach, we start from all the brain vertices with 

no prior parcellation. A CTF-informed region growing algorithm is used to create ROIs around the 

vertices that show highest sensitivity and specificity of CTFs on the cortex. These ROIs are then 

optimised with respect to specificity and sensitivity using an SaM algorithm. This approach should prove 

useful for studies where no strict anatomical labels are required. 

Both algorithms yield adaptive parcellations since CTF patterns may change depending on the 

choice of head models, inverse operators, measurement configurations (i.e. EEG, MEG or their 

combination) and signal-to-noise ratios (SNR) of the data. Additionally, the proposed algorithms can use 

data from multiple subjects and yield parcellations suitable for group analysis through morphing the 

cortical surfaces from single subjects to a standard average space (e.g. MNI space). We evaluate the 

performance of the proposed algorithms by measuring the sensitivity and specificity of the CTFs of the 

final ROIs to themselves as compared to the rest of the brain, and comparing performance to those of 

two standard structural atlases in the Freesurfer software (Desikan-Killiany (Desikan et al. 2006) and 

Destrieux (Destrieux et al. 2010)). We further validate the performance of our approaches for spectral 

connectivity and graph theoretical analyses of simulated event-related data with realistic levels of noise 

in source space. We show that an EEG/MEG-adaptive parcellation results in a more accurate network 

reconstruction for both zero-lag and non-zero-lag connectivity metrics. 

2 Theory 

2.1 EEG/MEG source estimation and spatial resolution 

In this section we introduce the concepts of the resolution matrix and cross-talk functions, which 

are the basis for the parcellation algorithms described in later Methods section.  

2.1.1 EEG/MEG forward and inverse solution 

In forward modelling of EEG/MEG data, assuming a linear relationship between data and 

sources, the leadfield matrix (G) maps the dipolar sources of activity on the cortex to the electric and 

magnetic signals measured using EEG and MEG sensors (Hämäläinen & Ilmoniemi. 1994). Therefore, 

signal at each sensor is modelled as a weighted sum of the activities of all the sources in the brain: 

� � ��      ( 1 ) 
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where Y is an Nch x Nt matrix of the measured signal at the sensor locations, the time-invariant matrix G 

denotes the leadfield of size NchxNs and S denotes the source activity matrix which is of size Ns x Nt (Nch : 

number of recording channels , Nt : number of time points, Ns : number of sources/vertices/voxels). 

For EEG/MEG, linear source estimation methods are often employed in order to obtain a 

solution for S in Equation 1, i.e. if D is the matrix of the measured data (which contains activity from 

brain sources in Equation 1 plus noise), the source activity is estimated as: 

�� � �� � � 	� 
  �� � ��� 
 �� � 
� 
 ��   ( 2 ) 

where W is the inverse operator of size NsxNch that maps measurements to the sources, �� is the matrix 

of estimated sources of size Ns x Nt and � denotes the measurement noise matrix of size Nch x Nt and R is 

the resolution matrix.   

2.1.2 Resolution matrix and CTFs 

In Equation 2, the resolution matrix R = WG can be used to quantify the relationship between 

true and estimated sources. The diagonal elements of R indicate the sensitivity of each estimated source 

to itself, and off-diagonal elements quantify the degree to which estimated sources are affected by the 

signal from all other sources in the brain (Grave De Peralta Menendez et al. 1997; Liu et al. 1998). An 

accurate estimation of source activity in the brain is only possible if G is a full-ranked square matrix (i.e. 

equal number of sensors and sources) and in the absence of measurement noise. In such an ideal 

scenario W would be the inverse of G, R = G-1G = I would be an identity matrix and the estimated 

sources would precisely match the true sources. However, the EEG/MEG inverse problem is a highly 

underdetermined problem and the resolution matrix has non-zero off-diagonal elements. These off-

diagonal elements introduce the leakage or cross-talk in the EEG/MEG inverse solutions. 

More specifically, the i
th

 row of R describes the cross-talk from all sources in the brain into the 

estimate for activity of the i
th

 source. These rows have therefore been called cross-talk function (CTFs) 

(Liu et al. 1998; Hauk et al. 2011). Therefore, the cross-talk that the i
th

 source receives from the j
th

 source 

is defined as: 

����� �  ��� �  ∑ ����������      ( 3 ) 

where n is the number of sources/vertices in the brain. As explained above, ideally Rij
 
should be 0 for 

any i≠j and 1 for i=j. If an element Rij is zero, there is no cross-talk from the j
th

 source into the estimate 

for the i
th

 source. If two CTFs are largely non-overlapping, this means they are sensitive to different 
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areas of the brain. If Rij is much larger than the value of Rik (k being a third source in the brain), this 

means that the estimator is more prone to receive cross-talk from the j
th

 source than from the k
th

 

source. Note that a CTF is necessarily a linear combination of the leadfields (i.e. rows of G). Therefore, 

CTFs cannot be designed to take on any arbitrary shape, but are constrained by the measurement 

configuration. Therefore, CTFs offer a direct way of quantifying the cross-talk problem for linear 

estimation of a given measurement configuration, which can be used to find an optimal parcellation of 

the source space based on objective criteria. 

2.1.3 Using CTFs to modify structural atlases  

Two main problems can arise from utilising anatomical parcellations with EEG/MEG, which we 

illustrate in Fig. 1: 

1) Sensitivity Problem: EEG/MEG might not be sensitive to activity from some ROIs: 

a. While for superficial ROIs CTFs may peak within the ROI (e.g.  Supramarginal Gyrus, Fig. 1a 

left), deeper ROIs may receive much larger cross-talk from areas close to the sensors than 

from themselves (e.g. Insula, Fig. 1a right). 

2) Specificity Problem: Structural boundaries might not correspond to the spatial resolution of 

EEG/MEG: 

a. Large ROIs may be split into sub-regions with distinguishable CTFs (e.g. postcentral gyrus, 

Fig. 1b).  

b. Some distinct anatomical ROIs may produce highly similar CTFs, and are therefore 

indistinguishable from one another due to the limited spatial resolution or EEG/MEG 

measurements (e.g. Pars Orbitalis and Pars Triangularis, Fig. 1c). 

The examples in Fig. 1 also highlight the usefulness of CTFs for the evaluation - and possible 

construction - of cortical parcellations for EEG/MEG connectivity analysis. 

2.1.4 Both zero-lag and non-zero-lag connectivity are affected by leakage 

Signal leakage causes activity in one area to be estimated in nearby areas with no time delay; 

thus there will be zero-lag phase difference between the actual activity and the “leaked” activity 

(Brookes et al. 2012; Hipp et al. 2012). Therefore, connectivity methods that are insensitive to zero-lag 

correlations such as phase lag index (PLI) or imaginary part of coherency (ImCOH), have been suggested 

to overcome the leakage problem to some extent (Stam et al. 2007; Nolte et al. 2004). Here we show 
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that even though insensitivity to the zero-lag connections can alleviate the problem, non-zero-lag

methods are still affected by leakage. 

The principle of this problem is illustrated using CTFs in Fig. 1d. Let us consider a case where

activity in rostral middle frontal (RMF) cortex and middle temporal gyrus (MTG) show non-zero-lag

connectivity. In an ideal scenario with no leakage, the whole-brain seed-based connectivity with seed in

the RMF should only produce connectivity with MTG (blue area in the Fig. 1d). However, in a realistic

scenario with leakage, two outcomes are possible: 1) If a connectivity measure which is sensitive to

zero-lag connections such as Pearson Correlation or Coherence is used, high connectivity will be found

between the active sources as well as their leakage domain (Fig. 1d middle); 2) If a non- zero-lag

connectivity measure such as imCOH is used, the spurious connectivity between RMF seed and its

surrounding areas (i.e. RMF “realm”) will be resolved but results will still be affected by the “blurring”

around the MTG source (Fig. 1d right). This is due to the fact that the whole neighbourhood of MTG is in

non-zero-lag connection to the RMF. It is worth noting that the same argument can be brought for the

bivariate directed connectivity methods such as Granger Causality (GC); i.e. if RMF Granger-causes

activity in MTG, it will show spurious GC to the neighbourhood of the MTG too. However, generalisation

to the multivariate connectivity methods is less straightforward which will be discussed in Appendix A.  

Figure 1: Limitations of the use of anatomical parcellations for EEG/MEG analysis in source space illustrated using CTFs. a) CTFs

(bottom) for some ROIs (e.g. supramarginal gyrus, left) may peak within the ROI, while for others (e.g. a deep ROI in the insula)

the CTF’s peak may be at a significant distance from the ROI. b) A single postcentral ROI produces potentially distinguishable

CTFs.  c) Pars-orbitalis and Pars-triangularis (left; yellow and blue, respectively) are anatomically separate but have largely
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overlapping CTFs.  d) An illustration of how seed-based connectivity is affected by the leakage problem in a hypothetical task 

where only two fine-grained regions in RMF (seed) and MTG (target) are active and non-zero-lag connected (from theoretical 

predictions based on CTFs rather than simulation). Left: ideal scenario with no leakage. Middle: in the presence of leakage if a 

method of connectivity that is sensitive to the zero-lag connections (e.g. coherence) is used. Right: in the presence of leakage if a 

method of connectivity that is insensitive to the zero-lag connections (imaginary part of coherency) is used. 

3 Materials and Methods 

3.1 EEG/MEG data acquisition and pre-processing 

We used real datasets collected from 17 healthy subjects who participated in an event-related 

visual word recognition experiment to obtain head-models and noise covariance matrices of pre-

stimulus baseline intervals for source estimation. EEG and MEG data were acquired at the MRC 

Cognition and Brain Sciences Unit, Cambridge, UK, using a Neuromag Vectorview system (Elekta AB, 

Stockholm, Sweden), which contained 204 planar gradiometers, 102 magnetometers, and a 70-channel 

EEG cap (EasyCap GmbH, Herrsching, Germany). Individual structural T1 MRI scans were acquired using 

a 3T Siemens Tim Trio scanner at the MRC Cognition and Brain Sciences Unit, using a 3D MPRAGE 

sequence. A 3Space Isotrak II System (Polhemus, Colchester, Vermont, USA) was used to digitise the 

positions of 5 Head Position Indicator (HPI) coils that were attached to the EEG cap, 3 anatomical 

landmark points (left and right ears and nasion), and 50-100 additional points, in order to ensure an 

accurate co-registration with MRI data. The pre-processing steps for EEG/MEG data (used for the 

computation of noise covariance matrices) included Neuromag maxfilter (Version 2.0), bad channel 

interpolation, band-pass filtering between 1-48Hz and ICA for EOG and ECG artefact removals. MRI 

preprocessing was performed in the Freesurfer software (Version 5.3; 

http://surfer.nmr.mgh.harvard.edu/) and EEG/MEG analyses were performed in the MNE python 

software package (version 0.9) http://martinos.org/mne/stable/mne-python.html). 

3.2 Head model and source estimation 

Boundary element models (BEMs) were derived from structural MRIs for each subject. 50-100 

digitised additional points on the scalp surface were matched with the reconstructed scalp surface from 

the FreeSurfer software in order to co-register EEG/MEG sensor configurations with MRIs. FreeSurfer 

was used for segmentation and the results were further processed using MNE software package 

(Version 2.7.3). The original cortical surface (consisting of more than 160,000 vertices) was down-

sampled to a tessellated grid where the average edge of each triangle was approximately 2.5mm, 

resulting in 20484 vertices in the downsampled cortex (Segonne et al. 2004). A three-layer BEM 
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consisting of 5120 triangles per layer was created from combined EEG/MEG from scalp, outer skull 

surface and inner skull surface respectively. The noise covariance matrices for each dataset were 

computed and regularised in a single framework which computes the covariance using empirical, 

diagonal and shrinkage techniques and selects the best fitting model by log-likelihood and three-fold 

cross-validation on unseen data (Engemann & Gramfort 2015). Baseline intervals of 500 ms duration 

pre-stimulus were used for the estimation of noise covariance matrices. The resulting regularised noise 

covariance matrices were used to assemble the inverse operators for each subject using an L2 minimum 

norm (MNE) estimator with loose orientation constraint 0.2 and no depth weighting. 

3.3 EEG/MEG-adaptive parcellations 

We used two CTF-informed image segmentation algorithms (Gonzalez & Woods 2007) to 

parcellate the cortical surface. In the first approach, starting from standard structural parcellations, we 

applied a modified split and merge (SaM) algorithm to the CTFs. In the second approach, we start from 

all brain vertices with no prior parcellation and use CTFs together with a region growing algorithm to 

create ROIs and a SaM algorithm to modify the created ROIs. A flowchart of different steps is shown in 

Fig. 2. 

3.3.1 Leakage and ROI resolution matrices (RRmat) 

As an initial step, we defined an ROI Resolution matrix (RRmat) and used it in addition to the 

original resolution matrix (R) to quantify the leakage patterns as the building block for the parcellation 

algorithms. RRmat describes normalised cross-talks among ROIs (rather than vertices for the original 

resolution matrix R in section 2.1.2). RRmats were computed in the following steps: 

• First, the unsigned CTFs (i.e. absolute values) of each ROI at all the brain vertices (hereafter 

referred to as rvCTF) are computed by taking the first principal component of the CTFs of all 

vertices within those ROIs. This yields an Nvx x NROI matrix were columns quantify the leakage of 

each ROI at the vertices in the brain. 


 � ���� , ��� , … , ��� �      (4) 


	
�� �  ����  �  �
��� , � �  � �  !�"� � #"�   (5) 

$%����� �  �    ����
     (6) 

where x denotes the x
th

 vertex, Ki is the number of vertices for ROIi , ri are the columns of the 

resolution matrix R, USVT denotes singular value decomposition, T is the matrix of spatial  
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principal components and T
(1)

 represents the first principal component that explains the 

maximum variance of the data. This procedure reduces matrix R of size nxn to R’ of size nxN, 

where N is the number of ROIs. 

• Second, we define the ROI Resolution matrix (RRmat), which quantifies the normalised leakage 

that each ROI receives from all other ROIs, where RRmatij describes leakage from ROIi to ROIj:  

��&'(��  �  �
�  ∑

�������
∑ ��������
���


�

���     (7) 

where i, j show the i
th

 ,j
th

 ROIs out of N ROIs in the brain, x denotes vertices inside ROIj , Kj is the 

number of vertices inside ROIj . Note that normalisation of the RRmat is done so that we can 

obtain the relative influence of each ROI on any vertex as compared to the rest of ROIs in the 

brain. Considering the use of SVD for ROI-to-vertex resolution matrix which can yield different 

scales for different ROIs, this final normalisation ensures that RRmat values are limited between 

zero and one.  

As pointed out before, an ideal RRmat is an identity matrix and our purpose is to obtain parcellations for 

which the similarities between the actual and an ideal RRmat are maximised. 
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Figure 2 A flowchart of different steps of data analysis and parcellation algorithms. Preprocessing and localisation steps (blue

box) can change depending on the study and CTFs and subsequent steps will change and adapt accordingly. RROI: a subset of R

matrix corresponding to each ROI (Equation 5), rvCTF: CTFs of each ROI at all the brain vertices, RRmat: ROI resolution matrix,

RG: Region Growing, SaM: Split and Merge.      

3.3.2 A CTF and neuro-anatomy based split-and-merge segmentation algorithm  

We examined both the Desikan-Killiany Atlas (68 ROIs) and Destrieux Atlas (148 ROIs), in order

to observe the effect of the initial ROI size. Thereafter, we modified the structural ROIs based on CTFs

using an algorithm similar to split-and-merge algorithm in digital image processing literature (Haralick &

Shapiro. 1985; Gonzalez & Woods 2007). Split-and-merge algorithms, e.g. used for image segmentation,

typically start from a whole image and utilise an iterative process to divide the image into as many

“homogeneous” segments as possible. The homogeneity criterion is defined based on the image

properties, such as constant standard deviation inside a segment. If the homogeneity criterion is not

satisfied inside a segment, that segment will be split into several equal-sized sub-segments and the

homogeneity criterion will be checked inside each of these new segments and the same procedure is

e 

R 

x, 

r 

s 

& 

, 

y 

e 

t 

e 

s 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2017. ; https://doi.org/10.1101/097774doi: bioRxiv preprint 

https://doi.org/10.1101/097774
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

iterated until no further splitting is possible. At this point, the merging procedure starts where 

homogenous segments will be merged using some predefined criterion (e.g. pixel colour or intensity) in 

an iterative procedure until no more merging is possible.  

Here, we have adapted a similar idea together with the limitations imposed by the CTFs to 

define the split, merge and homogeneity criteria. As described in the theory section, on the one hand, if 

an ROI is too large it will produce several separate CTF patterns.  On the other hand, if CTFs of two ROIs 

overlap substantially, those ROIs cannot be distinguished using EEG/MEG (Fig. 1b, c). Additionally, if an 

ROI is located in deeper structures of the brain it is likely showing low sensitivity to the recorded 

EEG/MEG signals (Fig. 1a). Therefore, as will be elaborated in the following sub-sections, we have 

defined split, merge and homogeneity criteria to parcellate the cortex into as many distinguishable ROIs 

as possible by assigning constraints on the CTFs, R and RRmat.  

3.3.2.1 Splitting criterion 

1. As the first step, we identified the structural ROIs that are too big (e.g. like Fig. 1b) and split them 

into sub-ROIs. We used 
	
��(Equation 5) in order to determine whether or not a single ROI is 

producing several distinguishable CTFs. An ROI was split alongside its longest axis to a number of 

sub-ROIs based on the number of the principal components that explained 90% of the variance of its 


	
��. In order to have a fixed number of sub-ROIs across hemispheres in one subject as well as 

across subjects in the experiment, we used the following two steps: 

1.1. To obtain consistency across hemispheres, if EL eigenvectors were required to explain 90% of 

the variance of the 
	
��of a particular ROI1 in the left hemisphere and ER eigenvectors for the 

mirror ROI1 in the right hemisphere, the minimum of EL and ER was assigned to both left and 

right ROI1 in order to assure no over-splitting for smaller ROIs; 

1.2. To obtain consistency across subjects, the mode of the number of eigenvalues across subjects 

(i.e. the number of sub-ROIs that was found for the majority of subjects) was assigned to that 

ROI. 

3.3.2.2 Homogeneity criterion 

2. The second step was to assign the vertices to ROIs. Each of the vertices in the brain was assigned to 

only one split ROI or no split ROIs. A vertex was assigned to an ROI only if it was: firstly, sensitive to 

that ROI (sensitivity) and secondly, significantly more sensitive to that ROI compared to all other 

ROIs in the brain (specificity).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2017. ; https://doi.org/10.1101/097774doi: bioRxiv preprint 

https://doi.org/10.1101/097774
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

2.1. To satisfy the sensitivity condition, we removed the vertices that were not very sensitive to any 

ROIs: For every vertex, we tested for every ROI whether the ROI’s rvCTF value at this vertex was 

equal or more than half of the maximum of the ROI’s rvCTF values anywhere in the brain. If this 

was the case, that vertex was considered sensitive to that ROI. If a vertex was not sensitive to 

any ROIs in the brain it was removed from further analysis. 

2.2. To evaluate the specificity criterion, the values of the CTFs of ROIs at each vertex were 

converted to z-scores: 

)�� �  
�������� �

�
∑ ��������
���

���	
��         ( 8) 

 

where x denotes a single vertex in the brain, rvCTFix is the value of the CTF of the i
th

 ROI at vertex 

x, N is the number of ROIs in the brain and σrvCTFx is the standard deviation across rvCTF values 

from all ROIs at vertex x. Based on these z-scores, we classified vertices into one of three 

categories: 

2.2.1.  Declined vertices: If no ROIs showed a z-score above 3 for a vertex, it indicated that the 

vertex was equally influencing several ROIs and hence was not specifically sensitive to the 

rvCTFs of any of the ROIs. These vertices were removed from further analysis.   

2.2.2.  Assigned vertices: Using a winner-takes-all approach, if an ROI indicated the highest z-

score above 3 for a vertex and the z-score was at least 1 standard deviation higher than 

the runner-up ROI, that vertex was assigned to the winner ROI. 

2.2.3.  Merge candidate vertices: If the difference between the z-scores of the winner and 

runner-up ROIs for a vertex were less than one standard deviation, those vertices were 

marked for the merging procedure (see sub-section 3.3.2.3 below).  

3.3.2.3 Merging criterion 

3. Based on the above condition for merging candidate vertices, a group of vertices that showed 

sensitivity to two particular ROIs were clustered together as a new "merged" ROI. All of the new 

merged ROIs that were equal-sized or bigger than the smallest original split ROI in the brain, were 

kept in the “merged ROIs” list for further analysis and otherwise removed. For example, vertices 

that were equally sensitive to both superior temporal and middle temporal gyri were clustered as a 

new ROI superior-temporal_middle-temporal. The merging of vertices can result from two 

scenarios: first, if two original split ROIs are too finely separated and not distinguishable using 
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EEG/MEG (e.g. like ROIs in Fig. 1c), they will completely merge together. Second, if some ROIs 

partially overlapped, a third region may emerge from that overlapping region.  

These split, homogeneity and merging procedures yielded a modified ROI list consisting of the original 

“split ROIs” and the new “merged ROIs”.  

3.3.2.4 Final homogeneity evaluation 

4. Step 2 described above was repeated for the modified list of the split and merged ROIs and ROIs 

that could win at least 10 vertices in the brain were kept and the rest of ROIs were removed.  

5. The RRmat was computed for the final modified ROIs and if any off-diagonal elements for a 

particular ROI were higher than the diagonal element, that ROI was removed. 

3.3.2.5 Inter-hemispheric and Inter-subject consistency 

6. To create a consistent parcellation across hemispheres and subjects for the group analysis, we 

applied the following criteria: 

6.1. For consistency across subjects, at each of the aforementioned steps, the CTF-based ROI 

modification was performed in an average source space (fsaverage brain in Freesurfer) and on 

an average of the rvCTF maps across subjects. To obtain such average rvCTF maps, rvCTFs were 

computed in the individual source spaces, morphed to fsaverage and averaged over subjects.  

6.2. To obtain a consistent parcellation across hemispheres, those ROIs that survived the above 

criteria in only one hemisphere were removed. Moreover, even though all the procedures were 

performed in both hemispheres, in order to obtain a symmetrical parcellation, ROIs were kept 

in the hemisphere that provided a larger number of vertices and mirrored to the opposite 

hemisphere.  

3.3.3 A CTF based region growing segmentation algorithm for the parcellation 

Region growing is another algorithm of image segmentation which typically starts by randomly 

selecting a voxel (pixel) as the first “seed” in an image. Then, based on a pre-specified similarity criterion 

(e.g. colour or intensity), neighbouring voxels are grouped together with the seed voxel, leading to a 

growing region around the seed until no more voxels can satisfy the similarity criterion to connect to the 

cluster (Gonzalez & Woods 2007). Thereafter, a new seed outside the existing cluster is randomly 

selected in the image and the same procedure will be iterated until all the voxels in the image are 

assigned to a cluster. In this section, we have adopted a similar idea and have used CTFs to define the 

similarity criterion to grow regions around the vertices to create and modify ROIs in the brain. 
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Therefore, we started the parcellation at the single-vertex level with no prior ROIs and created ROIs 

using the following steps: 

3.3.3.1 Finding seed vertices 

1. The main purpose of the first step was to identify the “seed vertices”, i.e. vertices that show high 

sensitivity based on the CTFs. Therefore: 

1.1. The resolution matrix of the whole brain vertices was computed (section 2.1.2) with rows 

representing CTFs received at each vertex. 

1.2. Sensitivity and specificity steps described in section 3.3.2.2 were applied to the rows of the 

resolution matrix to find the sensitivity of each vertex to leakage from all other vertices. Those 

vertices that could “win” more than one vertex were marked as seeds (i.e. highest z-score>3 

and at least one standard deviation more than the runner up; see 3.3.2.2 for details). 

3.3.3.2 Growing regions surrounding the seeds  

2. The second step comprised of growing regions around the seeds. For this purpose, we sorted the 

seeds in a descending order with the first seed being the “strongest” and created regions in 

succession following this order. 

2.1. Seeds were sorted based on their sensitivity to themselves; i.e. the strongest seed (seed 1) was 

the seed with the highest sensitivity to itself (i.e. highest z-score section 3.3.2.2).  

2.2. All vertices that showed sensitivity to seed 1 (i.e. produced higher cross-talks in seed 1 than half 

maximum of the CTF values of this seed) were clustered together as ROI1. Next, ROI2 was 

created from the vertices outside ROI1 with the same half maximum criterion and the same 

procedure was iterated for all other seeds. 

2.3. To obtain an inter-hemispheric symmetry of the ROIs, the created ROIs of the hemisphere with 

more winner seeds were mirrored to the opposite hemisphere using MNI coordinates. 

3.3.3.3 Modifying the ROIs 

3. The same procedures as those described in 3.3.2 (except for the splitting step) were applied to the 

ROIs created by the region-growing (RG) algorithm to obtain the final RG parcellation. 

3.3.4 Parcellation performance indices 

We used RRmats to evaluate the performance of different original and modified parcellations. As 

explained earlier, the RRmat is computed by finding the normalised CTF values produced by each ROI at 
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the location of all other ROIs. If a parcellation consists of fully distinguishable ROIs, the RRmat should be 

an identity matrix. Here we introduce two indices to evaluate a parcellation’s performance:  

• First, Sensitivity Index (Sind) which measures the sensitivity of ROIs to themselves by taking the 

mean of the diagonal elements of the RRmat.  

*��� �  
�
�  ∑ ��&'(������     (9) 

where N is the number of ROIs in the parcellation. 

• And second, Distinguishability Index (Dind), which is the correlation between the actual RRmat 

and the identity matrix of the same size.  

+��� �  
∑ ∑ �		������  !"#$$$$$$$$$$������%$���

&�∑ ∑ �		������  !"#$$$$$$$$$$���� ��∑ ∑ �����%$���� �
      ( 10) 

Where    �   denotes the average of matrix elements and I is the identity matrix. 

Furthermore, we computed the rank and condition numbers of RRmats to make comparisons 

between the original structural and modified parcellations. As discussed in the theory section, the 

leakage problem arises from ill-posedness of the resolution matrix. This results in a calculated rank for 

the resolution matrix that is notably less than the ideal rank which is the size of the matrix. Hence the 

number of degrees of freedom is smaller than the number of rows/columns. Considering that RRmat is 

scaled between 0 and 1, we computed the rank with a tolerance of 0.05 so that if the element-wise 

difference between the target row and linear combination of other rows is less than 0.05, it is rounded 

down to 0. A high condition number is indicative of an ill-conditioned ROI resolution matrix, i.e. the 

estimated sources (output) can be very sensitive to small changes in the actual sources (input). A high 

condition number indicates that if the RRmat was to be inverted (e.g. to perform leakage correction 

based on the final RRmat) the results will be unreliable. Additionally, for each parcellation we computed 

the coverage which is the total number of vertices that are included in the parcellation.  

3.4 Simulation with realistic levels of noise 

Here, we demonstrate the possible consequences of using different parcellations for graph-

theoretical connectivity analyses on simulated data with realistic levels of noise. For this purpose, we 

simulated a known brain network and tested the performance of different structural and modified 

parcellations in accurately detecting the hubs and hub connectivity patterns. All simulations were 
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performed in python, and where appropriate (e.g. forward and inverse modelling), we used mne-python 

software package.  

3.4.1 Simulated signals in source space 

Sinusoidal signals with signal-to-baseline ratios of 3 were simulated in three areas in Rosrtal Middle 

Frontal (RMF) cortex, Superior Temporal Sulcus (STS) and Lateral Occipital Cortex (LOC) (ROIs and 

corresponding CTFs in Fig. B.1 (Appendix B)). The locations of simulated sources where chosen such that 

they did not favour one parcellation over the others; thus, sources did not exactly coincide with ROIs in 

any parcellation. Therefore, depending on the parcellation, one or more ROIs might be required to cover 

the simulated hub location and expected number of hubs varies among different parcellations. For 

example, while STS source might project to two ROIs in a parcellation with a coarser spatial resolution, it 

can overlap with three regions in a more fine-grained parcellation. It is worth noting that accurate 

detection of true hubs in this simulated scenario was difficult and required a high sensitivity of the 

parcellation ROIs since the hub regions are adjacent and difficult to tease apart (i.e. we have a source of 

activity which might be partially covered by each of several ROIs). Additionally, in order to have no false 

alarms, we will need a high specificity of the parcellation. Fifty epochs were simulated consisting of 

125ms of noise baseline followed by 600ms of signal. LOC signal was a sine wave with 1nA amplitude 

and 6 full cycles in 600ms (10Hz) and RMF with 12 cycles in 600ms (20Hz). Both signals had random 

phase across epochs, and thus no amplitude or phase coupling between LOC and RMF. We introduced 

non-zero-lag connectivity between STS and RMF/LOC by modelling the STS signal as the sum of the time-

shifted signals of RMF and LOC at each epoch. Therefore, high connectivity is expected between 

STS/RMF and STS/LOC pairs, but low connectivity between the RMF/LOC pair. All other vertices in the 

brain were given random Gaussian noise with mean and variance equal to that of the sine signal in RMF. 

Therefore, the overall signal-to-noise ratio (SNR) of the evoked responses in the simulated sensor space 

was 4.34±0.1 which is typical to the EEG/MEG ERP (Gonzalez-Moreno et al. 2014; Hu et al. 2010). The 

aforementioned signals were simulated in the brain in the following two scenarios: 

• Leakage Free (LF): The true simulated sources in the brain were analysed directly, without the 

application of forward and inverse operators. All signals were simulated in the single subject 

source space and morphed to the fsaverage space in Freesurfer for further analysis. 

• Leakage Present (LP): Sources were simulated in the single subject source space, projected into 

the sensor space and projected back to the source space using the forward and inverse 
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operators respectively (described in 3.2). These source estimations were morphed to the 

fsaverage space in Freesurfer for further analysis. 

3.4.2 Connectivity measures 

We used Magnitude-Squared Coherence (COH) and imaginary part of Coherency (imCOH) as two 

measures of connectivity to evaluate the performance of the parcellation methods for detecting whole 

brain networks in LF and LP scenarios described above. COH and imCOH are spectral measures of 

connectivity which can detect both amplitude and phase couplings (Greenblatt et al. 2012; Bastos & 

Schoffelen 2016). We used a multitaper approach with adaptive weights to compute the two measures 

in a band limited signal of 5-35Hz. COH is sensitive to zero-lag connections while imCOH is not (Nolte et 

al. 2004; Bastos et al. 2012). We used imCOH as well as COH to evaluate the consequences of the 

theoretical issue discussed in 2.1.4 and whether or not an EEG/MEG-adaptive parcellation is only 

needed when a measure susceptible to the zero-lag connectivity is used.  

3.4.3 Graph theoretical analysis 

We used measures of graph theory to summarise the results of the whole brain connectivity 

analysis. Simulated data are expected to yield hub(s) in the STS that are connected to the RMF and LOC. 

We used the node degree as a measure of hubness and in order to determine the degree, the 

connectivity matrix was thresholded and binarised. To obtain a choice of threshold that is generalisable, 

we computed the ratio of each node degree to the average node degree of the whole network for a 

series of thresholds, yielding a matrix that encapsulated the relative importance of a node in the 

network. We checked that the relative importance remains constant over a range of thresholds in order 

to have a generalisable threshold. We considered the coherence in the leakage free scenario as the 

ground truth to obtain the maximum number of connections that can detect the hubs with no misses or 

false alarm for all the parcellations. This resulted in a threshold defined by the top 6% of the 

connections that was determined based on the original Desikan-Killiany atlas and yielded accurate hub 

connectivity maps for all the parcellations except for the original Destrieux atlas where an increase to 

9% was required. In the binarised graph that was obtained after thresholding, ROIs (nodes) that showed 

node degrees (non-zero connections/edges) of 2 standard deviations above the average in an average 

graph across subjects were marked as hubs. The hub connectivity probability matrix (HCPmat) was then 

computed from these thresholded matrices to identify the k edges that are most probably linked to each 

hub, where k is the average hub degree. For example, if the estimated node degree for node A is 3.8, 4 

or 4.2, the 4 most probable connections of the node will be kept in the HCPmat. Thresholding and hub 
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detection procedure followed precedent approaches in the literature (c.f. Kaiser 2011; Achard et al. 

2006; Buckner et al. 2009). 

4 Results 

4.1 Parcellation results 

4.1.1 Split-and-Merge algorithm (SaM)  

We tested the split-and-merge (SaM) algorithm (section 3.3.2) on two standard structural 

parcellations in Freesurfer: Desikan-Killiany and Destrieux Atlases that are shown in Figure 3a, c with the 

corresponding ROI Resolution Matrices (RRmat: relative between-ROI leakage values, see 3.3.1) shown 

in Figure 3b, d, respectively.  

4.1.1.1 Desikan-Killiany Atlas 

The original Desikan-Killiany Atlas included 68 ROIs with sensitivity index Sind of 0.47 (i.e. the 

leakage value that each ROI received from itself relative to the rest of the ROIs in the brain) and 

distinguishability Dind of 0.50 (i.e. correlation between the RRmat and an ideal identity matrix) (Table 1). 

The SaM algorithm resulted in 316 ROIs at the intermediate step (Fig. B.2a, b; Appendix B), from which 

74 regions survived to the final parcellation that is shown in Figure 4a together with the corresponding 

RRmat. Compared to the original parcellation, Sind and Dind increased by 38% and 22% and reached 0.65 

and 0.61 respectively (Table 1) and provided a sparser sampling of the cortex including 4079 vertices.   

4.1.1.2 Destrieux Atlas 

The original Destrieux Atlas consists of 148 ROIs and is shown in Figure 3c with RRmat in Fig. 3d. 

In comparison to the Desikan-Killiany parcellation, the RRmat of this parcellation shows less similarity 

with an identity matrix, indicating a more blurred estimation of activity for each of the ROIs (Table 1). 

This difference suggests that the original Desikan-Killiany is a better match to the EEG/MEG spatial 

resolution than Destrieux. Sind and Dind of Destrieux Atlas were 0.37 and 0.38, respectively, and improved 

to 0.7 and 0.65 for the 74 ROIs that survived the parcellation modification, providing an 89% and 71% 

improvement in these indices, respectively. The parcellation covered 3084 vertices of the cortical 

surface. The intermediate and final parcellation/RRmat for the modified Destrieux Atlas are shown in 

Fig. B.2c, d and Fig. 4b respectively. Comparison to Fig. 3d, as reflected in increased Sind and Dind values 

above, shows a clear improvement. Note that in Fig. 4b, ROIs that showed maximum overlap with each 

of the modified ROIs from the Desikan-Killiany are colour-matched to Fig. 4a for visual comparison. 
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Despite having twice the number of initial ROIs, the SaM algorithm converged at 74 ROIs for

both atlases. This can be considered as an indicator of the robustness of the parcellation algorithms

against the initial choice of parcellation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 A summary of the performance of the original and modified parcellations. 

Parcellation No. of ROIs RRmat Rank RRmat CN Dind  Sind Coverage

Desikan-Killiany Atlas 68 49 1.26x10
3
  0.50 0.47 18742 

Destrieux Atlas 148 92 1.78x10
4
 0.38 0.37 18742 

Split-and-Merge DKA 74 73 114.38  0.61 0.65 4079 

Split-and-Merge DA 74 74 70.82 0.65 0.70 3084 

Region Growing 70 74 91.59 0.64 0.70 3086 

Dind: Distinguishability index, Sind: Sensitivity index, RRmat: ROI Resolution Matrix, CN: Condition number 
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4.1.2 Region Growing algorithm (RG)  

The Region Growing Algorithm does not require an anatomical parcellation as a starting point, 

but creates a parcellation based on the resolution properties of all the vertices. The first step of RG 

algorithm identified 174 seed vertices (Fig. B.2e) in the left hemisphere and ROIs were grown 

surrounding each of these seeds using the criteria described in 3.3.3. The split and merge criteria were 

applied to these created ROIs and resulted in a 70-ROI parcellation with Sind of 0.7, Dind of 0.64 and a 

sparse sampling of the whole cortex, covering 3086 out of 20484 vertices in the brain (Table 1). The final 

parcellation showed notable similarities and differences to the parcellation modification of the 

structural atlases (Fig. 4c). A direct comparison of the overlaps and differences of the final parcellations 

are conducted in section 4.2.  
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These results demonstrate that our algorithms improve sensitivity and specificity of the origina

structural parcellations. In the following, we will analyse features of our algorithms in more detail. 

Figure 4 Final parcellations (left) and RRmats (right) for a) SaM algorithm based on Desikan-Killiany Atlas; b) Destrieux Atlas; c) 

Region growing algorithm. 

 

l 
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4.2 Effect of initial choice of parcellation  

As can be seen in Fig. 4, some of the final ROIs, particularly in the occipital, temporal and frontal lobes

show overlaps across the three parcellations, while other regions in the central and parietal lobes can

vary notably. All final parcellations in Fig. 4 are colour-matched to the first parcellation (modified

Desikan-Killiany parcellation). To obtain a more direct comparison between the ROIs, we computed the

overlaps, normalised by the sizes of ROIs (Fig. 5). More specifically, we took the modified Desikan-

Killiany parcellation as the reference and found the overlaps between the colour-matched ROIs in Fig. 4

Rows of the matrices in Fig. 5 illustrate the overlaps between each of the ROIs of the parcellation on the

y-axis (Py) with all the ROIs of the parcellation on the x-axis (Px: always modified Desikan-Killiany), which

is normalised by the size of that ROI of Py. Therefore, if there is only one yellow/white column

corresponding to each row, it shows a one-to-one correspondence between the two intersecting ROIs

while several red/orange columns intersecting with each row show that one ROI in Py is overlapping

with several regions in Px. If one row consists of only dark colours, that ROI in Py is not overlapping with

any ROI in Px. As can be seen in Fig. 5, we found that a majority of ROIs show a one-to-one

correspondence between the final parcellations, with different degrees of overlaps. However, there are

also several cases where an ROI in one parcellation overlaps with a few ROIs or cases where an ROI does

not have any matches in another parcellation.   

Figure 5 Normalised overlaps between the ROIs derived from different parcellation algorithms. Modified Desikan-Killiany

parcellation is shown on the x-axis and is used as the reference, (the order of ROIs on the x-axis corresponds to Fig. 4a). Y-axis

represents the ROIs in a) modified Destrieux and b) RG parcellations. The rows correspond to the colour-matched regions of the

x-axis and therefore the order is arbitrary in comparison to Fig. 4b, c. The sums of the normalised overlaps in each row are also

shown as the first column.  
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4.2.1 Rank and condition number of final RRmats and implications 

Here we compared the rank and condition numbers of RRmats for the original and modified 

parcellations. The resolution matrix, as expected, was highly ill-conditioned and while the ideal rank was 

20484 in our study, the calculated rank was only 118. Parcellations (structural or modified) 

downsampled the source space to a few hundred ROIs and thus improved the rank. We found a rank of 

49 (ideal 68) and 92 (ideal 146) for the Desikan-Killiany and Destrieux atlases respectively, which, in spite 

of showing an improvement compared to the original source space, are still not full-ranked. In contrast, 

the modified parcellations showed near-perfect performance where we found ranks of 73 (ideal 74), 74 

(ideal 74) and 70 (ideal 70) for the modified Desikan-Killiany, Destrieux and RG parcellations 

respectively. Even though full-ranked matrix guarantees independence between the ROI signals in the 

modified parcellations, the output might still be very sensitive to small changes in the input; hence a 

small condition number is desired. The condition numbers for the Desikan-Killiany and Destrieux atlases 

were 1.26x10
3
 and 1.78x10

4
 which were significantly improved to 114.38, 70.82 and 91.59 for the 

modified Desikan-Killiany, Destrieux and RG parcellations respectively. However, it is worth noting that 

condition numbers around 100 in the modified parcellations are still high and invite other 

complementary approaches to be used together with the EEG/MEG-adaptive parcellations. Some of 

these approaches will be discussed later.  

4.3 Simulation results 

We applied different parcellations to simulated data with known connectivity structure and used 

coherence (COH) and imaginary coherence (imCOH) to compute connectivity among all the ROIs in the 

parcellation. We simulated data with realistic levels of noise (evoked SNR ~ 4) and a hub region in the 

superior temporal sulcus (STS) with connections to ROIs in rostral medial frontal (RMF) cortex and 

lateral occipital cortex (LOC), all in the left hemisphere. The expected numbers of hubs for each 

parcellation are listed in Table 2. 

4.3.1 Hub detection accuracies 

We used binarised graphs to detect hubs and tuned the thresholding (section 3.4.3) so that 

coherence in the presence of noise and in the absence of leakage (LF) could identify the hubs with no 

misses or false alarms (FA). Results are summarised in Table 2, where the “hubs” column shows the 

ground truth number of hubs corresponding to each parcellation.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2017. ; https://doi.org/10.1101/097774doi: bioRxiv preprint 

https://doi.org/10.1101/097774
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Coherence: In the presence of leakage and noise scenario for original Desikan-Killiany atlas, 

coherence yielded 1 hit  out of 2 hubs (50% miss) and showed 1 FA (Fig. 6a) while the modified version 

of this parcellation had no misses and 1 FA (Figure 6c) in the same scenario. For the original Destrieux 

Atlas, we found 3 hits out of 4 (25% miss) in the presence of leakage (Fig. 6b), and 1 FA which was 

improved to no misses and 1 FA after modification (Fig. 6d). RG, like other modified parcellations, 

showed no misses and 1 FA (Fig. 6e).  

imCOH: In the absence of leakage, imCOH was less accurate as compared to the coherence in 

the absence of leakage. We found that even though imCOH shows no misses, FAs are likely for the 

original parcellations. In the presence of leakage, imCOH showed no misses and 2 FAs for the original 

Desikan-Killiany atlas while no misses and 4 FA for the modified version (i.e. no improvement in hub 

detection but improvement in hub connectivity patterns described below) (Fig. 6a, c). Moreover, it 

showed 1 miss and 4 FAs for the original Destrieux Atlas which improved to 0 misses and 2 FAs in the 

modified version (Fig. 6b, d). RG showed no misses or FAs with imCOH (Fig. 6e). ImCOH improved 

sensitivity to true hubs but increased false alarms notably for all the parcellations except for the 

modified RG approach (Table 2).  

Table 2 True hubs and detected hubs using the five parcellations with coherence (COH) and imaginary part of coherency 

(imCOH) and 2D correlation coefficient between ideal hub connectivity matrix (no noise no leakage) and each of the probability 

connectivity matrices shown in Fig. 6. 

Parcellation                COH no leakage  COH  leakage imCOH  no leakage imCOH leakage 

 hubs hit miss FA R hit miss FA R hit miss FA R hit miss FA R 

DKA 68 2 2 0 0 0.98 1 1 1 0.28 2 0 2 0.82 2 0 2 0.23 

DA 148 4 4 0 0 0.98 3 1 1 0.31 4 0 3 0.81 3 1 4 0.21 

DKA mod 74 2 2 0 0 0.98 2 0 1 0.47 2 0 0 0.91 2 0 4 0.33 

DA mod 74 3 3 0 0 0.98 3 0 1 0.49 3 0 0 0.91 3 0 2 0.42 

RG 70 2 2 0 0 0.99 2 0 1 0.49 2 0 0 0.91 2 0 0 0.53 

DKA: Desikan-Killiany Atlas, DA: Destrieux Atlas, RG: Region Growing parcellation, Hubs: number of true hubs, hit: hubs 

detected correctly, miss: true hubs not detected, FA: False alarms, detecting incorrect hubs, R: 2D correlation coefficient 

4.3.2 Hub connectivity patterns 

The hub connectivity patterns were summarised using HCPmats as described in 3.4.3.  HCPmats 

for the structural and modified parcellations are shown in Fig. 6. These figures show the k most probable 

ROIs that are connected to each hub where k is the estimated hub degree and the colour of each 

connection shows the probability of that connection being present in the binarised connectivity matrices 

across subjects (brighter colours show higher probability). We computed the 2-dimensional correlation 
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coefficient between these HCPmats and an ideal HCPmat in no-leakage and no noise scenario (ground 

truth) for each parcellation. The ground truth is shown in the left-most panels of Fig. 6. The ideal 

parcellation should retrieve these connectivity patterns for each parcellation.  

Coherence: Firstly, we found that for the coherence and in the presence of leakage, Desikan-

Killiany and Destrieux parcellations showed 0.28 and 0.31 correlation to the ideal HCPmat and these 

values increased to 0.47, 0.49 and 0.49 for the modified structural parcellations and RG approaches, 

respectively.  

imCOH: Secondly, we found that ImCOH showed less correlation to the ideal scenario, both in 

the presence and in the absence of leakage.  In the presence of leakage, imCOH showed 0.23 and 0.21 

correlation with ideal HCPmat for the original structural parcellations and these values improved to 

0.33, 0.43 and 0.53 for the modified parcellations (detailed summary in Table 2).  
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Figure 6 The hub connectivity probability matrices (HCPmat) for a) original Desikan-Killian; b) original Destrieux; c) modified

Desikan-Killian; d) modified Destrieux and e) RG parcellations. The values shown as connections are the probability of hub

regions in STG being connected to different ROIs across subjects. Darker colours show connections that are most likely due to the

noise and are less probable across subjects. Panels from left to right: The ground truth in the absence of noise and leakage;

Coherence in the absence of leakage and presence of noise; Coherence in the presence of leakage and noise; imCOH in the
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absence of leakage and presence of noise; imCOH in the presence of leakage and noise. Hits are marked with green stars, false 

alarms with red crosses and misses with red circles.  

5 Discussion  

We used cross-talk functions (CTFs), which describe the spatial resolution of linear or linearly 

constrained distributed source models, to create EEG/MEG-adaptive parcellations of the cortex as a 

basis for connectivity and graph theory analysis of EEG/MEG data in source space. We implemented two 

algorithms inspired by the image processing and clustering literature – split-and-merge (SaM) and region 

growing (RG) – which differed with respect to the starting points of the parcellation process. For SaM, 

we started from two different standard anatomical parcellations with different average sizes of ROIs 

(Desikan-Killiany (Desikan et al. 2006) and Destrieux (Destrieux et al. 2010) Atlases) and modified the 

ROIs using a CTF-informed split-and-merge algorithm. For RG, we started with no prior parcellation and 

created a parcellation using a combination of RG and SaM algorithms. We used metrics for 

distinguishability and sensitivity based on ROI resolution matrices (RRmats) to quantify the performance 

of different parcellations, using a data set consisting of combined EEG and MEG measurements.  

All three analyses yielded approximately 70 distinguishable ROIs in the brain, suggesting that this 

reflects the general resolution limits of the utilised measurement configuration and source estimation 

methods. All approaches provided a sparse sampling of the cortex, and significantly improved the 

parcellation performance compared to the structural parcellations with respect to sensitivity and 

distinguishability of ROIs, while at the same time maximising the number of distinguishable ROIs in the 

brain. In a simulated connectivity example, we illustrated that the choice of parcellation can have 

significant impact on the outcome of graph theoretical analysis of EEG/MEG data in source space. 

5.1 Adaptive parcellations for the spatial limitations of EEG/MEG 

EEG/MEG studies typically adopt structural or fMRI-based functional parcellations. For example, 

Hillebrand et al. (2012) used the Talairach Daemon Database for the parcellation of the brain, Colclough 

et al. (2015, 2016) used the Harvard-Oxford structural parcellation and ICA-based fMRI parcellation, 

while several other studies have used the Automatic Anatomical Labelling (AAL) atlas (Tewarie et al. 

2014; Tewarie et al. 2016; Brookes et al. 2016). Nevertheless, as described in the theory section, 

structural ROIs are unlikely to be optimal for EEG/MEG analysis. Palva et al. (2010) presented the first 

study that has used an EEG/MEG-informed parcellation for single subject connectivity analysis of the 

whole brain. They utilised the forward and inverse modelling of simulated noise in source space and 
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clustered 365 (i.e. equal to the number of sensors) patches on the cortex that showed high within-patch 

phase synchrony. Korhonen et al. (2014) introduced sparse weights to collapse the source space, based 

on the forward and inverse modelling of simulated noise in the source space, so that vertex selection is 

optimised for a fixed set of predefined structural ROIs, which is suitable for group as well as single 

subject analysis. However, obtaining a parcellation that can optimise both parcellation resolution (i.e. 

number of ROIs in a parcellation) and vertex selection with respect to EEG/MEG spatial limitations, has 

remained a challenge (Korhonen et. al 2014). Additionally, both previous studies have defined a 

parcellation based on a specific connectivity metric (i.e. phase locking) rather than a generalisable 

metric of spatial resolution that can be used with any connectivity measures. In this study, we addressed 

these problems systematically by utilising the CTFs as a direct measure of spatial leakage. We used a 

state-of-the-art measurement configuration containing EEG and MEG sensors, realistic individual 

boundary element models (Fuchs et al. 2002) and a common source estimation method (L2 minimum 

norm estimation) that makes minimal assumptions about the source configuration (Hämäläinen & 

Ilmoniemi. 1994; Hauk 2004). Our novel methods are suitable for group as well as single subject analysis.  

Overall, the parcellation algorithms implemented here are adaptive and can change depending on 

the choices of EEG/MEG measurement configuration, head model and source estimation methods. 

Therefore, since it has been shown previously that combining EEG and MEG provides higher spatial 

resolution (Fuchs et al. 1998; Molins et al. 2008; Henson et al. 2009) it can be expected that EEG or MEG 

on their own will result in a smaller number of surviving ROIs than for their combination. Furthermore, 

different source estimation methods will result in different CTFs. It is important to note that due to 

equation 3 all CTFs, regardless of the inverse methods used, are linear combinations of the leadfields. 

Thus, CTFs that are not in the space of the leadfields cannot be achieved by any method. In our study, 

we used L2 minimum norm estimation because it results from the minimisation of the difference 

between the resolution matrix and the identity matrix (Dale & Sereno 1993; Hauk 2004). The shapes of 

CTFs for this method are the same as for noise-normalised minimum norm estimates such as dSPM and 

sLORETA (Hauk et al. 2011). Therefore, we think that our results reflect the optimum of what can be 

achieved without more specific modelling constraints. In studies where other constraints are justified,  

e.g. when other families of spatial filters such as beamformers (Van Veen et al. 1997; Barnes et al. 2006) 

are used, different parcellations of the cortex may be obtained from the algorithms. Also, we have used 

a common boundary element model (BEM) in our forward computations (Hämäläinen & Sarvas 1989; 

Mosher et al. 1999). Using other multi-layer headmodels or Finite Element Models (FEMs) (Buchner et 

al. 1997) may also change the parcellations. 
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5.2 Different parcellation approaches: similarities and differences  

Our proposed parcellation algorithms addressed the three theoretical issues of using structural 

ROIs with EEG/MEG that were discussed in the Theory section (Fig. 1). Firstly, we found a limited 

sensitivity to the signals that are produced in deeper brain areas. All three parcellations (Fig. 4 showed 

almost no coverage of the medial view of the cortex indicating the relative insensitivity of our source 

estimation to these deeper brain areas. Secondly, the specificity of the anatomical parcellations did not 

match that of the EEG/MEG parcellations: On the one hand, some fine-grained neighbouring areas were 

not distinguishable. For example, the four areas pars-triangularis, pars-orbitalis, pars-opercularis and 

lateral orbitofrontal cortex from the Desikan-Killiany atlas (Fig. 3a) were merged into two areas in the 

anterior and posterior inferior frontal gyrus in the modified version of this atlas (Fig. 4a). On the other 

hand, large ROIs such as pre- and post-central gyri were split into smaller ROIs (cf. Fig. 3a and  Fig. B.2a). 

The two SaM and RG approaches showed highly overlapping final ROIs for all three final 

parcellations, which indicates the robustness of the proposed algorithms with respect to the initial 

choice of parcellation. This indicates that the final parcellation of the cortex is mostly influenced by the 

choices of measurement configuration, head model and source estimation method. However, as shown 

in section 4.2, we observed notable differences as well, in that not all the parcellations provide a similar 

sparse sampling of all brain areas. For example, as can be seen in Fig. 4, while the final RG parcellation 

includes several ROIs in the temporal lobe, the modified Destrieux parcellation provides a better 

coverage of centro-parietal cortices. More generally, the SaM approach is based on anatomically 

defined regions and thus provides a better solution for optimising the number of a priori selected ROIs 

or testing specific hypotheses. In contrast, the RG approach is most distinct from anatomical ROIs and 

limitations that they could impose on detection of functional networks. Therefore, it might be more 

desirable for data-driven whole brain connectivity analyses, e.g. for resting state networks. 

5.3 Non-zero-lag connectivity does not obviate the need for EEG/MEG-adaptive 

parcellation  

Non-zero-lag connectivity measures have been introduced to alleviate the leakage problem (Nolte 

et al. 2004; Stam et al. 2007). We investigated whether using non-zero-lag connectivity can resolve the 

need for an adaptive parcellation for whole-brain network analysis. We used magnitude-squared 

coherence (COH) and imaginary part of coherence (imCOH) as spectral measures of amplitude and 

phase coupling (Greenblatt et al. 2012; Bastos & Schoffelen 2016). While COH is sensitive to zero- as 
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well as non-zero-lag connections, imCOH is only sensitive to the latter. We argued (section 2.1.4) that 

even bivariate and multivariate non-zero-lag connectivity measures are affected by leakage. In our 

simulations, we showed that long-range spurious connections between a seed and a target can occur 

due to leakage to the target. This can affect the final hub connectivity patterns obtained from imCOH 

when binarised graphs are used to obtain hubs and hub connections. For example, when the same 

threshold is applied to binarise COH and imCOH matrices (e.g. top 6% of connection in our simulation 

example), removing true zero-lag connections in imCOH increases the probability of keeping the false 

long-range non-zero-lag connections that are induced by the leakage (i.e. leakage-induced connections 

are large) and thus it is more likely to highlight the ROIs that receive such spurious connections as 

spurious hubs. The effects of combining different parcellations with different connectivity measures on 

the outcome of graph-theoretical analyses should be studied in more detail in the future.   

5.4 Practical notes 

Here we discuss two practical considerations. Firstly, the parcellation introduced in this study is 

defined in a standard source space where CTFs computed in the single subject space are morphed to a 

standard space and averaged across a group of subjects for further analysis. These standard ROIs can be 

morphed to the individual source spaces for the single subject analysis. In a series of trials that are not 

reported here, we found that ROIs defined in single subject space are highly inconsistent across 

subjects. This is firstly due to the fact that the sizes of ROIs can vary largely across subjects and secondly, 

some overlapping vertices might be assigned to different structural labels in different subjects. 

Therefore, we conclude that in order to obtain a consistent set across subjects and robustness to noise,  

ROIs can be defined in a standard canonical space and, if single subject connectivity analysis is of 

interest, ROIs can be morphed to the individual source space.  

Secondly, there are several SaM and RG parameters that can be adjusted in order to obtain a 

parcellation that is most suitable for the questions of a study; here we used generalizable parameters 

based on the values commonly used for similar purposes in the literature. First, in order to assign a 

vertex to an ROI we used half-maximum of CTF values as a measure of sensitivity. Half-maximum is 

commonly used in signal processing as a measure of sensitivity in order to provide a cut-off to assign a 

set of values to a given peak. In signal processing, it corresponds to ~3dB attenuation in the power of 

the signal (below which the signal is considered damped) (Oppenheim & Schafer. 2010). Second, we 

used z-scores above 3 for sensitivity and specificity of a vertex to an ROI. A Z-score above 3 for Gaussian 

distributions corresponds to a p-value<0.005, showing that a vertex is significantly more sensitive to a 
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given ROI as compared to any other ROIs. Third, we allowed at least one standard deviation between 

the ROI with highest specificity and the ROI with next highest specificity (see Methods section for 

details). These values can be considered “standard” to provide a reasonable trade-off between the 

sensitivity, specificity and maximising the number of distinguishable ROIs. However, if there are clear 

requirements for sensitivity versus specificity, these values can be adjusted to adapt the parcellation 

accordingly. Another parameter is the minimum number of vertices that are required to form a separate 

ROI. We heuristically selected a minimum of 10 vertices, in order to exclude very small ROIs that might 

be significantly affected by slightly changing other parameters of parcellation. 

5.5 Future directions 

The final ROI resolution matrices reveal that even though the parcellation performance is notably 

improved, the RRmats are still significantly different from an ideal identity matrix. Modified parcellations 

were most successful in increasing sensitivity of ROIs to themselves. This was reflected in the diagonal 

elements of the final ROI resolution matrices as well as the simulations to detect hubs and hub 

connectivity patterns. However, the RRmats of the final parcellations still showed several large off-

diagonal elements which affect the specificity, particularly if two active sources in the brain are 

neighbours. This was reflected in our simulations where we found false alarms for the original as well as 

the modified parcellations. Therefore adaptive parcellations could be used with complementary 

methods that can further improve the specificity to result in a more accurate network reconstruction. 

One such complementary method might be to combine adaptive parcellations with multivariate 

connectivity. In the theory section and Appendix A, we have discussed how multivariate and non-zero-

lag connectivity methods can be affected by the leakage, and considering the linear nature of CTFs and 

based on the multivariate covariance as an example, we discussed that leakage coefficients could be 

taken into account in order to quantify the effects of CTFs on multivariate connectivity analysis. These 

leakage coefficients can be extracted from the RRmats. Therefore, we suggest that modified 

parcellations and RRmats might be used together with multivariate and time/phase-lagged estimates of 

connectivity, to get more direct and directed measures of whole-brain graphs. It is worth noting that 

computing RRmats for any given parcellation (e.g. anatomical parcellations) to inform the multivariate 

connectivity analysis might not result in an accurate reconstruction of whole-brain networks. This is due 

to the fact that standard anatomical parcellations are likely rank-deficient (section 4.2.1) which indicates 

that signals of one or more ROIs are inherently dependent on a linear combination of other ROIs in the 

brain and cannot be estimated accurately. On the contrary, the parcellation algorithms in this study 
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yielded full-ranked RRmats within a reasonable tolerance, suggesting that one can derive N independent 

signals for N ROIs yielded by the parcellation algorithms. Therefore, obtaining distinguishable CTF-based 

ROIs is an essential first step and how to combine these adaptive parcellation methods with different 

connectivity methods will be an important question for future studies.   
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Appendix A: The effect of leakage on multivariate connectivity 

We can generalise the bivariate (two-ROI) example discussed in section 2.1.4 to multivariate 

methods for estimating the unique (partial) covariance between pairs of ROIs in a network of 

connections between three or more ROIs. In Fig. 1 d, consider a seed in the RMF (region Y), a target in 

the MTG (region Z) and a new region X within the leakage realm of MTG. Let us assume that the true 

source in Z co-varies with Y, but true connectivity between X and Y is zero. Let us further assume, for the 

sake of simplicity, that the whole network only consists of these three regions and Y does not 

receive/send leakage from/to any other ROIs. Therefore, considering the linear and time-unvarying 

effects of leakage, the estimated X and Z signals will be a linear combination of true signals at these 

regions (X’ and Z’ respectively) while the estimated Y activity equals the true source activity Y’ and can 

be written as: 

X �  ��X� � ��Z� 

                             	 �  ��
� � ��	�                        (A 1) 

Y �  Y� 

where α1 and β1 are the amount of leakage that X receives from itself and true Z’ source respectively and 

α2 and β2 are the amount of leakage that Z receives from true X’ source and itself respectively. 

Therefore, in the scenario outlined above, COVX’Y’=0 and in order for the partialling of covariance to 

overcome leakage, it should yield COVXY|Z=0.  

�����|� � ����� �  ����������    (A 2) 

• ����� � ��	
 � ���	
 � ���� � ��	��X� �  ��Z� � ����� � ������	
 � ���� �  �������� � �������� �  ��������  

• ����� � ��	� � ���	
 � ���� � ��	��X� �  ��Z� � ����� � ������	
 � ���� �  �������� � �������� �  ��������  

• ����� � ��	
 � ���	� � ���� � ��	��
� �  ���� � ����� � ������	��
� �  ���� � ����� � ������� �  �������
� �

�������
� � 	���� � ������������       (A 3) 

�����|� � �������� �  ��������  	�������
� � �������

� � 	���� � �������������     (A 4) 

Therefore, COVXY|Z≠0. The only exceptional case is when the true source X’=µx’ (i.e. inactive), 

β1=β2=1(i.e. Z and X are equally influenced by the leakage from Z), Z’ has unit variance and, thus, 

�
��� � 0. Even though the second condition (β1=β2=1) might be obviated using normalised measures 

of co-variation, the first and third conditions are unlikely to be true for the whole brain network analysis. 
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This argument, likewise for the bivariate methods, might be generalised to time-lagged connectivity 

measures (e.g. multivariate autoregressive modelling).  

Even though the above examples argue that leakage cannot be resolved using non-zero-lag or 

multivariate connectivity measures, Equations A2-A4 show that quantifying leakage between ROIs (i.e. 

coefficients α1 α2 β1 β2) and combining them with multivariate connectivity measures might provide a 

more accurate reconstruction of whole brain networks using source reconstructed EEG/MEG data. In 

this study we concentrated on the former. 

Appendix B  

Simulated ROIs 

The ROIs in Rostral Middle Frontal (RMF), Superior Temporal (STS) and Lateral Occipital (LOC) cortices 

used for simulations (section 3.4.1) and corresponding CTFs are shown in  Fig. B.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 1 a) Three areas in Rostral Middle Frontal (RMF), Superior Temporal (STS) and Lateral Occipital 

(LOC) cortices and b) the sum of corresponding CTFs. c) Sinusoidal signals with signal-to-baseline ratios of 3

were simulated in RMF (left), STS (middle) and LOC (right).  Random Gaussian noise with mean and standard 

deviation equal to that of the RMF signal (i.e. SNR=1) was simulated everywhere else in the brain. The 

expected coherence/ imaginary coherency between each pair of ROIs are shown in panel a, therefore, one or 

more ROIs overlapping with STS in each parcellation should be identified as hub(s).  

COH > 0 
COH > 0 

COH ~ 0 

a b 

c 
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Initial results of the parcellation algorithms 

 Fig. B.2 shows the intitial split and merged ROIs which were input to the final parcellation procedure. 
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Figure B. 2 Initial results of the parcellation algorithms. a) split and b) merged ROIs from the Desikan-Killiany Atlas.

The primary splitting procedure for this parcellation resulted in 194 split ROIs and merging procedure resulted in 

122 merged ROIs; these sets of ROIs formed an intermediate parcellation that was input into the final homogeneity 

check for final vertex assignment (sections 3.3.2.4, 3.3.2.5). From this figure, it can be seen that larger ROIs (e.g. 

pre-/post-central and temporal regions) were split into several sub-ROIs. Additionally, vertices that are located at 

the intersection of adjacent ROIs were typically clustered together to form merged ROIs. While some of these 

clusters survive as new ROIs in the final parcellation (Fig 4a), others are removed, leaving gaps between the 

neighbouring ROIs which results in a sparse sampling of the cortex to maximise the distinguishability in the final 

parcellation.  c) split and d) merged ROIs from Destrieux Atlas. The initial splitting procedure for this parcellation 

resulted in 428 ROIs and merging procedure in 280 extra ROIs (overall 708 ROIs) compared to 316 ROIs for the 

Desikan-Killiany atlas. e) “Created” ROIs from the region growing algorithm. These created ROIs were mirrored to 

the right hemisphere using MNI coordinates.  
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