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Abstract   

Learning from reward feedback is essential for survival but can become extremely challenging 

when choice options have multiple features and feature values (curse of dimensionality). Here, 

we propose a general framework for learning reward values in dynamic multi-dimensional 

environments via encoding and updating the average value of individual features. We predicted 

that this feature-based learning occurs not just because it can reduce dimensionality, but more 

importantly because it can increase adaptability without compromising precision. We 

experimentally tested this novel prediction and found that in dynamic environments, human 

subjects adopted feature-based learning even when this approach does not reduce dimensionality. 

Even in static low-dimensional environment, subjects initially tended to adopt feature-based 

learning and switched to learning individual option values only when feature values could not 

accurately predict all objects values. Moreover, behaviors of two alternative network models 

demonstrated that hierarchical decision-making and learning could account for our experimental 

results and thus provides a plausible mechanism for model adoption during learning in dynamic 

environments. Our results constrain neural mechanisms underlying learning in dynamic multi-

dimensional environments, and highlight the importance of neurons encoding the value of 

individual features in this learning. 
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Introduction 

Human behavior is marked by a sophisticated ability to attribute reward outcomes to appropriate 

choices and events with surprising nuance. Learning from reward feedback is essential for 

survival, and understanding the mechanisms underlying this ability is a major focus of cognitive 

neuroscience. In nature and in ecologically valid laboratory settings, however, such learning is 

challenging because choices have many features (e.g. color, shape, texture), each of which can 

take different values, resulting in a large number of options for which reward values have to be 

learned. This is referred to as the “curse of dimensionality,” because standard models of learning 

do not scale up with the increase in dimensionality and thus the number of possible options in the 

environment (Barto & Mahadevan, 2003; Diuk, Tsai, Wallis, Botvinick, & Niv, 2013; Hastie, 

Tibshirani, & Friedman, 2001; Sutton & Barto, 1998).  

An increase in dimensionality creates two main difficulties for the standard reinforcement 

learning (RL) models that try to directly learn the value of individual options (i.e. model-free 

approach). First, learning is too slow and imprecise due to the many reward outcomes needed to 

get an accurate estimate of the reward value, as well as the possibility that reward contingencies 

might quickly change over time. Second, the value of certain options not yet encountered cannot 

be estimated (Kahnt, Chang, Park, Heinzle, & Haynes, 2012). Thus, two approaches are 

commonly proposed to overcome the curse of dimensionality. One approach is to construct a 

simplified representation of the stimuli and therefore, to learn only a small subset of features and 

ignore others (Niv et al., 2015; Wilson & Niv, 2012). However, there are behavioral and neural 

data suggesting that human subjects process all features of each option, rather than focusing on a 

single informative dimension (Wunderlich, Beierholm, Bossaerts, & O’Doherty, 2011). 

Moreover, ignoring subsets of features could be detrimental in dynamic environments where 

previously non-informative features can suddenly become informative. The other approach is to 

infer the structure of the task and create rules to estimate reward values of options based on their 

features, a process often referred to as the model-based approach, which requires a much smaller 

set of values to be learned (Braun, Mehring, & Wolpert, 2010; Dayan & Berridge, 2014; 

Gershman & Niv, 2010; Maia, 2009).  
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A simple form of the model-based approach is feature-based learning, in which the average 

values of all features are learned and then combined to estimate the reward values for individual 

options. In addition to reducing dimensionality without ignoring any features, feature-based 

learning also enables faster learning and more adaptability without compromising precision. This 

is possible because reward values of all features of the selected option can be updated based on a 

single reward feedback. In contrast, simply increasing the learning rates in a model-free 

approach can improve adaptability but also adds noise in the estimation of reward values for 

individual options (adaptability-precision tradeoff). Therefore, by enabling faster learning 

without sacrificing precision, feature-based learning can ameliorate the adaptability-precision 

tradeoff. Feature-based learning can be implemented neuronally using a relatively small number 

of value-encoding neurons with pure feature selectivity, i.e. neurons that represent the reward 

value in a single dimension, such as color or shape. In contrast, object-based learning in a model-

free approach requires myriad mixed selectivity neurons tuned to specific combinations of 

various features. This difference makes feature-based learning computationally more feasible 

than object-based learning. However, feature-based learning is only beneficial if a generalizable 

set of rules exists such that the reward value of all options can be accurately constructed from 

their feature values.  

Therefore, the main advantage of feature-based learning might be to overcome the adaptability-

precision tradeoff. To test this hypothesis, we constructed a general framework and designed a 

series of experiments to explore and measure how multiple factors encourage the adoption of 

feature-based versus object-based learning. Moreover, we designed and tested two alternative 

network models in order to capture our experimental observations.  

 

Materials and Methods  

General framework. We constructed a general framework for model adoption during learning 

of reward values in a dynamic, multi-dimensional environment. Assuming that objects (options) 

contain m features, each of which can take one of n feature values, there are nm objects/options in 

the environment. In our simulations, the probability of reward on individual objects (the reward 
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matrix) was constructed by first assigning a set of equally-spaced likelihood ratios (LR) to n 

possible values of each feature in all m dimensions. The minimum and maximum values of LR’s 

were set to 1/x and to x (x > 1), respectively. For example, for n = 3, LR(Fij) = {1/2, 1, 2} where 

Fij is the feature value j (j =1,…,n) of feature i (i =1,…,m).  The LR for a given object a (LR(Oa)) 

was assigned by multiplying the LR’s of all features of that object: 

𝐿𝑅(𝑂!) = 𝐿𝑅(𝐹!")!
!!!,!"#  !!"  !"#$#%&  !"  !!   . The probability of reward on each object was then 

computed by transforming the object’s LR to the probability of reward: 𝑝!(𝑂!) = 𝐿𝑅  (𝑂!)/(1+

𝐿𝑅  (𝑂!)).  

To calculate the estimated reward matrix based on the average feature values, we first computed 

the average reward value for each value of a feature (e.g. red, green, triangles, squares) by 

averaging the reward values of objects that contain that feature: 

𝑝!(𝐹!) = (1/𝑛!!!) 𝑝!(𝑂!)!!  !"#$%&#'  !!" . By combining these average feature values we then 

generated an estimated reward value,  𝑝! 𝑂! , using the Bayes theorem:  

𝑝! 𝑂! = (𝑝! 𝐹!!   ×  𝑝! 𝐹!!   ×… )/(𝑝! 𝐹!!   ×  𝑝! 𝐹!!   ×…+   (1− 𝑝! 𝐹!! )  ×  (1−

𝑝! 𝐹!! )  ×… )      for Oa containing of F1j, F2k, etc.   (Eq. 1) 

By randomly shuffling elements of the reward matrix in all dimensions except one (which we 

call the informative feature), we generated environments with varying values of correlation 

between the reward matrix and estimated reward matrix (i.e. correlation between the reward 

value of options and the estimated reward value of options based on their average feature 

values). This correlation was used as the generalizability index, which can take on any value 

between -1 and 1. Without any shuffling, we get a fully generalizable environment 

(generalizability index equal to 1) where the reward values of all options can be precisely 

constructed from the average reward values of their features.  

The task for the decision maker is to learn the reward value of options via reward feedback in 

order to choose between two alternative options on each trial. The model with object-based 

learning directly learns the reward value of all objects based on reward feedback on each trial: 

𝑉𝑂𝑎 𝑡 + 1 = 𝑉𝑂𝑎 𝑡 + 𝛼 1 − 𝑉𝑂𝑎 𝑡   ,        𝑖𝑓  𝑅 𝑡 = 1 
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𝑉𝑂𝑎 𝑡 + 1 = 𝑉𝑂𝑎 𝑡 − 𝛼 𝑉𝑂𝑎 𝑡 ,        𝑖𝑓  𝑅 𝑡 = 0      (Eq. 2) 

where t represents the trial number, 𝑉!!(𝑡) is the reward value of the chosen object, 𝑅(𝑡) is the 

trial outcome (1 for rewarded, 0 for unrewarded), and 𝛼 is the learning rate. The value of the 

unchosen object is not updated. The model with feature-based learning learns the average reward 

value of individual feature values (e.g. red, green, triangles, squares), 𝑉!!(𝑡),  using the same 

update rule as in Equation 2, but applying to all features of the chosen object. Therefore, the 

object-based learning model only updates one value function after each feedback whereas the 

feature-based learning model updates the average reward value of all features of the chosen 

object. 

To measure how well a model based on object-based or feature-based learning can differentiate 

between different options at a given point in time, we defined the differential signal, SO(t), in the 

object-based learning model as follows: 

𝑆! 𝑡 = !
!!×(!!!!)

𝑉𝑂𝑖 𝑡 − 𝑉𝑂𝑗 𝑡 𝑠𝑖𝑔𝑛(𝑝𝑟(𝑂𝑖) − 𝑝𝑟(𝑂𝑗))
!!
!!!

!!
!!!        (Eq. 3) 

where 𝑝!(𝑂!) is the probability of reward on object i. The differential signal for the feature-based 

learning model, SF(t), was computed by replacing 𝑉!!(𝑡) in the above equation with the 

estimated reward value  𝑉!! 𝑡 ,   which was computed by replacing 𝑝! 𝐹!  in Equation 1 with 

𝑉!!(𝑡). Therefore, the differential signal measures how reward values estimated by a given model 

correctly differentiate between object values. By comparing the time course of differential signal 

for the object-based and feature-based learning models (using the same learning rate), we 

computed the time at which the object-based learning model carries a stronger differential signal 

than the feature-based learning model (the ‘switch point’). A larger switch point indicates the 

superiority (better performance) of the feature-based relative to the object-based learning model 

for a longer amount of time, whereas zero switch point indicates that the object-based learning 

model is always better. 

Subjects. Subjects were recruited from the Dartmouth College student population. In total, 59 

subjects were recruited (34 females) to perform the choice task in Experiment 1 or 2 or both (33 

subjects performed in both experiments). These resulted in N = 51 and N = 41 sets of behavioral 
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data for Experiments 1 and 2, respectively. To exclude subjects whose performances were not 

significantly different from chance (0.5), we used a performance threshold of 0.5268 (equal to 

0.5 plus 3 times s.e.m., based on the average of 768 trials in each session of Experiments 1 and 

2). This resulted in the exclusion of data from 5 of 51 sets in Experiment 1, and 14 of 41 sets in 

Experiment 2. The data from the remaining 73 sessions was used for further analysis (N = 46 and 

N = 27 for Experiments 1 and 2, respectively). For Experiment 3, 36 additional subjects were 

recruited (20 females) and a performance threshold of 0.5317 (equal to 0.5 plus 3 times s.e.m., 

based on the average of 560 trials) was used to exclude subjects whose performance was 

indistinguishable from chance (N = 4). In total, only two subjects participated in all three 

experiments, and this occurred over four months. For Experiment 4, 36 new subjects were 

recruited (22 females) and a performance threshold of 0.5289 (equal to 0.5 plus 3 times s.e.m., 

based on the average of 672 trials) was used to exclude subjects whose performance was 

indistinguishable from chance (N = 9). No subject had a history of neurological or psychiatric 

illness. Subjects were compensated with a combination of money and “t-points,” which are 

extra-credit points for classes within the Dartmouth College Psychological and Brain Sciences 

department. The base rate for compensation was $10/hour or 1 t-point/hour. Subjects were then 

additionally rewarded based on their performance, by up to $10/hour. All experimental 

procedures were approved by the Dartmouth College Institutional Review Board, and informed 

consent was obtained from all subjects before participating in the experiment. 

Experiments 1 and 2. In these experiments, subjects completed two sessions (each session 

composed of 768 trials and lasting about one hours) of a choice task during which they selected 

between a pair of objects on each trial (Fig.1A). Objects were one of four colored shapes: blue 

triangle, red triangle, blue square, and red square. Subjects were asked to choose the object that 

was more likely to provide a reward in order to maximize the total number of reward points, 

which would be converted to monetary reward and/or t-points at the end of the experiment.  

[Figure 1 about here] 

In each trial, the selection of an object was rewarded only according to its reward probability and 

independently of the reward probability of the other object. This reward schedule was fixed for a 

block of trials (block length, L = 48), after which it changed to another reward schedule without 
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any signal to the subject. Sixteen different reward schedules were used (all permutations of four 

reward probabilities [0.1, 0.3, 0.7. 0.9]), eight of which consisted of generalizable rules for how 

combinations of feature values (color or shape) predicted reward probability for different objects 

(Fig.1B). This set of reward schedules was intended to allow for generalization across features. 

The other eight schedules lacked generalizable rules for how combinations of feature values 

predicted reward probability for different objects (Fig.1C). For example, the schedule notated as 

‘Rs’ corresponds to red objects being much more rewarding than blue objects, square objects 

being more rewarding than triangle objects, and color (‘R’ comes first) being more informative 

than shape (‘s’ comes second). In this generalizable schedule, red square was the most rewarding 

object whereas blue triangle was the least rewarding object. For non-generalizable schedules, 

only one of the two features was on average informative of reward values. For example, the ‘r1’ 

schedule indicated that, overall, red objects were slightly more rewarding than blue objects, but 

there was no generalizable relationship between the rewarding values of individual objects (e.g. 

red square was the most rewarding object, but red triangle was less rewarding than blue triangle). 

In other words, the non-generalizable set of reward schedules was designed so that a rule based 

on feature combination could not predict reward probability on all objects. For example, learning 

something about a red triangle did not necessarily tell the subject anything about other red 

objects or other triangle objects.  

The main difference between Experiments 1 and 2 was that the environments in these 

experiments were composed of reward schedules with a generalizable and non-generalizable 

rule, respectively. Critically, as the subjects moved between blocks of trials, reward probabilities 

for the informative features (e.g., red and blue for the switch between Rs and Bs) were reversed 

without any changes in the average reward probabilities for the non-informative features. This 

was done without any cue to the subject in order to induce volatility in reward information 

throughout the task (Fig.1E, G). In addition, the average reward probabilities for the non-

informative feature changed (e.g., from Bs and Rs to Bt and Rt) every four blocks (super-blocks; 

Fig.1D, E). Generalizable and non-generalizable reward schedules were used to create two 

separate environments. On each block of the generalizable environment (Experiment 1), feature-

based rules could be used to correctly predict reward throughout the task (Fig.1B). In the non-

generalizable environment (Experiment 2), however, the reward probability assigned to each 

object could not be determined based on the objects’ features (e.g. in an additive fashion) and 
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instead depended on the combination of features (see above; Fig.1C). Each subject performed the 

experiment in each environment once, and either color or shape was more informative for both 

environments. The more informative feature was randomly assigned and counter-balanced across 

subjects to minimize the effects of intrinsic color or shape biases. 

Experiment 3. In this experiment, subjects completed two sessions, each of which included 280 

choice trials interleaved with five or eight short blocks of estimation trials (each block with eight 

trials). On each trial of the choice task, the subject was presented with a pair of objects and was 

asked to choose the object that they believed would provide the most reward. These objects were 

drawn from a set of eight objects, which were constructed using combinations of three distinct 

patterns and three distinct shapes (Fig.2A-B; one of nine possible objects with reward probability 

of 0.5 was excluded to shorten the duration of the experiment). The three patterns and shapes 

were selected randomly for each subject. The two objects presented on each trial always differed 

in both pattern and shape. Other aspects of the choice task were similar to those in Experiments 1 

and 2, except that reward feedback was given for both objects rather than just the chosen object, 

in order to accelerate the learning. During the estimation blocks, subjects provided their 

estimates of the probability of reward for individual objects. Possible values for these estimates 

were from 5% to 95%, in 10% increments (Fig.2E). All subjects completed five blocks of 

estimation trials throughout the task (after trials 42, 84, 140, 210, and 280 of the choice task), but 

some subjects had three additional blocks of estimation trials (after trials 21, 63, and 252) to 

better assess the estimations over time. Each session of the experiment was about 45 minutes in 

length, with a break before the beginning of the second session. The second session was similar 

to the first, but with different sets of shapes and patterns. 

[Figure 2 about here] 

Selection of a given object was rewarded (independently of the other object on a given trial) 

based on a reward schedule with a moderate level of generalizability such that reward probability 

of some individual objects could not be determined based on their feature values. Because of the 

larger number of objects, the reward schedule was more complex than that used in Experiment 1 

but did not change over the course of the experiment. Non-generalizable reward matrices can be 

constructed in many ways. In  experiment 3, one feature (shape or pattern) was informative about 
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reward probability while the other feature was not. Although the informative feature (e.g. pattern 

in Fig.2A and shape in Fig.2B) was on average predictive of reward, this prediction was not 

generalizable. That is, there were objects that contained the most rewarding feature value (e.g. 

S1P3 in Fig.2A) but were less rewarding than objects that did not contain this feature (e.g. 

S1P2). Finally, the non-informative feature did not follow any generalizable rule such that the 

average reward probability across objects with similar feature value (e.g. S1P1, S1P2, S1P3 in 

Fig.2A) was 0.5. This reward schedule ensured that subjects would not be able to use a 

generalizable feature-based rule to accurately predict reward probability for all objects. Similarly 

to Experiments 1 and 2, the informative feature was randomly assigned and counter-balanced 

across subjects to minimize the effects of intrinsic pattern or shape biases. 

Experiment 4. This experiment was similar to Experiment 3, except that we used four feature 

values for each feature (shape and pattern) resulting in an environment with a higher 

dimensionality. Each subject completed two sessions, each of which included 336 choice trials 

interleaved with five or eight short blocks of estimation trials (each block with eight trials). The 

objects in this experiment were drawn from a set of twelve objects, which were combinations of 

four distinct patterns and four distinct shapes (Fig.2C-D; four of sixteen possible objects with 

reward probability 0.5 were removed to shorten the duration of the experiment). The four 

patterns and shapes were selected randomly for each subject. The probabilities of reward on 

different objects (reward matrix) were set such that there was one informative feature, and the 

minimum and maximum average reward value for features were similar for Experiments 3 and 4. 

Data analysis. We utilized two methods to test how subjects determined the values of objects 

using their reward probability estimates. First, we used linear regression to fit the estimates of 

reward probabilities as a function of the actual reward probabilities assigned to each object 

(object-based term), the reward probabilities estimated based on average feature values using the 

Bayes theorem (Eq.1) (feature-based term), and a constant. The constant (bias) in this regression 

model quantifies subjects’ overall bias in reporting reward values. Moreover, the relative weight 

of bias to the regression coefficient for the feature-based term indicates the subject’s lack of 

discrimination between objects’ reward values. Second, to determine whether subjects’ estimates 

were closer to estimates based on the feature-based or object-based approach, we computed the 

correlation between subjects’ estimates and the actual reward probabilities assigned to each 
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object, or subjects’ estimates and the reward probabilities estimated using average feature values 

(Eq.1).  

Model fitting procedure. To capture subjects’ learning and choice behavior, we used seven 

different reinforcement learning (RL) models based on object-based or feature-based approaches. 

These models were fit to experimental data by minimizing the negative log likelihood of the 

predicted choice probability given different model parameters using the ‘fminsearch’ function in 

MATLAB (Mathworks). We computed three measures of goodness-of-fit in order to determine 

the best model to account for the behavior in each experiment: average negative log likelihood, 

Akaike information criterion (AIC), and Bayesian information criterion (BIC). The smaller value 

for each measure indicates a better fit of choice behavior.  

Object-based RL models. In this group of models, the reward value of each object is directly 

estimated from reward feedback on each trial using a standard RL model (Sutton & Barto, 1998). 

For example, in the uncoupled object-based RL, only the reward value of the chosen object is 

updated on each trial. This update is done via separate learning rates for rewarded or unrewarded 

trials using the following equations, respectively (Donahue & Lee, 2015): 

𝑉!!!" 𝑡 + 1 = 𝑉!!!" 𝑡 + 𝛼!"# 1 − 𝑉!!!" 𝑡   ,        𝑖𝑓  𝑅 𝑡 = 1 

𝑉!!!" 𝑡 + 1 = 𝑉!!!" 𝑡 − 𝛼!"# 𝑉!!!" 𝑡 ,        𝑖𝑓  𝑅 𝑡 = 0            (Eq. 4) 

where t represents the trial number, 𝑉!!!" is the estimated reward value of the chosen object, 

𝑅(𝑡) is the trial outcome (1 for rewarded, 0 for unrewarded), and  𝛼!"# and  𝛼!"# are the learning 

rates for rewarded and unrewarded trials. The value of the unchosen object is not updated in this 

model. 

In the coupled object-based RL, the reward values of both objects presented on a given trial are 

updated, but in opposite directions (assuming that reward assignments on the two objects are 

anti-correlated). That is, while the value of chosen object is updated based on Equation 4, the 

value of unchosen object is updated as follows: 

𝑉!"#$ 𝑡 + 1 = 𝑉!"#$ 𝑡 − 𝛼!"# 𝑉!"#$ 𝑡 ,        𝑖𝑓  𝑅 𝑡 = 1 
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𝑉!"#$ 𝑡 + 1 = 𝑉!"#$ 𝑡 + 𝛼!"# 1 − 𝑉!"#$ 𝑡 ,      𝑖𝑓  𝑅 𝑡 = 0        (Eq. 5) 

where t represents the trial number and 𝑉!"#$  is the estimated reward value of the unchosen 

object.  

The estimated value functions are then used to compute the probability of selecting between the 

two objects on a given trial (O1 and O2) based on a logistic function 

𝑃!!(𝑡) =
!

!!!"#  (! !!!(!)!!!!(!) /!)
          (Eq. 6) 

where PO1 is the probability of choosing object 1, VO1 and VO2  are the reward values of the two 

presented objects, and σ is a parameter measuring the level of stochasticity in decision process. 

Feature-based RL models. In this group of models, the reward value (probability) of each 

object is computed using the average reward value of the features of that object, which are in 

turn estimated from reward feedback using a standard RL model. The update rules for the 

feature-based RL models are identical to the object-based ones, except that the reward value of 

the chosen (unchosen) object is replaced by the reward values of the features of the chosen 

(unchosen) object. In particular, only the reward values of unique features are updated on a given 

trial (e.g. if both objects are blue, then the reward value of blue is not updated). However, we 

also tested another feature-based RL where the reward values of both features are updated on 

each trial. The results from this model are not presented because the fit of this model was worse 

than that of other presented models and moreover, this model does not have an object-based 

counterpart. 

As with the object-based RL models, the probability of choosing an object is determined based 

on the logistic function of the difference between the estimated values for the objects presented  

𝑃!!(𝑡) =
!

!!!"#  (! !!!!"#$!(!)!!!!!"#$!(!) ! !!"#"$%!(!)!!!"#"$%!(!) /!!)
          (Eq. 7)  

where 𝑉!!!"#$!(𝑉!"#"$%!)    and 𝑉!!!"#$!(𝑉!"#"$%!)  are the reward values associated with the shape 

(color) of objects 1 and 2, respectively.  
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RL models with decay. Additionally, we investigated the effect of ‘forgetting’ the reward 

values of unchosen objects or features by introducing decay of value functions (in the uncoupled 

models) which has been shown to capture learning in a multi-dimensional task (Niv et al., 2015). 

More specifically, the reward values of unchosen objects or features decays to 0 with a rate of  𝑑, 

as follows: 

𝑉 𝑡 + 1 = 1 − 𝑑 𝑉 𝑡           (Eq. 8) 

where t represents the trial number and 𝑉 is the estimated reward probability of an object or a 

feature. 

Computational models. To gain insights into the neural mechanisms underlying multi-

dimensional decision-making, we examined two possible network models that could perform 

such a task (Fig.6A-B). Both models have two sets of value-encoding neurons that learned the 

reward values of individual objects (object-value-encoding neurons, OVE) or features (feature-

value-encoding neurons, FVE). More specifically, plastic synapses onto value-encoding neurons 

undergo reward-dependent plasticity (via reward feedback), which enables these neurons to 

represent and update the value of presented objects or their features. Namely, reward values 

associated with individual objects and features are updated by potentiating or depressing plastic 

synapses onto neurons encoding the value of a chosen object or its features depending on 

whether the choice was rewarded or not rewarded, respectively.  

The two network models differ in how they integrate signals from the OVE and FVE neurons 

and how the influence of signals from these neurons on the final choice is adjusted. The parallel 

decision-making and learning (PDML) model makes two additional decisions using the output of 

an individual set of value-encoding neurons (OVE or FVE) in order to compare with the choice 

of the final decision-making (DM) circuit (Fig.6A). If the final choice was rewarded, the model 

increases the strength of connections between the set or sets that produced the same choice as the 

final choice, therefore increasing the influence of the set of value-encoding neurons that were 

more likely responsible for making the final choice, and vice versa. By contrast, the hierarchical 

decision-making and learning (HDML) model updates connections from the OVE and FVE 

neurons to the corresponding neurons in the signal-selection circuit by determining which set of 

the value-encoding neurons contains a stronger signal (the difference between the values of the 
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two options) first, and uses only the outputs of that set to make the final decision on a given trial 

(Fig.6B). Subsequently, only the strengths of connections between the set of value-encoding 

neurons responsible for the ‘selected’ signal and the corresponding neurons in the signal-

selection circuit are increased or decreased depending on whether the final choice was rewarded 

or not rewarded, respectively (see below). 

Learning rule. We assumed that plastic synapses undergo a stochastic, reward-dependent 

plasticity rule (see Soltani and Wang, 2006 and Soltani, Lee, & Wang, 2006 for details). Briefly, 

we assumed that plastic synapses are binary and could be in potentiated (strong) or depressed 

(weak) states. On every trial, plastic synapses undergo stochastic modifications (potentiation or 

depression) depending on the model’s choice and reward outcome (see below). During 

potentiation events, a fraction of weak synapses transition to the strong state with probability q+. 

During depression events, a fraction of strong synapses transition to the weak state with 

probability q-. These modifications allowed a given set of plastic synapses to estimate reward 

values associated with a choice option (Soltani, Lee, & Wang, 2006; Soltani & Wang, 2006, 

2008, 2010). 

For binary synapses, the fraction of plastic synapses that are in the strong state (which we call 

‘synaptic strength’) determines the firing rate of afferent neurons. We denote the synaptic 

strength of plastic synapses onto a given population of value-encoding neurons ‘v’ by 𝐹!(𝑡), 

where v = {R, B, s, t, Rs, Bs, Rt, Bt} represents a pool of neurons encoding the value of a given 

feature or a combination of features (in Experiments 1 and 2), and t represents the trial number. 

In Experiments 3 and 4, the number of feature values was three and four, respectively, instead of 

two, resulting in six and eight sets of FVE neurons and nine and sixteen sets of OVE neurons, 

respectively. Similarly, we denote the synaptic strength of plastic synapses from value-encoding 

neurons to the final DM circuit in the PDML model, or to the signal-selection circuit in the 

HDML model, by 𝐶!(𝑡) where m = {O, F} represents general connections from OVE and FVE 

neurons, respectively.  

The changes in the synaptic strengths for synapses onto value-encoding neurons depend on the 

model’s choice and reward outcome on each trial. More specifically, we assumed that synapses 
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selective to the chosen object or features of the chosen object undergo potentiation or depression 

depending on whether the choice was rewarded or not, respectively:  

𝐹! !! 𝑡 + 1 = 𝐹! !! 𝑡 + 𝑞! 1− 𝐹! !! 𝑡 , 𝑖𝑓  𝑅 𝑡 = 1 

𝐹! !! 𝑡 + 1 = 𝐹! !! 𝑡 − 𝑞!𝐹! !! 𝑡 , 𝑖𝑓  𝑅 𝑡 = 0  (Eq. 9) 

where t represents the trial number, 𝐹! !! (𝑡) is the synaptic strength for synapses selective to the 

chosen object or features of the chosen object, R(t) is the reward outcome, and 𝑞! and 𝑞! are 

potentiation and depression rates, respectively. The rest of plastic synapses transition to the weak 

state, according the following equation 

𝐹! !"#! 𝑡 + 1 = 𝐹! !"#! 𝑡 − 𝑞!𝐹! !"#! 𝑡       (Eq. 10) 

where 𝐹! !"#! (𝑡)  is the synaptic strength for synapses selective to the unchosen object or 

features of the unchosen object, and qd is the depression rate for the rest of plastic synapses. 

We used similar learning rules for plastic synapses from value-encoding neurons to the final DM 

circuit in the PDML model as we did from value-encoding neurons to the signal-selection circuit 

in the HDML model. In the PDML model, plastic synapses from value-encoding neurons to the 

final DM circuit are updated depending on additional decisions based on the signal in an 

individual set of value-encoding neurons (OVE or FVE), the final choice, and the reward 

outcome as follows:  

𝐶! 𝑡 + 1 = 𝐶! 𝑡 + 𝑞! 1− 𝐶! 𝑡 ,      𝑖𝑓  𝑅 𝑡 = 1,𝑎𝑛𝑑  𝑝𝑜𝑜𝑙  𝑚  𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓𝑖𝑛𝑎𝑙  𝑐ℎ𝑜𝑖𝑐𝑒   

𝐶! 𝑡 + 1 = 𝐶! 𝑡 − 𝑞!𝐶! 𝑡 ,        𝑖𝑓  𝑅 𝑡 = 0,𝑎𝑛𝑑  𝑝𝑜𝑜𝑙  𝑚  𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓𝑖𝑛𝑎𝑙  𝑐ℎ𝑜𝑖𝑐𝑒   

𝐶! 𝑡 + 1 = 𝐶! 𝑡 1 − 𝑑 ,        𝑖𝑓    𝑝𝑜𝑜𝑙  𝑚  𝑐ℎ𝑜𝑖𝑐𝑒 ≠ 𝑓𝑖𝑛𝑎𝑙  𝑐ℎ𝑜𝑖𝑐𝑒     (Eq. 11) 

where t represents the trial number, 𝐶!(𝑡) is the synaptic strength of connections from object-

value-encoding (m = O) or feature-value-encoding neurons (m = F),  𝑞! and 𝑞! are potentiation 

and depression rates, respectively. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 16 

As we have shown before, the decision only depends on the overall difference in the output of 

the two value-encoding pools (Soltani, Lee, & Wang, 2006; Soltani & Wang, 2006, 2008, 2010). 

Importantly, if these pools are similar, this difference is proportional to the difference in the 

overall fraction of the strong synapses in the two pools (since we assumed binary values for 

synaptic efficacy). Therefore, the probability of the final choice in the PDML model depends on 

the difference between the sum of the output of the value-encoding neurons selective for the 

presented objects or their features (shape and color):  

𝑃 𝑂! =    !

!!!"#  (!
!!(!!!!!!!)!!!((!!!!"#$!!!!!!"#$!)!(!!!"!#$!!!!"#"$%!))/!

! )
      (Eq. 12) 

where 𝐹!!!"#$%(𝑡)  and 𝐹!"#"$%& 𝑡   are the synaptic strengths for synapses onto FVE neurons 

selective to shape and color, respectively. The probabilities of additional decisions (in DM 

circuits 1 and 2) based on the signal in an individual set of value-encoding neurons (OVE or 

FVE) are computed by setting CO or CF in the above equation to zero. 

In the HDML model, a signal-selection circuit determines which set of the value-encoding 

neurons (OVE or FVE) contains a stronger signal first, and uses only the output of that set to 

drive the final DM circuit on a given trial. The probability of selecting the signal from OVE 

neurons,  𝑃(𝑂𝑉𝐸), is computed using the following equation: 

𝑃 𝑂𝑉𝐸 = !

!!!"#  (!
!!(!!!!!!!)!!!((!!!!"#$!!!!!!"#$!)!(!!"#"$%!!!!"#"$%!))/!

! )
     (Eq. 13) 

Therefore, the final decision in the HDML model depends on the difference between the outputs 

of subpopulations in the set of value-encoding neurons which is selected as the set with stronger 

signal:  

𝑃 𝑂! =    !

!!!"#  (!!!!!!!!! )
   , 𝑖𝑓  𝑂𝑉𝐸  𝑠𝑖𝑔𝑛𝑎𝑙  𝑖𝑠  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  

𝑃 𝑂! =    !

!!!"# !
!!!!"#$!!  !!!!"#$!!  !!"#"$%!!  !!"#"$%!

!!

   , 𝑖𝑓  𝐹𝑉𝐸  𝑠𝑖𝑔𝑛𝑎𝑙  𝑖𝑠  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑    (Eq. 14) 

Finally, only plastic synapses from value-encoding neurons to the signal-selection circuit are 

updated depending on the final choice and the reward outcome: 
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𝐶! 𝑡 + 1 = 𝐶! 𝑡 + 𝑞! 1− 𝐶! 𝑡 ,          𝑖𝑓  𝑅 𝑡 = 1 

𝐶! 𝑡 + 1 = 𝐶! 𝑡 1 − 𝑑 ,        𝑖𝑓  𝑅 𝑡 = 0        (Eq. 15) 

where m is the selected signal. 

Model simulations. In order to test the behavior of the two network models during Experiments 

1 and 2, we simulated each model over various environments with different levels of 

generalizability and volatility (Fig.7). More specifically, we linearly morphed a generalizable 

environment to a non-generalizable environment while modulating the level of volatility by 

changing the block length, L. For simulations of Experiments 3 and 4, we changed the levels of 

generalizability by randomly shuffling some of the elements of a fully generalizable matrix, 

using two sets of stimuli with different values of dimensionality (equal to nm) while reward 

schedules remained fixed over the course of the experiment.  

To assess the influence of non-generalizability, volatility, and dimensionality reduction on the 

behavior of each model, we used three measures. The first was performance, which was defined 

as the average harvested reward in a given environment. The second measure was the difference 

in connection strengths from value-encoding neurons to the final DM circuit in the PDML model 

or to signal-selection circuit in the HDML model. The connection strengths from the OVE/FVE 

neurons to the final DM circuit in the PDML model or signal-selection circuit in the HDML 

model were equated with the synaptic strength  (𝐶! 𝑡  and 𝐶! 𝑡 ) in the respective models. The 

third measure was the difference in overall weights that models assigned to object-based versus 

feature-based reward values. This measure combines the information in synapses onto value-

encoding neurons with the strength of the output of these neurons (measure 2) and is computed 

as the product of the ‘differential signals’ (S) in a given set of value-encoding neurons and the 

synaptic strengths of connections from these neurons. The differential signal for the object-based 

reward values was computed by replacing 𝑉!!(𝑡) in Equation 3 with 𝐹!"(𝑡), which is the synaptic 

strength for synapses onto a pool i of OVE neurons. Similarly, the differential signal for the 

feature-based reward values was computed by using the estimated reward values for objects 

based on the synaptic strengths for synapses onto FVE neurons selective to shape and color 

(𝐹!!!"#,!(𝑡) and 𝐹!"#"$,! 𝑡 ) and Equation 1. Finally, the overall weight that the model assigned to 
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the object-based reward value (WO(t)) was set equal to 𝐶!(𝑡)×  𝑆!(𝑡) and the overall weight 

assigned to the feature-based reward value (WF(t)) was set equal to 𝐶!(𝑡)×  𝑆!(𝑡). 

Models parameters. Both models have six parameters including potentiation and depression 

rates for plastic synapses onto value-encoding neurons (𝑞!= 𝑞! = 0.15), potentiation and 

depression rates for plastic synapses onto the final DM circuit in the PDML model or signal-

selection circuit in the HDML model (𝑞! = 𝑞! = 0.075), the depression rate for the rest of plastic 

synapses (qd = 0.015), and the level of stochasticity in choice and selection (σ  = 0.1). Although 

we chose these specific parameter values for model simulations, the qualitative behavior of the 

models did not qualitatively depend on these parameters.  

 

Results  

Adaptability-precision tradeoff and feature-based learning.  

We developed a general framework for understanding model adoption during learning reward 

values in multi-dimensional environments (Fig.3A). Assuming that objects (options) contain m 

features, each of which can take one of n feature values, there are nm possible objects in the 

environment. The decision maker’s task is to learn the reward values of options via reward 

feedback in order to maximize the total reward by choosing between two alternative options on 

each trial. In this framework, each object is assigned a reward value, although the average reward 

value for each value of a feature (e.g. red, green, triangles, squares) might be computed by 

averaging values of objects that contain that feature. By varying the relationship between the 

reward value of each option and the average reward values of its features, we generated multiple 

environments, each with a different level of generalizability (see Materials and Methods). To 

quantify generalizability, we defined the generalizability index as the correlation between reward 

values assigned to each object and reward values estimated based on feature values (Eq.1 in 

Materials and Methods). In a fully generalizable environment (generalizability index equal to 1), 

reward values of all options can be accurately constructed based on reward values of their 

features.  
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The object-based learning model directly learns the value of individual objects via reward 

feedback. In contrast, the feature-based model learns the average value of individual feature 

values by updating the values of all features of the object for which feedback was given, and uses 

these feature values to estimate the values of objects (Eq.1 in Materials and Methods). Clearly, 

with an unlimited amount of time, the object-based learning can perfectly learn all option values, 

whereas the accuracy of the feature-based model is limited by the generalizability of the 

environment. We designed a metric, referred to as the differential signal (see Materials and 

Methods), to quantify how well object-based or feature-based learning models can differentiate 

between options at a given point. By comparing the time course of the differential signal for the 

object-based and feature-based learning models using the same learning rate, we computed the 

time at which the object-based learning obtains more information than the feature-based learning 

model (the ‘switch point’). A larger switch point indicates the superiority (better performance) of 

the feature-based learning relative to the object-based learning for a longer amount of time 

whereas zero switch point indicates that the object-based learning is always better (due to non-

generalizability of the environment). 

[Figure 3 about here] 

The feature-based learning might be faster than the object-based learning because reward values 

of all features of the selected option are updated after each reward feedback in the feature-based 

learning model, whereas only the value of the selected option is updated in the object-based 

learning model. As a result, for sufficiently large values of generalizability (> 0.5), the feature-

based learning model exhibits a stronger differential signal early on, but ultimately, the signal in 

the object-based learning model reaches that of the feature-based learning model (Fig.3A). 

Importantly, if the volatility of the environment increases and reward contingencies change more 

often than once per switch-point number of trials, feature-based learning is advantageous. As 

expected, the switch point increased as the learning rate decreased or as the generalizability 

increased (Fig.3A).  

These simulation results demonstrate how the adaptability-precision tradeoff might favor the 

adoption of the feature-based over the model-based model in some environments. Because only 

the value of the selected option is updated after each reward feedback, object-based learning in a 
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volatile environment requires a higher learning rate, which comes at the cost of lower precision. 

Feature-based learning can mitigate this problem by speeding up the learning via more updates 

per feedback, instead of increasing the learning rate. However, feature-based learning loses its 

precision in a less generalizable environment more than it gains in precision due to multiple 

updates for each feedback, making it inferior to object-based learning (Fig.3A). Importantly, the 

advantage of feature-based over object-based leaning increases with the dimensionality of the 

environment, as the number of value updates per reward feedback increases with the number of 

features in each object (Fig.3B). Finally, the generalizability index, defined as the correlation 

between reward values assigned to each object and reward values estimated based on feature 

values (see Materials and Methods), by chance tends to assume larger values in an environment 

with greater dimensionality. This property further increases the advantage for feature-based 

learning in high-dimensional environments (Fig.3B inset).  

Overall, our framework for learning reward values in a multi-dimensional environment illustrates 

that overcoming the adaptability-precision tradeoff is the main factor for adopting feature-based 

learning, and moreover, provides clear predictions about how different factors such as 

dimensionality reduction, generalizability, and volatility, might influence its adoption. More 

specifically, frequent changes in reward contingencies and high dimensionality should force the 

decision maker to adopt feature-based learning in order to reduce dimensionality and to increase 

adaptability without adding noise (Fig.3C). On the other hand, lack of generalizability of feature 

values to all object values should encourage them to adopt more accurate object-based learning, 

but feature-based learning should be still dominant in the beginning since it acquires reward 

information more quickly. We tested the influence of these factors in the following experiments.   

Feature-based learning in dynamic generalizable environments.  

To explore different factors that influence how humans adopt feature-based or object-based 

learning in dynamic, multi-dimensional environments, we designed a series of four experiments 

in which human subjects learned the reward values of different objects through reward feedback. 

In particular, we manipulated the relationship between the reward values of objects and their 

features (color, shape, etc.). In each trial of all the experiments, subjects chose between a pair of 

different objects that would yield reward with different probabilities.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 21 

In Experiment 1, a pairs of object in each trial was colored shapes and their reward probabilities 

unpredictably changed over time. Importantly, the feature-based and object-based approach 

required learning the same number of reward values (for 4 objects and their features, 

respectively) and thus, adopting the feature-based approach did not reduce dimensionality. 

Moreover, reward probabilities assigned to different objects could be estimated from values of 

their features (generalizable environment). By examining choice behavior during Experiment 1, 

we aimed to study specifically how adaptability required in a dynamic environment influences 

model adoption (Fig.3). Experiment 2 was similar to Experiment 1 except that reward 

probabilities assigned to different objects were not generalizable and could not be estimated from 

their feature values. Therefore, choice behavior in Experiment 2 could reveal how the 

adaptability required in a dynamic environment and a lack of generalizability influence model 

adoption (Fig.3). Finally, we increased the dimensionality to introduce a small (Experiment 3) 

and a moderate (Experiment 4) dimensionality reduction if feature-based learning was adopted, 

but fixed reward probabilities throughout the experiment. Reward values assigned to features, 

however, were not fully generalizable to objects, allowing us to study the influence of 

dimensionality reduction and lack of generalizability on model adoption (Fig.3).  

During Experiments 1 and 2, subjects completed a two-alternative choice task (two sessions each 

with 768 trials) where on each trial they selected between two colored shapes (drawn from a set 

of four shapes; Fig.1A) that provided reward probabilistically. Importantly, reward probabilities 

assigned to individual objects (reward schedule) changed between blocks of trials (every 48 

trials) in order to create environments with dynamic reward schedules. Overall, most subjects 

performed above the statistical chance level in both environments, indicating that they learned 

the values of options (Fig.4A-B). To examine the time course of learning, we computed the 

average probability of reward during each block of trials (i.e. when the reward probabilities were 

fixed). This analysis revealed that it took approximately 15 trials for the subjects to reach their 

maximum performance in each block (Fig.4C).   

[Figure 4 about here] 

To identify the learning model used by each subject, we fit the experimental data in each 

environment using various RL models that relied on either an object-based or a feature-based 
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approach (Materials and Methods). Two of the feature-based RLs, coupled feature-based RL and 

feature-based RL with decay, provided the best overall fit for the data in the generalizable 

environment (Experiment 1; Table 1). Both of these feature-based RLs provided a better fit than 

their corresponding object-based RLs, as measured by any of the goodness-of-fit indices (log 

likelihood, AIC, or BIC; Fig.4D-F). By contrast, in the non-generalizable environment 

(Experiment 2), the object-based RLs provided a significantly better fit than the feature-based 

RLs (Table 2). More specifically, two of the object-based RLs, coupled object-based RL and 

object-based RL with decay, provided a better fit for the data in the non-generalizable 

environment (Fig.4D-F). These results illustrate that subjects tend to adopt feature-based 

learning in the generalizable environment and object-based learning in the non-generalizable 

environment. Therefore, although a dynamic reward schedule encouraged subjects to use feature-

based learning, which improves adaptability without compromising precision, a lack of 

generalizability led them to switch to slower but more precise object-based learning. 

Feature-based learning in non-generalizable environments.  

Our framework predicts that feature-based learning should be adopted initially until the acquired 

information derived from the object-based approach becomes comparable to information derived 

from the feature-based approach. To test this prediction, we designed two additional experiments 

(Experiments 3 and 4) in which human subjects learned the values of a larger set of objects in a 

static, non-generalizable environment (see Materials and Methods and Fig.2). Using a static 

environment, we aimed to isolate the influence of generalizability and dimensionality reduction 

on model adoption. Moreover, to assess the temporal dynamics of adopting feature-based and 

object-based approaches more directly, we asked subjects to provide their estimates of reward 

probabilities for individual objects during five or eight estimation blocks throughout the 

experiment. The reward assignment was such that one of the two features was partially 

informative about the reward value, while the other feature did not provide any information by 

itself (compare the average of values in individual columns or rows in Fig.2A-B).  

Overall, the subjects were able to learn the task in Experiment 3, and the average performance 

(across all subjects) monotonically increased over time and plateaued at about 150 trials 

(Fig.5A). Examination of the estimated reward probabilities for individual objects also showed 
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an improvement over time, but more importantly, suggested a transition from a feature-based to 

an object-based approach as the experiment progressed. We utilized model fitting and correlation 

to identify the model adopted by the subjects from their reward probability estimates (see 

Materials and Methods). The fit of subjects’ estimates revealed that the weight of the object-

based approach, relative to that of the feature-based approach, was much smaller than 0.5 during 

the first estimation block but gradually increased over time (Fig.5B). In addition, the relative 

weight of bias (as an indication of subject’s lack of discrimination between objects reward 

values) sharply dropped to a small value early in the experiment. Similarly, correlation analysis 

revealed that during early blocks, the estimates of only a small fraction of subjects were more 

correlated with actual reward probabilities than reward probabilities estimated using feature 

values, but this fraction increased over time (Fig.5C). The results of these two analyses 

illustrated that subjects initially adopted feature-based learning and gradually switched to object-

based learning.  

[Figure 5 about here] 

We increased dimensionality of the environment in Experiment 4 more than in Experiment 3,  in 

order to further examine the influence of dimensionality reduction on model adoption. The 

performance plateaued much earlier (approximately 75 trials) in Experiment 4, indicating faster 

learning than in Experiment 3 (Fig.5E). Moreover, the fit of subjects’ estimates revealed that the 

relative weight of the object-based approach only slightly increased over time and plateaued at a 

small value, while the relative weight of bias plateaued at a value larger than the one in 

Experiment 3 (Fig.5F). Both of these results suggest stronger feature-based learning compared to 

object-based learning when dimensionality increased. Correlation analysis revealed a very 

similar pattern (Fig.5G).  

We also fit the data from Experiments 3 and 4 using various RL models in order to identify the 

model used by the subjects (see Materials and Methods). We found that object-based RL with 

decay provided the best overall fit in Experiment 3 (Table 3). Importantly, this model provided a 

better fit than its corresponding feature-based RL. These results indicate that, overall, subjects 

adopted an object-based approach more often. Examination of the goodness-of-fit over time, 

however, showed that the object-based learning model provided a better fit later in the 
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experiment (Fig.5D). In contrast, feature-based RL with decay provided the best overall fit in 

Experiment 4 (Table 4). The fit of this model was better than the corresponding object-based 

learning model early in the experiment but later the fits of the two models became similar 

(Fig.5H), which is consistent with the results based on subjects’ reward estimates. Nevertheless, 

the fit based on the object-based model never exceeded that of the feature-based model. During 

both Experiments 3 and 4, subjects transitioned from feature-based learning to object-based 

learning as feature values could not predict the reward values of all objects. However, an 

increase in dimensionality in Experiment 4 furthermore biased the behavior toward feature-based 

learning.  

In summary, we found that in dynamic environments, human subjects adopted feature-based 

learning even when this approach does not reduce dimensionality. Subjects switched to learning 

individual option values (object-based learning) when feature values could not accurately predict 

all objects’ values due to the lack of generalizable rules. Finally, in low-dimensional, static 

environments without generalizable rules, subjects still adopted feature-based learning first 

before gradually adopting object-based learning. Overall, these experimental results demonstrate 

that feature-based learning might be adopted mainly to improve adaptability without reducing 

precision. We next used network models in order to capture our experimental observations and to 

gain insights into neural mechanisms for model adoption during learning in dynamic 

environments.  

Hierarchical decision-making and learning.   

To understand neural mechanisms underlying model adoption in a multi-dimensional decision-

making task, we examined two alternative network models that could perform such tasks 

(Fig.6A-B). Because of their architectures, we refer to these models as the parallel decision-

making and learning (PDML) model and the hierarchical decision-making and learning (HDML) 

model. Both models have two sets of value-encoding neurons that learn the reward values of 

individual objects (object-value-encoding neurons, OVE) or features (feature-value-encoding 

neurons, FVE). The plastic synapses onto these value-encoding neurons undergo reward-

dependent plasticity, enabling these neurons to represent and update the value of presented 

objects or their features at any given time (see Materials and Methods). Updating reward values 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 25 

associated with individual objects and features is rather straightforward. In a given trial, plastic 

synapses onto neurons encoding the value of a chosen object or its features could be potentiated 

or depressed depending on whether the choice is rewarded or not rewarded, respectively, 

resulting in an increase or a decrease in reward values of those options/features. In contrast, there 

are many ways to integrate signals from the OVE and FVE neurons and adjust the influence of 

these neurons on the final choice.  

The two network models are different in how this integration is done and how the influence of 

signals from the OVE and FVE neurons on the final decision is adjusted. The PDML model 

makes two additional decisions using the output of an individual set of value-encoding neurons 

(OVE or FVE) in order to compare with the choice of the final decision-making (DM) circuit 

(Fig.6A). If the final choice is rewarded, the model increases the strength of connections between 

the set (or sets) that produced the same choice as the final choice. This increases the influence of 

the set of value-encoding neurons that was more likely responsible for making the final choice. 

In contrast, if the final choice is not rewarded, the model decreases the strength of connections 

between the set (or sets) that produced the same choice as the final choice, decreasing the 

influence of the set of value-encoding neurons that was more likely responsible for making the 

final choice. The HDML model updates connections from the OVE and FVE neurons to their 

corresponding signal-selection circuits by determining which set of the value-encoding neurons 

contains a stronger signal (i.e. the difference between the values of the two options) first, and it 

then uses only the output of that set to make the final decision on a given trial (Fig.6B). 

Subsequently, only the strength of connections between the set producing the ‘selected’ signal 

and the corresponding neurons in the signal-selection circuit is increased or decreased depending 

on whether the final choice was rewarded or not rewarded, respectively (see Materials and 

Methods for more details). 

[Figure 6 about here] 

We used the two network models to simulate learning during our experiments. We first 

examined the behavior during Experiment 1 with a generalizable rule in a dynamic environment 

in which the reward probabilities were switched every 48 trials. The strength of connections 

from the OVE and FVE neurons to the final DM circuit in the PDML model or to the signal 
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selection circuit in the HDML model increased initially but at a much faster rate for FVE 

neurons (Fig.6C, D). This happened because on each trial both features of a selected object were 

updated and thus, synapses onto FVE neurons were updated twice as frequently as those onto 

OVE neurons. These faster updates enabled the FVE neurons to signal a correct response more 

often than the OVE neurons soon after a change in reward probabilities.  

In the PDML model, the strength of connections between each of the value-encoding neurons 

and the final DM circuit represents how strongly those neurons drive the final DM circuit. 

Similarly, the strength of connections between each of the value-encoding neurons and the 

signal-selection circuit represents how strongly those neurons drive the final DM circuit in the 

HDML model. The overall influence of the object-based or feature-based approach, however, 

also depends on the signal encoded in plastic synapses onto the OVE and FVE neurons. 

Therefore, we used a combination of the signal represented in a given set of value-encoding 

neurons and the strength of connections between those neurons and the final DM circuit in the 

PDML model (or the signal-selection circuit in the HDML model) in order to compute the 

overall weight of an object-based or feature-based approach on the final choice (WO and WF, 

respectively; see Materials and Methods). We found that at the beginning of each block, (WF - 

WO) initially decreased but later increased in both models, indicating that both models assigned a 

larger weight to feature-based than object-based reward values, but this effect was greater in the 

HDML compared to the PDML model (Fig.6E).  

To study how lack of generalizability and frequency of changes in reward contingencies 

(volatility) affect model adoption, we used the two network models to simulate various 

environments by changing the block length (number of trials where reward probabilities were 

fixed) and the level of generalizability (see Materials and Methods). The maximum and 

minimum levels of generalizability in these simulations correspond to environments used in 

Experiments 1 and 2, respectively. Both models were able to perform the task in various 

environments with different levels of volatility and generalizability, but the performance of the 

HDML model was higher in all environments (Fig.7A, D, G). More importantly, the difference 

in the strength of connection from FVE and OVE neurons (CF – CO) was more strongly 

modulated by generalizability and volatility in the HDML compared to the PDML model, 

indicating that HDML was better able to adjust the strength of connections from value-encoding 
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neurons (Fig.7B, E, H). As generalizability or volatility increased, connections between FVE 

neurons and the signal-selection circuit became stronger than connections between OVE neurons 

and the signal-selection circuit. Therefore, only the HDML model assigned larger weights to 

feature-based than object-based reward values (larger WF – WO) as the environment became 

more generalizable or volatile (Fig.7C, F, I). Overall, these results demonstrated that although 

both models were able to perform the task, the HDML model provided higher performance and 

exhibited stronger adjustment of connections from the value-encoding neurons to the next level 

of computation. Therefore, HDML was more successful in assigning proper weights to different 

types of learning according to reward statistics in the environment. 

[Figure 7 about here] 

Finally, we examined the interaction between dimensionality reduction and generalizability in 

adopting a model of the environment by simulating various environments in Experiments 3 and 4 

using the two models. Because the dimensionality is a discrete number, we simulated choice 

behavior in two different environments with different numbers of objects (by having different 

number of feature values, D = 32 and D = 42) while changing the level of generalizability (see 

Materials and Methods). Consistent with simulation results for Experiments 1 and 2, an increase 

in generalizability caused both models to assign higher weights to feature-based than object-

based reward values, but this effect was much stronger for the HDML model (larger positive 

slopes in Fig.8E-F compared with Fig.8B-C). An increase in dimensionality further biased both 

models to assign more weight to feature-based than object-based reward values. Overall, the 

simulation results for two alternative network models reveal that hierarchical decision-making 

and learning can provide a neural mechanism for adopting the model for learning in dynamic 

environments.   

[Figure 8 about here] 

Discussion  

The framework proposed in this study for learning reward values in dynamic, multi-dimensional 

environments provides specific predictions about different factors that influence how humans 

adopt feature-based versus object-based learning to tackle the curse of dimensionality. Our 
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experimental results demonstrated that learning in dynamic environments tends to favor the 

feature-based approach because this approach not only reduces dimensionality but also improves 

adaptability without compromising precision. When precision is compromised due to non-

generalizability of the rules assumed for feature-based learning, object-based learning is adopted 

more frequently. Importantly, feature-based learning is initially adopted, even in the presence of 

non-generalizable rules that only slightly reduce dimensionality and when reward contingencies 

do not change over time. This suggests that the main factor for adopting feature-based learning is 

to increase adaptability without compromising precision and therefore to overcome the 

adaptability-precision tradeoff (APT).  

The APT sets an important constraint on learning about reward in a dynamic environment where 

reward values change over time. On solution to mitigate the APT is to adjust learning (e.g. the 

learning rate) over time (Khorsand et al., 2016, Society for Neuroscience abstract). Nevertheless, 

even with adjustable learning, the APT still persists and becomes more critical in multi-

dimensional worlds, since the learner may never receive reward feedback on many unchosen 

options and feedback on chosen options is very limited. Importantly, adopting feature-based 

learning enables more updates after each reward feedback, which can greatly enhance the speed 

of learning without adding noise, similarly to other heuristic learning mechanisms (Jocham et al., 

2016). Moreover, such learning allows estimation of reward values for options which have never 

been encountered before (Kahnt et al., 2012). Our results could explain why learning in young 

children (i.e. learning based on small number of samples) is dominated by attending to individual 

features (e.g. choosing a favorite color) to the extent that it can prevent them from performing in 

the dimension-switching task (Zelazo, Frye, & Rapus, 1996). Interestingly, this inability has 

been attributed to a failure to inhibit attention to the previously relevant (rewarding) feature 

(Kirkham, Cruess, & Diamond, 2003). Finally, by focusing on color and choosing a favorite 

color, children could evaluate all options based on their color and reduce the number of feature 

values to two (e.g. favorite and non-favorite), further reducing the dimensionality. Thus, our 

results explain that choosing a favorite color not only reduces dimensionality but also increases 

adaptation without compromising precision. 

Even though rules used for feature-based learning are only partially generalizable in the real 

world, this non-generalizability may not prevent humans from using feature-based learning for 
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various reasons. First, simply due to chance, the generalizability (index) is larger for a higher 

dimensionality if there is at least one informative feature in the environment. Second, feature 

values related to different domains can be learned separately (color of fruits or color of cars), 

resulting in more generalizable rules in those domains. Finally, non-generalizability may never 

be detected due to a very large number of features and options.   

In addition to mitigating the APT, feature-based learning is computationally more inexpensive 

and feasible than object-based learning, since it can be achieved using a small number of value-

encoding neurons with pure feature selectivity. In contrast to recent theoretical work that has 

highlighted the advantage and importance of non-linear, mixed-selectivity representation for 

cognitive functions (Fusi, Miller, & Rigotti, 2016; Rigotti et al., 2013), our work points to the 

importance of pure feature selectivity for reward representation. Therefore, the advantage of 

mixed-selectivity representation could be specific to tasks with low dimensionality (in terms of 

reward structure) or when information does not change over time such as in object categorization 

tasks (Brincat & Connor, 2004; Gross, Rocha-Miranda, & Bender, 1972; Güçlü & van Gerven, 

2014; Logothetis, Pauls, & Poggio, 1995). Our results suggest that learning about reward in 

dynamic environments might depend more strongly on value-encoding neurons with pure 

selectivity (i.e. neurons representing the reward value of an individual feature), since 

representations of such neurons can be adjusted more frequently over time due to more updates 

per feedback. Moreover, considering that neurons with pure feature selectivity are also crucial 

for saliency computations (Soltani & Koch, 2010), modulations of these neurons by reward 

could provide an effective mechanism for the modulation of attentional selection by reward as 

well (Khorsand, Moore, & Soltani, 2015).  

Based on our results, we predict larger learning rates for neurons with highly mixed selectivity; 

otherwise, the information in these neurons would lag the information in pure feature-selective 

neurons. Moreover, we predict that the complexity of reward value representation is directly 

related to the stability of reward information in the environment. As the environment becomes 

more stable, learning the reward value of conjunctions of features and objects become more 

feasible and thus, more complex representation of reward values will emerge. These novel 

predictions could be tested in future experiments.  
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Selection between feature-based and object-based approaches is not all-or-none. As in our 

computational models, learning based on both approaches should occur simultaneously in two 

separate circuits, and arbitration between the two forms of learning might be required (Lee, 

Shimojo, & O’Doherty, 2014). Our modeling results show that such arbitration could happen via 

competition between two circuits based on the strength of signals in each circuit. Recently, Lee 

et al. (2014) have argued that arbitration between model-based and model-free learning might be 

accomplished based on the reliability of reward prediction error or state prediction error in the 

model-free and model-based systems, respectively. Nevertheless, whether these two neural 

systems are anatomically separate is still a topic of debate (Daw, Niv, & Dayan, 2005; Lee, Seo, 

& Jung, 2012; Shteingart & Loewenstein, 2014). The architecture of our proposed HDML model 

is in line with the idea that possibly distinct object-based and feature-based learning circuits 

could interact before a choice is made. It would be interesting to examine whether our proposed 

mechanisms for arbitration between object-based and feature-based circuits could be also applied 

for arbitration between model-based and model-free learning as well.  

Despite the fact that naturalistic learning from reward feedback entails options with overlapping 

features, most studies of value-based learning and decision making in dynamic environments 

utilize one-dimensional objects where reward values are associated with choice alternatives 

based on the value of only one feature (e.g. color) (Behrens, Woolrich, Walton, & Rushworth, 

2007; Donahue & Lee, 2015; Sugrue, Corrado, & Newsome, 2004). Only recently have some 

studies used multi-dimensional experimental paradigms to study learning from reward feedback 

and explored possible solutions for the curse of dimensionality (Eldar, Cohen, & Niv, 2013; 

Hunt, Dolan, & Behrens, 2014; Niv et al., 2015; Vaidya, 2015; Wilson & Niv, 2012; Wunderlich 

et al., 2011). These studies have suggested that multi-dimensional tasks might be solved in two 

general ways, either by constructing a simplified representation of the stimuli and learning only a 

small subset of features (Eldar et al., 2013; Niv et al., 2015), or by inferring the structure of the 

task and creating rules to estimate reward values of options based on their features without 

ignoring any features (model-based approach) (Wunderlich et al., 2011). Our results are more 

consistent with the idea that many dimensions can be considered at once using a model-based 

approach.  
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Our experimental results are qualitatively more compatible with a hierarchical decision-making 

and learning (HDML) model since the parallel decision-making and learning model does not 

show the sensitivity to experimental factors observed in human subjects. In the HDML model, 

the best sources of information were identified to make decisions and weights for the selected 

sources are successively updated according to reward feedback. Therefore, reward feedback 

alone can correctly adjust behavior toward a more object-based or a more feature-based 

approach, without any explicit optimization or knowledge of the environment. Interestingly, 

competition through stages of hierarchy has been suggested as an underlying mechanism behind 

multi-attribute decision making as well (Hunt et al., 2014; Jocham, Hunt, Near, & Behrens, 

2012). The HDML model proposed in this study shares some components with the model of 

Hunt et al (2014), though it includes learning as well. Similarly, Wunderlich et al (2011) also 

suggested that the brain holds weights for all possible informative dimensions simultaneously, 

and these weights are updated on every trial. 

In conclusion, we show that a tradeoff between adaptability and precision explains why humans 

adopt feature-based learning, especially in a dynamic environment. Because this type of learning 

is computationally inexpensive, our results suggest that neurons with pure selectivity could be 

crucial for learning in dynamic environments. Moreover, our work provides a missing 

framework for understanding how heterogeneity in reward representation emerges.    
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Figure Legends 

Figure 1. Timelines and reward schedules of Experiments 1 and 2. (A) On each trial, the subject 

chose between two objects (colored shapes) and was provided with reward feedback (reward or 

no reward) on the chosen object. The inset shows the set of all objects used during Experiments 1 

and 2. (B) Alternative schedules for assigning reward probability to individual objects based on a 

generalizable rule (Experiment 1). Reward schedules are coded to show which feature (color or 

shape) is more informative and which feature values are more rewarding. For example, ‘Rs’ 

indicates that red objects are more rewarding than blue objects, squares are more rewarding than 

triangles, and color (‘R’) is more informative than shape (‘s’). (C) Alternative schedules for 

assigning reward probability to individual objects based on a non-generalizable rule (Experiment 

2). For these schedules, only one of the two features was on average informative about reward 

values (e.g. red for ’r1’ schedule). (D-E) Examples of generalizable environments constructed by 

switching between blocks of generalizable reward schedules every 48 trials. (F-G) Examples of 

non-generalizable environments constructed by switching between blocks of or non-

generalizable reward schedules every 48 trials.  

Figure 2. Reward probabilities and objects used in Experiments 3 and 4. (A-B) During 

Experiment 3, reward probabilities were assigned to nine possible objects defined by 

combinations of two features (S, shape; P, pattern), each of which could take any of three values. 

Reward probabilities were assigned such that there was no generalizable rule based on feature 

values that could predict reward probabilities on all objects. Numbers in parentheses show the 

actual probability values used in the experiment due to limited resolution for reward assignment. 

For the set in A, the pattern was on average more informative about reward, whereas shape alone 

was not informative. The opposite was true about the set in B. Each subject performed the 

experiment twice, once when pattern was informative and once when shape was informative, 

using different sets of shapes and patterns. To shorten the experiment, we excluded object ‘S3P3’ 

from the choice set. (C-D). During Experiment 4, reward probabilities were assigned to sixteen 

possible objects defined by combinations of two features (S, shape; P, pattern), each of which 

could take any of four values. To shorten the experiment, we excluded objects with reward 

probability of 0.5 from the choice set. Conventions are the same as in A-B. (E) A sample 

estimation trial during Experiments 3 and 4. On each estimation trial, the subject estimated the 
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probability of reward on an individual object by pressing one of ten keys on the keyboard. (F) 

The set of possible shapes used in Experiments 3 and 4. For each session of the experiment, only 

three or four (for Experiments 3 or 4, respectively) of these shapes were used for a given subject 

(randomly chosen). (G) The set of possible patterns used in Experiments 3 and 4. For each 

session of the experiment, only three or four (for Experiments 3 or 4, respectively) of these 

patterns were used. 

Figure 3. A framework for understanding model adoption during learning reward values in a 

dynamic, multi-dimensional environment. (A) Switch point is plotted as a function of the 

generalizability index of the environment for different values of the learning rate. The switch 

point increases with generalizability and slower learning rates, indicating that adaptability and 

precision influence model adoption. The arrow shows zero switch point indicating that the 

object-based learning is always superior. (B) Switch point is plotted as a function of 

generalizability separately for environments with different values of dimensionality. The 

advantage of feature-based over object-based learning increases with larger dimensionality. The 

inset shows the distribution of the generalizability index in each environment. (C) The object-

based approach for learning multi-dimensional options requires learning nm values, where there 

are m possible features and n values per feature in the environment, whereas the feature-based 

approach entails learning only n*m values. A feature-based approach, however, is only useful if 

there are generalizable rules for estimating the reward values of options based on their feature 

values. A lack of generalizability should encourage using the more precise object-based 

approach. On the other hand, frequent changes in reward contingencies (dynamic environment) 

should increase the use of the faster, feature-based approach . 

Figure 4. Dynamic reward schedules promote feature-based learning, whereas a lack of 

generalizability promotes object-based learning. (A) Performance (average reward) of subjects 

during Experiments 1 (generalizable environment) and 2 (non-generalizable environment).  

Dashed lines show the mean performance and solid lines show the threshold used for excluding 

subjects whose performance was not distinguishable from chance (0.5). (B) Time course of 

learning during each block of trials. Plotted is the average harvested reward on a given trial 

within a block across all subjects (the shaded areas indicate s.e.m.). The dashed line shows 

chance performance, and the solid lines show the maximum performance in the two 
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environments. (C-E) Comparison of different measures for goodness-of-fit, showing that 

subjects were more likely to adopt a feature-based approach in the generalizable environment 

and an object-based approach in the non-generalizable environment. Plotted are the three 

measures of the goodness-of-fit (-log likelihood (D), AIC (E), and BIC (F)) based on the feature-

based and object-based RL with decay, separately for each environment. The insets show 

histograms of the difference in the goodness-of-fit indices from the two models for the 

generalizable (blue) and non-generalizable (red) environments. The dashed lines show the 

medians, and the star (double star) shows that the median is significantly different from zero at p 

< 0.05 (p < 0.001) using a two-tailed, sign-rank test. 

Figure 5. Transition from the feature-based to object-based approach. (A) The time course of 

performance during Experiment 3. Shaded areas indicate s.e.m., and the dashed line shows 

chance performance, whereas the red and blue solid lines show the maximum performance using 

the feature-based and object-based approaches, respectively. Arrows mark the locations of 

estimation blocks throughout a session. For some subjects, there were only five estimation 

blocks indicated by black arrows. (B) The time course of model adoption measured by fitting 

subjects’ estimates of reward probabilities. Plotted is the relative weight of object-based to 

feature-based approach, and the relative weight of bias over time. Dotted lines show the fit of 

data based on an exponential function. (C) The time course of model adoption measured via 

correlation. Plotted is the fraction of subjects for which the correlation between their reward 

estimates and actual reward probabilities was larger than the correlation between their reward 

estimates and probabilities estimated using the average feature values. The dotted line shows the 

fit of data based on an exponential function. (D) Transition from the feature-based to object-

based approach revealed by the average goodness-of-fit over time. Plotted are the average 

negative log likelihood based on the feature-based model, object-based RL model, and the 

difference between object-based and feature-based models during Experiment 3. Shaded areas 

indicate s.e.m., and the dashed line shows the measure for chance prediction. (E-H) The same as 

in A-D, but during Experiment 4.  

Figure 6. Architectures and performances of two alternative network models for multi-

dimensional, decision-making tasks. (A-B). Architectures of the PDML (A) and the HDML (B) 

models (see Materials and Methods). (C) The time course of the overall strengths of plastic 
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synapses between OVE and FVE neurons and the final DM circuit (CO and CF) in the PDML 

model, or between OVE and FVE neurons and the signal-selection circuit (CO and CF) in the 

HDML model. These simulations were done for the generalizable environment (Experiment 1) 

where the block length was 48. (D) The difference between the CF and CO over time in the two 

models. (E) The overall weights of each set of value-encoding neurons on the final decision for 

the same set of simulations shown in panels C and D.  

Figure 7. The effects of frequent changes in reward contingencies (volatility) and 

generalizability on the model behaviors. (A) Performance of the PDML model in various 

environments with different levels of volatility and generalizability. The color map shows the 

performance (average harvested reward) for a given value of block length (L) and the 

generalizability index. (B) The difference between the strengths of plastic synapses from FVE 

and OVE neurons onto the final DM circuit (CF -CO) in the PDML model. The color map shows 

(CF – CO) for a given value of block length (L) and the generalizability index. (C) The difference 

between the overall weights of FVE and OVE neurons on the final DM circuit (WF – WO) in the 

PDML model. (D-F) The same as in A-C but for the HDML model. (G-I) The difference 

between the performance, strengths of plastic synapses, and the overall weights in the HDML 

and PDML models.  

Figure 8. The effects of dimensionality and generalizability on model behaviors. Simulations of 

the PDML and HDML models are shown in A-C and D-F, respectively. (A, D) Changes in 

performance as a function of the generalizability index, separately for two environments with 9 

and 16 objects. The dotted red and blue curves show the maximal performance based on object-

based (O) and feature-based (F) learning, respectively, for D = 32. The dashed curves show the 

results for D = 42. The gray and black arrows indicate the values of the generalizability index 

used in Experiments 3 and 4, respectively. (B, E) The difference between the strengths of plastic 

synapses from FVE and OVE neurons onto the final DM circuit (CF –CO) in the PDML model 

(B) and from FVE and OVE neurons onto the signal-selection circuit in the HDML model (E). 

(C, F) The difference between the overall weights of FVE and OVE neurons on the final DM 

circuit (WF –WO) in the PDML model (C), and from FVE and OVE neurons on the signal-

selection circuit in the HDML model (F).   
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Table 1. Goodness-of-fit measures (-log likelihood, AIC, and BIC) averaged over all subjects 

(mean ± s.e.m.) for three feature-based RLs and their object-based counterparts for Experiment 

1. The best model (feature-based RL with decay) and its object-based counterpart are highlighted 

in cyan and brown, respectively. Each feature-based RL was compared with its object-based 

counterpart using a two-tailed, sign-rank test. The significance level of the test is coded as: 0.05 

< p < 0.1 (+), 0.01 < p < 0.05 (*), 0.001 < p < 0.01 (**), and p < 0.001 (***). 

Table 2. Goodness-of-fit measures (-log likelihood, AIC, and BIC) for Experiment 2. The best 

model (object-based RL with decay) and its feature-based counterpart are highlighted in cyan 

and brown, respectively. Same format as in Table 1.  

Table 3. Goodness-of-fit measures (-log likelihood, AIC, and BIC) for Experiment 3. The best 

model (object-based RL with decay) and its feature-based counterpart are highlighted in cyan 

and brown, respectively. Same format as in Table 1.  

Table 4. Goodness-of-fit measures (-log likelihood, AIC, and BIC) for Experiment 4. The best 

model (feature-based RL with decay) and its object-based counterpart of the best model are 

highlighted in cyan and brown, respectively. Same format as in Table 1. 
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Figure 8 
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Table 1. Goodness-of-fit measures for Experiment 1. 

Model 

Coupled 

feature-based 

RL 

Uncoupled 

feature-based 

RL 

Feature-based 

RL with decay 

Coupled 

object-based 

RL 

Uncoupled 

object-based 

RL 

Object-based 

RL with 

decay 

Number of 

parameters 
5 5 6 4 4 5 

-log 

likelihood 
443.6±10.9*** 463.8±8.5*** 446.4±9.9*** 462.9±8.2 519.1±2.2 457.6±8.4 

AIC 897.3±21.8*** 937.5±17.0*** 904.8±19.8*** 933.7±16.5 1046.3 ±4.5 925.2±16.8 

BIC 920.5±21.8*** 960.7±17.0*** 932.7±19.8* 952.3±16.4 1064.8±4.5 948.4±16.8 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 49 

Table 2. Goodness-of-fit measures for Experiment 2. 

Model 

Coupled 

feature-

based RL 

Uncoupled 

feature-based 

RL 

Feature-

based RL 

with decay 

Coupled 

object-based 

RL 

Uncoupled 

object-based RL 

Object-based 

RL with 

decay 

Number of 

parameters 
5 5 6 4 4 5 

-log 

likelihood 
479.2±8.0 491.6±6.9 474.1±8.7 469.1±8.1 512.0±6.2** 464.2±7.4+ 

AIC 968.5±16.0 993.3±13.8 946.1±17.4 946.1±16.2+ 1032.1±12.4** 938.4±14.8* 

BIC 991.7±16.0 1016.5±13.8 988.1±17.4 964.7±16.2* 1050.7±12.4** 961.6±14.9* 
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Table 3. Goodness-of-fit measures for Experiment 3. 

Model 

Coupled 

feature-based 

RL 

Uncoupled 

feature-based 

RL 

Feature-

based RL 

with decay 

Coupled 

object-based 

RL 

Uncoupled 

object-based 

RL 

Object-based 

RL with decay 

Number of 

parameters 
5 5 6 4 4 5 

-log 

likelihood 
352.9±4.8*** 342.9±4.2 330.9±4.6 369.2±4.3 346.4±5.4 313.2±7.5* 

AIC 717.5±9.7*** 715.1±8.4 677.5±9.3 748.6±8.7 713.0±10.8 633.3±15.1** 

BIC 747.8±9.7*** 745.4±8.4 712.2±9.3 766.0±8.7 730.3±10.8 655.1±15.1*** 
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Table 4. Goodness-of-fit measures for Experiment 4. 

Model 

Coupled 

feature-based 

RL 

Uncoupled 

feature-based 

RL 

Feature-based 

RL with 

decay 

Coupled 

object-based 

RL 

Uncoupled 

object-based 

RL 

Object-

based RL 

with decay 

Number of 

parameters 
5 5 6 4 4 5 

-log 

likelihood 
411.3±5.8***  387.2±5.5*** 340.1±7.6** 458.4±1.7 429.2±5  354.9±5.6 

AIC 832.7±11.7*** 784.4±11*** 692.1±15.2* 924.8±3.4 866.5±10 719.7±11.2 

BIC 855.2±11.7*** 807±11*** 719.2±15.2+ 942.8±3.4 884.6±10 742.3±11.2 
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