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Abstract

The human brain is in constant flux, as distinct areas engage in transient communication to support basic behaviors as well as
complex cognition. The collection of interactions between cortical and subcortical areas forms a functional brain network whose
topology evolves with time. Despite the nontrivial dynamics that are germaine to this networked system, experimental evidence
demonstrates that functional interactions organize into putative brain systems that facilitate different facets of cognitive compu-
tation. We hypothesize that such dynamic functional networks are organized around a set of rules that constrain their spatial
architecture — which brain regions may functionally interact — and their temporal architecture — how these interactions fluctuate
over time. To objectively uncover these organizing principles, we apply an unsupervised machine learning approach called non-
negative matrix factorization to time-evolving, resting state functional networks in 20 healthy subjects. This machine-learning
approach automatically clusters temporally co-varying functional interactions into subgraphs that represent putative topological
modes of dynamic functional architecture. We find that subgraphs are stratified based on both the underlying modular organization
and the topographical distance of their strongest interactions: while many subgraphs are largely contained within modules, others
span between modules and are expressed differently over time. The relationship between dynamic subgraphs and modular archi-
tecture is further highlighted by the ability of time-varying subgraph expression to explain inter-individual differences in module
reorganization. Collectively, these results point to the critical role subgraphs play in constraining the topography and topology of
functional brain networks. More broadly, this machine learning approach opens a new door for understanding the architecture of
dynamic functional networks during both task and rest states, and for probing alterations of that architecture in disease.

Keywords: network neuroscience, non-negative matrix factorization, community detection, subgraph, cognitive control,
functional connectivity

1. Introduction sual, auditory, or attention — without disturbing brain regions
in other systems [86, 113]. To robustly support functional dy-
namics driving behavior and cognition, functional brain net-
works capably reorganize their module composition across dif-
ferent time scales by integrating and segregating brain regions
within and across brain systems [16, 77]. Moreover, functional
brain networks exhibit flexibility in their module composition
as they adapt to cognitive demands associated with completing
a task [20, 22, 77, 115], processing linguistic stimuli [42, 29],
or learning a new skill [9, 12, 13]. Notably, individual differ-
ences in flexibility are correlated with individual differences in
learning [9, 48], working memory performance [22], and cog-
nitive flexibility [22], which is particularly interesting in light
of its role as an intermediate phenotype in schizophrenia [20].

More than just a sum of its parts, the brain performs compu-
tations and processes information by linking functionally spe-
cialized areas through complex patterns of anatomical wiring
[2, 43, 120, 114]. Indeed, the underlying structural network
forms the foundation of a wide repertoire of functional inter-
actions between different regions [40, 107, 39]. Collectively,
these interactions can be modeled as edges between nodes in a
graph [5, 99, 25, 24, 62, 111] to probe the neurophysiological
underpinnings of thought, perception, and action [112, 80]. Im-
portantly, to actuate behavior and cognition through a changing
landscape of environmental demands, these patterns of func-
tional interactions must flexibly reconfigure [56, 26, 70, 77],
presumably according to organizing principles that coordinate
the dynamic engagement and disengagement of distinct sets of Yet, while flexibility appears to be an important attribute
brain areas [9, 42, 89, 29]. of functional brain networks, a fundamental understanding of

A fundamental core of this dynamic architecture is thought  how network reconfiguration occurs, and what rules constrain
to be modularity — the division of functionally engaged brain  the types of reconfiguration that characterize neural systems,

regions into putative modules that may compartmentalize com- s lacking. Do brain regions spontaneously arrange themselves
putation within discrete functional systems — such as motor, vi- into efficient modular configurations, or do functional interac-
tions obey a distinct set of rules that constrain which modules

*Corresponding author can and cannot exist? Are there separable groups of functional
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among network modules? While modules partition groups of
brain regions based purely on the presence or strength of func-
tional interactions, they remain agnostic to the topology of the
functional interactions within and between them. These open
questions have motivated the development of a new wave of
graph theoretic tools grounded in machine learning that recover
latent structure in dynamic brain networks as coherent groups of
temporally co-varying functional interactions — known as sub-
graphs.

Mathematically, functional subgraphs form a basis set of
unique patterns of graph edges whose weighted linear combi-
nation — given by a set of time-varying basis weights for each
subgraph — reconstructs a repertoire of graph configurations ob-
served over time. All graph nodes participate to varying degree
in each subgraph, and the edges between nodes are assigned
weights based on how strongly they co-vary over time. Thus,
subgraphs are computationally represented as weighted adja-
cency matrices equal in size to the original graph — enabling us
to query subgraph architecture as we might with brain graphs.
More conceptually, functional subgraphs can be thought of as
topological modes of interacting brain regions that are differen-
tially expressed over time [72, 27]. Spatially, individual brain
regions may engage and play distinct topological roles among
different groups of brain regions in multiple subgraphs — a ca-
pability that is critical for capturing network architecture of pu-
tative functional brain systems [93, 27].

The framework of functional subgraphs yields an opportunity
to examine subgraph topology and subgraph dynamics associ-
ated with different behavioral and cognitive states. For exam-
ple, functional brain networks could decompose into different
components of visual processing in which visual areas inter-
act with ventral attention areas in one subgraph and with dor-
sal attention areas in another — with each subgraph increasing
or decreasing its relative expression during different phases of
cognitive processing. A recent application of the subgraph de-
composition technique in neurodevelopment demonstrated that
functional brain networks of children and young adults are com-
posed of subgraphs representing known brain systems that are
common across both age groups yet differ in the temporal prop-
erties of their expression during the resting state [27]. Such
decomposition has also been used to uncover putative network
subregions in epilepsy that play unique roles in the initiation
and maintenance of neural dysfunction [63]. Despite the ap-
parent role of subgraphs as functional substrates of informa-
tion processing in the brain, their topographical and topological
properties are not well understood. Do subgraphs reveal net-
work architecture that is spatially distributed across the brain?
Are subgraphs bound to the modular architecture of brain net-
works or do they span between modules?

Here, we develop a quantitative framework for identifying
functional subgraphs and characterizing their relationship to
whole brain network architecture. We base our analysis on
a burgeoning application of non-negative matrix factorization
(NMF) that decomposes dynamic functional networks into con-
stituent additive parts rather than generalized features [71]. In
implementing NMF in the context of neuroimaging data, we de-
tail several important methodological considerations. Our flex-

ible approach enables subgraph analysis across multiple spa-
tiotemporal scales of network topology and dynamics through
manipulation of three main parameters. By optimizing these
parameters, we uncover a robust set of subgraphs across multi-
ple human subjects and examine their sensitivity to functional
interactions within and between network modules, and over dif-
ferent geographic distances. First, we hypothesize that sub-
graphs are selectively sensitive to functional interactions over
different distances — short-range interactions are more likely to
exist in some subgraphs and long-range interactions are more
likely to exist in other subgraphs. This distance-wise stratifica-
tion would underlie fundamental organization of brain networks
into local, function-specific interactions (characteristic of clus-
ters and modules [101, 116]) and distributed, integrative inter-
actions (characteristic of hubs and rich-clubs [106, 38, 118]).
Second, we expect that subgraphs are differentially sensitive
to functional interactions within modules and functional inter-
actions between modules. Functional interactions within the
same module may undergo more similar patterns of temporal
variation — and are therefore more likely to be clustered into
one set of subgraphs — than functional interactions that span
between modules — which are therefore more likely to clus-
ter into another set of subgraphs. Subgraphs sensitive to net-
work topology within modules might also exhibit a strong cor-
relation between fluctuation in their temporal expression and
flexibility of module reorganization over time. Such a relation-
ship would highlight a novel perspective on the inter-regional
changes of functional interactions that accompany meso-scale
alterations in functional brain networks in both health and dis-
ease [20, 100, 44].

2. Methods

2.1. Experimental Design

Twenty participants (nine female; ages 19-53 years; mean
age = 26.7 years) with normal or corrected vision and no his-
tory of neurological disease or psychiatric disorders were re-
cruited for this experiment, non-overlapping results from which
have been reported elsewhere [3, 79, 78, 53]. All participants
volunteered and provided informed consent in writing in accor-
dance with the guidelines of the Institutional Review Board of
the University of Pennsylvania (IRB #801929).

2.2. Data acquisition and pre-processing

Magnetic resonance images were obtained at the Hospital of
the University of Pennsylvania using a 3.0 T Siemens Trio MRI
scanner equipped with a 32-channel head coil. TI1-weighted
structural images of the whole brain were acquired on the first
of four scan sessions per subject using a three-dimensional
magnetization-prepared rapid acquisition gradient echo pulse
sequence (repetition time (TR) 1620 ms; echo time (TE) 3.09
ms; inversion time 950 ms; voxel size 1 mm X 1 mm X 1 mm;
matrix size 190 x 263 x 165). A field map was also acquired at
each of the four scan sessions (TR 1200 ms; TE1 4.06 ms; TE2
6.52 ms; flip angle 60°; voxel size 3.4 mm X 3.4 mm X 4.0 mm;
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field of view 220 mm; matrix size 64 X 64 X 52) to correct ge-
ometric distortion caused by magnetic field inhomogeneity. In
all scans, T2*-weighted images sensitive to blood oxygenation
level-dependent contrasts were acquired using a slice acceler-
ated multiband echo planar pulse sequence (TR 500 ms; TE 30
ms; flip angle 30°; voxel size 3.0 mm X 3.0 mm X 3.0 mm; field
of view 192 mm; matrix size 64 X 64 x 48).

JMRI Preprocessing

We preprocessed the resting state fMRI data using FEAT
(FMRI Expert Analysis Tool) Version 6.00, part of FSL (FM-
RIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Specifically,
we applied: EPI distortion correction using FUGUE [57];
motion correction using MCFLIRT [58]; slice-timing correc-
tion using Fourier-space timeseries phase-shifting; non-brain
removal using BET [110]; grand-mean intensity normaliza-
tion of the entire 4D dataset by a single multiplicative factor;
highpass temporal filtering (Gaussian-weighted least-squares
straight line fitting, with sigma=50.0s).

Nuisance timeseries were voxelwise regressed from the
preprocessed data. Nuisance regressors included (i) three
translation (X, Y, Z) and three rotation (Pitch, Yaw, Roll)
timeseries derived by retrospective head motion correction
(R = [X,Y, Z, pitch, yaw, roll]), together with expansion terms
(IRR*R,_1R% |]), for a total of 24 motion regressors [46]);
(ii) the five first principal components calculated from time-
series derived from regions of non-interest (white matter and
cerebrospinal fluid), using the anatomical CompCor method
(aCompCor) [14] and (iii) the average signal derived from
white matter voxels located within a 15mm radius from each
voxel, following the ANATICOR method [60]. Global sig-
nal was not regressed out of voxel time series [85, 103, 30].
Finally, the mean functional image and the Harvard-Oxford
atlas were co-registered using Statistical Parametric Mapping
software (SPM12; Wellcome Department of Imaging Neuro-
science, www.fil.ion.ucl.ac.uk/spm) in order to extract regional
mean time-series (Fig. 1A).

2.3. Constructing time-varying functional networks

To construct dynamic functional brain networks, we begin
by dividing the BOLD signal over the four scan sessions into
80 non-overlapping time windows — each 30 seconds in dura-
tion and containing spectral information between frequencies
of 0.03-1.00 Hz (Fig. 1B). For each time window, we mea-
sure functional interactions between each pair of brain regions
based on coherence within a frequency band of 0.03—0.20 Hz.
We use the mtspec Python implementation of multi-taper co-
herence [94] with time-bandwidth product of 2.5 and 4 tapers
to achieve a frequency resolution of 0.08 Hz. Coherence val-
ues are stored in a time-varying, N X N X T adjacency matrix
A, where N = 112 brain regions and 7 = 80 time windows,
for each subject (Fig. 1C). In our weighted network analysis,
we retain and analyze all functional interactions between brain
regions, and do not apply any threshold or perform binarization.

An alternate representation of the three-dimensional network
adjacency matrix A is a two-dimensional network configuration

matrix A, which tabulates all N x N pairwise interactions across
T time windows. Due to symmetry of A,, we unravel the upper
triangle of A,, resulting in the weights of E = w functional
interactions. Thus, A has dimensions E x T. We construct a
separate network configuration matrix for each subject.

2.4. Partitioning the dynamic functional network
2.4.1. Clustering nodes into modules

To identify functional modules — partitions of highly inter-
connected brain regions — we maximize the following multi-
layer modularity quality function Q that assigns brain regions
into modules that vary with time [84]:

1
Q= 2_ Z [(Aijiy = V1o Piji)Otor, + 0ij @ jtor, 10(&ite» & jry)s (1)

ijtoty

where indices i, j represent brain regions and #y,#; represent
consecutive time windows, u is the sum of all functional inter-
actions in the dynamic network, P represents functional interac-
tions derived from a null model (e.g., the Newman-Girvan null
model [87]), y is a structural resolution parameter for modular
organization within a single time window, w is a temporal reso-
lution parameter to model changes in modular organization over
time, and g is the module assignment of a brain region within a
time window [8]. In accord with prior studies, we choose res-
olution parameters such that y;, =y = 1 and wjsy, = w = 1
[9, 12, 21].

We use a Louvain-like greedy optimization to maximize Q
[59]. The optimization landscape of the multi-layer modular-
ity contains a plateau with many near-optimal solutions [49].
This near-degeneracy can be addressed by aggregating solu-
tions over several runs of the Louvain algorithm [12]. To reach
a consensus on module assignments, we separately apply 100
independent optimizations of Q to the dynamic functional net-
work of each subject.

2.4.2. Clustering edges into subgraphs

To identify functional subgraphs — clusters of temporally co-
varying network interactions — we apply an unsupervised ma-
chine learning algorithm called non-negative matrix factoriza-
tion (NMF) [71] to the network configuration matrix (Fig. 1D).
NMF decomposes the network configuration matrix into con-
stituent subgraphs and accompanying time-varying expression
coefficients [28, 63]. Each subgraph is an additive compo-
nent of the original network — weighted by its associated time-
varying expression coefficient — and represents a pattern of
functional interactions between brain regions. The NMF-based
subgraph learning paradigm is a basis decomposition of a col-
lection of dynamic graphs that separates co-varying network
edges into subgraphs — or basis functions — with associated tem-
poral coefficients — or basis weights. Unlike other graph cluster-
ing approaches that seek a hard partition of nodes and edges into
clusters [84, 8], the temporal coefficients provide a soft partition
of the network edges, such that the original functional network
of any time window can be reconstructed through a linear com-
bination of all of the subgraphs weighted by their associated
temporal coefficient in that time window [72, 73, 28, 63]. This
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Figure 1: Subgraphs of dynamic functional brain networks. (A) We obtained multi-band fMRI BOLD signals from 112 functional regions of interest (HO-112
atlas) in cortical and subcortical areas during the resting state from 20 healthy subjects across four separate imaging sessions. We constructed dynamic functional
networks for each subject by (B) dividing the regional BOLD signal into 80 non-overlapping time windows, each 30 seconds (60 TRs) in duration, and (C) computing
multitaper coherence between each pair of regional BOLD signals for every time window to obtain a time-varying adjacency matrix — with brain regions as network
nodes and time-varying coherence as weighted network edges. (D) We concatenated all pairwise edges over time and generated a time-varying network configuration
matrix (right). We applied non-negative matrix factorization (NMF) — which pursues a parts-based decomposition of the dynamic network — to the configuration
matrix and clustered temporally co-varying network edges into a matrix of subgraphs (leff) and a matrix of time-dependent coefficients (middle) that quantifies the
level of expression in each time window for each subgraph.
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implies that at a specific time window, subgraphs with a high
temporal coefficient contribute their pattern of functional con-
nections more than subgraphs with a low temporal coefficient.

Mathematically, NMF approximates A by two non-negative
matrices W — the subgraph matrix identifying patterns of func-
tional interactions (with dimensions E X m) — and H — the time-
varying expression coefficients matrix (with dimensions m X T')
—such that:

1.a T
miny g 5 & - WH[ + @ IWIE +8 ) IHC.OIE, @)

t=1

where m € [2, min(E,T) — 1] is the number of subgraphs to
decompose, S is a penalty weight to impose sparse temporal
expression coeflicients, and « is a regularization of the interac-
tion strengths for subgraphs [66]. To solve the NMF equation,
we use an alternating non-negative least squares with block-
pivoting method with 100 iterations for fast and efficient fac-
torization of large matrices [65]. We initialized W and H with
non-negative weights drawn from a uniform random distribu-
tion on the interval [0, 1].

To select the parameters m, 8, and @, we pursue a random
sampling scheme — shown to be effective in optimizing high-
dimensional parameter spaces [15] — in which we re-run the
NMF algorithm for 30,000 parameter sets in which m is drawn
from U(2,20), B is drawn from 94(0.01,2), and «@ is drawn
from 2(0.01,2) (Fig. 2). We evaluate subgraph learning per-
formance based on the following three criteria: residual error
(”A - WH||2F), temporal sparsity (ﬁn Der SiemlHri = 0]), and
subgraph sparsity (E]Tm ek 2iiemWei = 0]). The optimal pa-
rameter set should yield subgraphs that (i) minimize the resid-
ual error and reliably span the temporal space of observed net-
work topologies, (ii)) maximize the temporal sparsity and effec-
tively capture network architecture specific to distinct temporal
states, and (iii) maximize the subgraph sparsity and pinpoint the
strongest interactions between brain regions. Based on these
criteria, we identified an optimum parameter set (77, 3, @) that
exhibits a low residual error in the bottom 25 percentile, high
temporal sparsity in the upper 25" percentile, and high sub-
graph sparsity in the upper 25" percentile of our random sam-
pling scheme.

Due to the non-deterministic nature of this approach, we in-
tegrated subgraph estimates over multiple runs of the algorithm
using consensus clustering — a general method of testing ro-
bustness and stability of clusters over many runs of one or
more non-deterministic clustering algorithms [83]. Our adapted
consensus clustering procedure [52, 51] entailed the following
steps: (i) run the NMF algorithm R times per network configu-
ration matrix, (ii) concatenate subgraph matrix W across R runs
into an aggregate matrix with dimensions E X (R * i), and (iii)
apply NMF to the aggregate matrix to determine a final set of
subgraphs and expression coefficients.

2.5. Measures of Subgraph Topology and Dynamics

To assess whether the functional interactions of a subgraph
are constrained by network topography, we compute the Pear-
son correlation coefficient between the strength of functional

interactions and the Euclidean distance between their associ-
ated brain regions, for each subgraph of each subject (Fig. 3).
Positive correlations imply stronger functional interactions over
longer distances and negative correlations imply stronger func-
tional interactions over shorter distances. We also compute a
surrogate distribution of Pearson correlation coefficient values
for each subgraph by randomly permuting functional interac-
tions between brain regions 1000 times.

To determine whether the functional interactions of a sub-
graph are expressed within modules or between modules, we
compute a time-varying module sensitivity index that maps
dynamic module architecture onto subgraphs. Mathemati-
cally, the module sensitivity index is computed as MSI(m, f) =
(W) — WOt (1)) /(WD (1) + WO"(£)), where W(¢) is the aver-
age strength of functional interactions of the m™ subgraph be-
tween brain regions assigned to the same module at time ¢, and
WU (¢) is the average strength of functional interactions be-
tween brain regions assigned to different modules at time 7. We
also compute a surrogate distribution of the module sensitiv-
ity index for each subgraph by permuting module assignments
uniformly at random 100 times.

We compare subgraph dynamics to module reorganization by
calculating the energy and skew of subgraph expression coef-
ficients and the flexibility of module composition over time.
The subgraph expression energy [28, 63] quantifies the over-
all magnitude expression of the subgraph and is based on the
equation energy(m) = E[H,,?], where H,, are the temporal co-
efficients of the m™ subgraph. The skew of a distribution of
subgraph expression coefficients quantifies how transiently or
persistently subgraphs are expressed [28, 63]. Intuitively, tran-
sient subgraphs are expressed in brief, infrequent bursts — re-
sulting in a heavy-tailed distribution of temporal coefficients
(i.e., more small coefficients, and few large coeflicients) — and
persistent subgraphs are expressed evenly in time — resulting in
a more normal distribution of temporal coefficients that fluctu-
ate about the mean. The skew of the distribution of temporal co-
efficients for a subgraph distinguishes whether it is transiently
(skew is greater than zero) or persistently (skew less than zero)
expressed. The skew of the subgraph expression coefficients
_ElHn—pny, '
(El(Hn—Hmn)* D>
where H,, are the temporal coefficients of the m™ subgraph and
g is the mean of the coefficients. The module flexibility [10]
is quantified by the mean fraction of times that brain regions
change module assignment over the 80 time windows.

is computed based on the equation skew(m) =

3. Results

3.1. Selecting parameters for NMF-based subgraph decompo-
sition

Non-negative matrix factorization (NMF) requires parameter
optimization that is critical for identifying a robust set of sub-
graphs that (i) best reconstruct the original dynamic network,
and (ii) reflect functional interactions that are gradually ex-
pressed and not overly specific to a single point in time. We ap-
ply a random sampling scheme to characterize the rich param-
eter space of the number of subgraphs m, the temporal sparsity
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of subgraph expression 8, and the regularization of subgraph
edge weights a across the dynamic functional networks of 20
healthy subjects (Fig. 2).

First, we measure the relationship between residual recon-
struction error and each parameter m, 8, @, marginalizing over
the remaining parameters (Fig. 2A-C). We observe a significant
decrease in residual error as the number of subgraphs increases
(Pearson r = —0.68, p < 1 x 107'°), suggesting that subgraphs
collectively explain more of the statistical space of dynamic
functional networks as the number of decomposed subgraphs
increases. In contrast, we did not observe as strong of a relation-
ship between residual error and the temporal sparsity parameter
(Pearson r = 0.10, p < 1 X 10‘16), or between residual error
and the subgraph regularization parameter (Pearson r = 0.11,
p < 1x 10719, Collectively, these results suggest that residual
error is primarily driven by the number of subgraphs.

Importantly, we note a potential degeneracy associated with
increasing the dimensionality of the subgraph sub-space m to-
wards the dimensionality of the original network. For large m,
we expect that subgraphs would sacrifice functional architec-
ture that generalizes over time for architecture that is specific
to single edges or single time windows. To characterize these
degeneracies, we measure the percentages of sparse temporal
expression coefficients and sparse subgraph edge weights as the
number of subgraphs increases (Fig. 2D,G). We find a signifi-
cant positive relationship between the percent of sparse tempo-
ral coefficients and the number of subgraphs (Pearson r = 0.78,
p < 1x10719), suggesting that for a large number of subgraphs,
the temporal expression of subgraphs generally falls to zero and
is compensated by brief increases in expression only at specific
time points. Similarly, we find a significant positive relation-
ship between the percent of sparse subgraph edge weights and
the number of subgraphs (Pearson r = 0.5, p < 1 x 10719),
suggesting that for a large number of subgraphs, the subgraph
topology approaches a degeneracy in which edge weights fall
to zero with only a few non-zero edges constituting a subgraph.

To devise a strategy that would accommodate this degen-
eracy, we characterize the effect of S and @ on the percent
of sparse temporal coeflicients (Fig. 2E,F) and the percent of
sparse subgraph edge weights (Fig. 2H,I). We find moderate re-
lationships between the percent of sparse temporal coefficients
and 8 (Pearson r = 0.38, p < 1 x 107!°), and between the per-
cent of sparse temporal coefficients and o (Pearson r = 0.37,
p < 1x107'%). Moreover, we observe two likely basins of
low and high temporal expression sparsity for a range of 8
and «a, centered around (8 € [0.1,0.3],a& € [0.1,0.5]) and
(B € [1.25,2.0],@ € [1.25,2.0]). These results suggest that
subgraphs may be specific to two different scales of tempo-
ral dynamics: local (higher percentage of sparse coefficients)
or global (lower percentage of sparse coefficients). However,
we do not observe similar basins in the relationship between
the percent of sparse subgraph edge weights and 8 (Pearson
r=0.51, p < 1x107!6), nor between the percent of sparse sub-
graph edge weights and a (Pearson r = 0.51, p < 1 x 10716).
These results suggest a potential strategy for choosing param-
eters that is based on minimizing the residual error and main-
taining a balance between spatial and temporal generalizabil-

ity and specificity of the subgraphs. Therefore, we average the
randomly sampled parameters associated with the lowest 25%
residual error, greatest 25% sparse expression coeflicients, and
greatest 25% sparse edge weights. These choices resulted in
a number of subgraphs m = 16.64 = 0.07, a temporal spar-
sity of B = 1.383 + 0.009, and a subgraph regularization of
a = 1.368 + 0.009.

3.2. Subgraphs stratify proximal and distributed functional in-
teractions

An open question in network neuroscience is “What is the
spatial organization of naturally formed subgraphs of dynamic
brain networks?” We expect that subgraphs stratify coherent
groups of functional interactions into clusters that reflect more
local processing over shorter distances and more distributed
processing over longer distances. To investigate the verity of
this expectation, we compute the Euclidean distance between
all pairs of 112 brain regions defined by the Harvard-Oxford
anatomical atlas (Fig. 3A). Based on these distances, we mea-
sure the topographical sensitivity for each subgraph based on
the correlation between a subgraph’s edge weights and the Eu-
clidean distance between the brain regions represented by those
edges. To compare topographical sensitivity across subgraphs
of all subjects, we rank subgraphs in increasing order of their
correlation with spatial distance and we analyze the distribution
of correlations for each subgraph in comparison to a null model
constructed from surrogate data (Fig. 3B). The surrogate data
null model represents the null distribution of correlations when
subgraphs lose their characteristic topology and instead exhibit
random wiring.

We find that ten of the sixteen subgraphs exhibit a more neg-
ative correlation than expected by the surrogate model (Bonfer-
roni corrected ¢-test; p < 0.05), demonstrating that stronger
functional interactions are expressed over shorter distances.
Five other subgraphs exhibit a more positive correlation than
expected by the surrogate model (Bonferroni corrected #-test;
p < 0.05), demonstrating that stronger functional interactions
are expressed over longer distances. These results suggest that
fifteen of the sixteenn subgraphs are composed of uniquely lo-
cal or uniquely distributed functional interactions indicative of
different scales of information processing (Fig. 3C). In light of
recent literature [69, 61, 91], these diverse spatial scales of sub-
graphs may directly relate to the temporal scale of dynamics
that the subgraphs support: that is, spatially proximal brain re-
gions can fluctuate in their interaction at a different time-scale
than spatially distant brain regions.
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Figure 2: Parameter optimization for subgraph detection. NMF-based subgraph detection requires optimizing three parameters: the number of subgraphs &,
the temporal sparsity of subgraph expression 3, and the regularization of subgraph edge weights @. To characterize this parameter space, we randomly sampled
k, 8, and « from a three-dimensional uniform distribution (k € [2,20],8 € [0.01,2.0], @ € [0.01,2.0]) and applied NMF to each subject using each parameter set.
(A-C) The joint probability distribution of residual reconstruction error and marginalized & (Pearson r = —0.68, p < 1 x 107!%), marginalized 8 (Pearson r = 0.10,
p < 1x1071), and marginalized e (Pearson r = 0.11, p < 1 x 107'¢) suggests that (i) increasing the number of subgraphs significantly improves the reconstruction
of the original dynamic network, and (ii) increasing the subgraph expression sparsity or edge weight regularization slightly improves the reconstruction. (D-F) The
joint probability distribution of percent sparse expression coefficients and marginalized k (Pearson r = 0.78, p < 1 x 107!%), marginalized 8 (Pearson r = 0.38,
p < 1x107'°), and marginalized a (Pearson r = 0.37, p < 1 x 10710) suggests that (i) increasing the number of subgraphs significantly introduces sparse
temporal expression coeflicients, and that (ii) increasing the subgraph expression sparsity of edge weight regularization moderately increases temporal expression
sparsity. We observed two likely basins of low and high temporal expression sparsity for a range of 5 and «a, centered around (8 € [0.1,0.3],a € [0.1,0.5]) and
(B €[1.25,2.0], @ € [1.25,2.0]), suggesting that subgraphs may be specific to two different scales of temporal dynamics — local or global. (G-I) The joint probability
distribution of percent sparse subgraph edge weights and marginalized k (Pearson r = 0.5, p < 1 x 1071), marginalized 8 (Pearson r = 0.51, p < 1 x 107'9), and
marginalized o (Pearson r = 0.51, p < 1 x 10719) suggests that increasing the number of subgraphs, subgraph expression sparsity, and edge weight regularization
increases the sparsity of subgraph edge weights.
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Figure 3: Topographical properties of subgraphs. (A) Topographic map derived from the Harvard-Oxford anatomical atlas composed of 112 areas in cortex,
subcortex, and brainstem, representing the Euclidean distance between pairs of brain regions in physical space. (B) Distribution of topographical sensitivity for
each subgraph — rank ordered from smallest to largest — across subjects. Topographical sensitivity is defined as the Pearson correlation coefficient between the
topographic distance and subgraph-specific edge strength between all pairs of brain regions (see Methods): a more positive correlation indicates that edge strength
increases with increasing distance between brain regions, whereas a more negative correlation indicates that edge strength increases with decreasing distance between
brain regions. To identify subgraphs with significant topographical sensitivity, we generated a null model for each subgraph by randomly rewiring edge strengths
between nodes and recomputing topographical sensitivity using a Pearson correlation. Compared to the null model, subgraphs 1-10 (blue) exhibited significantly
negative topographical sensitivity, subgraphs 12-16 (blue) exhibited significantly positive topographical sensitivity and subgraph 11 (red) exhibited non-significant
topographical sensitivity (Bonferroni corrected #-tests; p < 0.05). These results suggest that edge co-variances have a robust topographical organization in which
the strongest edges may form subgraphs over either short or long geographical distances. (C) An example of a short-range subgraph with negative topographical
sensitivity (left), and an example of a long-range subgraph with positive topographical sensitivity (right). The short-range subgraph exemplifies strong edges
between nearby brain regions, whereas the long-range subgraph exemplifies strong edges between distant brain regions.
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3.3. Module-based constraints on subgraph architecture

Next, we ask “What constraints might modular organization
impart on subgraphs of functional brain networks? Are inter-
actions specified by a subgraph restricted to brain regions of
the same module, or can they span multiple modules?” By an-
swering these questions, we can begin piecing together a mech-
anistic role for subgraphs in the architecture and dynamics of
functional brain networks. Based on the perspective that mod-
ularity provides a substrate for both integrated and segregated
modes of information processing [13, 109], we hypothesize that
the strength of functional interactions will co-vary based on
whether they are localized between brain regions within the
same module or between brain regions in different modules
(Fig. 4A). If such temporal co-variance were to exist within
and between modules, functional subgraphs would reflect the
various clusters of functional interactions that fluctuate over the
different time-scales of information processing.

To quantify the sensitivity of functional subgraphs to topol-
ogy within or between modules, we compute the time-varying
module sensitivity index for each subgraph of each subject (see
Methods). Intuitively, values closer to 1 imply that a sub-
graph expresses stronger functional interactions between brain
regions assigned to the same module, and values closer to —1
imply that a subgraph expresses stronger functional interactions
between brain regions assigned to different modules. Probing
this index enables us to map subgraph topology to the modular
architecture of the network at any given point in time (Fig. 4B).
To compare the average module sensitivity across subgraphs of
all subjects, we rank all of the subgraphs in increasing order of
their average module sensitivity index over time, and we ana-
lyze the distribution of sensitivity indices for each subgraph in
comparison to a null model built from surrogate data (Fig. 4C).
The surrogate data null model represents the null distribution of
module sensitivity indices when module assignments are per-
muted uniformly at random across brain regions.

We find that all subgraphs exhibit significantly greater av-
erage module sensitivity than expected in the surrogate model
(Bonferroni corrected t-test; p < 0.05). Moreover, we find
that subgraphs significantly stratify the observed distribution
of average module sensitivity (one-way ANOVA; Fj9 = 8.42,
p < 5% 1071%), Together, these results suggest that modular ar-
chitecture heterogenously constrains the functional interactions
of subgraphs — some subgraphs express topology that resem-
bles function-specific information processing within modules
while other subgraphs express topology that resembles integra-
tive processing across modules.

3.4. Module-based constraints on subgraph dynamics

Based on the strong relationship between modular architec-
ture and functional subgraphs, we next ask whether dynami-
cal changes in subgraph expression capture the module-based
reorganization of brain networks. We expect that the expres-
sion dynamics of subgraphs with the greatest module sensitivity
would exhibit a stronger relationship with module reorganiza-
tion dynamics than subgraphs with the lowest module sensitiv-
ity. To investigate this hypothesis, we measure the energy and
transience of subgraph expression and the flexibility of mod-
ule reorganization. Subgraphs with the highest module sensi-
tivity demonstrate a significant decrease in expression energy
(Pearson r = —0.44, p < 0.05) and a significant increase in ex-
pression transience (Pearson r = 0.55, p < 0.05) with increas-
ing module flexibility (Fig. SA,B). In contrast, subgraphs with
the lowest module sensitivity do not demonstrate significant re-
lationships between expression energy and module flexibility
(Pearson r = —0.16, p = 0.49), nor between expression tran-
sience and module flexibility (Pearson r = —0.13, p = 0.58).
These results suggest that subgraphs with greater module sen-
sitivity exhibit expression dynamics that more strongly relate
to temporal changes in module organization. Specifically, sub-
jects whose module-sensitive subgraphs have greater energy
and lower transience, and thus high overall expression with less
intermittent jumps in activity, tend to exhibit more fundamen-
tally stable module architecture that reorganizes less frequently
over time.

Based on our finding that subgraphs reflect functional inter-
actions within and between modules, it is natural to ask whether
temporal expression of subgraphs captures network states that
resemble inter- versus intra-module processes. We expect that
subgraph expression dynamics differentially explain temporal
fluctuations in the module sensitivity of subgraphs (Fig. 5C).
To address this hypothesis, we measure the temporal similarity
between expression dynamics and module sensitivity index for
each subgraph using a Pearson correlation: values closer to 1
imply that increased expression of a subgraph is associated with
increased sensitivity to functional interactions within modules.
In contrast, values closer to —1 imply that increased expres-
sion of a subgraph is associated with increased sensitivity to
functional interactions between modules. To compare temporal
similarity across subgraphs of all subjects, we rank subgraphs
in increasing order of their Pearson correlation and analyze the
distribution of correlations for each subgraph in comparison to
a null model built from surrogate data (Fig. SD). The surrogate
data null model represents the null distribution of correlations
when subgraph expression dynamics lose their temporal struc-
ture through random permutation of the expression coefficients.

We find that six of the sixteen subgraphs exhibit a more neg-
ative correlation than expected by the surrogate model (Bon-
ferroni corrected r-test; p < 0.05), indicating that increased
expression implies greater sensitivity to between-module inter-
actions. A separate six subgraphs exhibit a more positive cor-
relation than expected by the surrogate model (Bonferroni cor-
rected r-test; p < 0.05), indicating that increased expression
implies greater sensitivity to within module interactions. Col-
lectively, these results suggest a division of subgraph types into
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Figure 4: Network modules and network subgraphs. (A) A toy dynamic network that illustrates differential changes to the architecture of network modules and
network subgraphs over time. Modules describe a hard-partition of strongly connected network nodes into different groups or “communities” (colored circles) whose
composition may change over time. Subgraphs describe a soft-partition of temporally co-varying network edges into different groups or clusters (colored lines).
Network edges of a single subgraph may occupy a single module (dark blue) or span multiple modules (light blue). (B) To quantify the degree to which a subgraph
captures the modular organization of the network, we mapped module assignments from each time window (left) onto each subgraph and computed a time-varying
module sensitivity index for each subgraph: positive values indicate greater within-module edge strength, while negative values indicate greater between-module
edge strength. (C) Distribution of time-averaged module sensitivity index of subgraphs in increasing order over subjects (N = 20). Subgraphs exhibited significantly
greater module sensitivity to true modular organization compared to a null model in which module assignments were permuted uniformly at random between nodes
and between time windows (Bonferroni corrected #-tests; p < 0.05). However, subgraphs exhibited significantly different module sensitivities from one another
(one-way ANOVA; Fj9 = 8.42, p < 1 x 1071%), suggesting that subgraphs with the greatest module sensitivity tend to capture strongest edges within modules (red)
and subgraphs with the lowest module sensitivity tend to distribute strongest edges more evenly within and between modules (blue).
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two groups characterized by increased inter- or intra-module in-
teraction that scales with the magnitude of temporal expression
(Fig. SE). Fluctuations in subgraph expression amongst these
two different groups form a potential mechanism for the tempo-
ral dynamics of information integration and segregation that is
commonly observed within and between modules [125, 77, 16].

Overall, our findings suggest that the modular architecture of
brain networks places fundamental constraints on the various
modes of functional interactions between brain regions, as rep-
resented by subgraphs. Thus, network modules and network
subgraphs may play complimentary roles in guiding dynam-
ics of functional brain networks; network modules prescribe
the meso-scale organization of functionally cohesive brain re-
gions, network subgraphs pinpoint the modes in which these
brain regions interact with finer granularity. Intriguingly, the
dynamics of these individual subgraphs explain fluctuations in
integrated and segregated module-level interactions, as well as
inter-subject variability in module reorganization.
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4. Discussion

In this study, we put forth a framework for uncovering topo-
logical modes of functional interactions from time-evolving
brain networks that is based on an unsupervised machine learn-
ing tool called non-negative matrix factorization. We demon-
strate that functional brain networks decompose into con-
stituent parts or additive subgraphs that are differentially ex-
pressed over time. To effectively identify these subgraphs, we
demonstrate an ability to control the number of subgraphs, the
temporal sparseness of their expression, and the topological
sparseness of their edge weights by manipulating three impor-
tant parameters of the NMF optimization problem. Using the
most robust parameter set for the decomposition, we investigate
the topographical and topological basis of the recovered func-
tional subgraphs. We find that subgraphs naturally stratify func-
tional interactions between spatially proximal brain regions and
spatially distributed brain regions. Upon closer examination,
we observe that these clusters of coherent functional interac-
tions underlie a brain architecture that supports integration and
segregation of information processing across network modules.
Moreover, subgraphs exhibit expression dynamics that reliably
signal the modular reorganization of the network.

4.1. Machine learning to partition functional brain networks

Network neuroscientists are eager to use computational tools
to objectively partition brain networks into naturally organized
sub-regions that can deepen our understanding of form and
function [23]. Conventional approaches to localize network
sub-regions or components are based on graph theoretic tools,
such as the minimum-cut procedure [97], that incrementally
and continually divide a network along its edges until a cho-
sen criteria is satisfied. While such algorithms can be par-
ticularly effective for examining clusters of brain regions in
anatomically-based structural networks that remain relatively
static over short periods of time [7, 55], they are not designed
to partition dynamic functional networks whose architecture
evolves over time. Dynamic community detection methods fill
this void by enabling network scientists to identify modules —
cohesive groups of highly interacting brain regions — whose
composition could change over time [8].

Importantly, traditional methods for community detection
pursue a hard partitioning of brain networks that unambigu-
ously assigns brain regions to a single module based purely on
the strength, rather than the topological arrangement, of func-
tional interactions [92, 45]. However, recently it has been ar-
gued that brain regions may not necessarily have disjoint orga-
nization where they fulfill a single functional role. Rather, they
may participate in many brain systems along different phases
of behavioral and cognitive processing [124, 90, 41] — requir-
ing models that are capable of soft partitioning the network such
that brain regions are allowed to participate in different systems
to varying degree [4, 1]. In the brain, such soft partitions can
come in the form of so-called link communities [37] or hyper-
graphs [11, 35, 36], although neither of these approaches ad-
dresses the existence of dynamics in the partition.
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Figure 5: Dynamics of module sensitivity. (A) Relationship between module flexibility — the average rate nodes change their module allegiance — and subgraph
expression energy — the magnitude a subgraph is expressed over a period of time — for subgraphs with high (red) and low (blue) average module sensitivity.
Subgraphs with strongest edges within network modules significantly attenuate their expression in conjunction with more frequent changes in node allegiance to a
module (Pearson r = —0.44, p < 0.05), compared to subgraphs with strong edges distributed between modules (Pearson r = —0.16, p = 0.49). (B) Relationship
between module flexibility and subgraph expression transience — the distribution skew of expression coefficients within a window of time — for subgraphs with high
(red) and low (blue) module sensitivity. Subgraphs with strongest edges within network modules are more transiently expressed in conjunction with more frequent
changes in node allegiance to a module (Pearson r = 0.55, p < 0.05), compared to subgraphs with strongest edges distributed between modules (Pearson r = —0.13,
p = 0.58). (C) Expression dynamics (blue) coincide with time-varying module sensitivity (red) in an example subgraph of a single subject, suggesting that a
subgraph’s temporal expression may capture periods of heightened functional interaction within modules. To quantify whether the relationship between expression
dynamics and module sensitivity generalizes to all subgraphs, we computed the Pearson correlation coefficient between subgraph expression and time-varying
module sensitivity for each subgraph of each subject: positive values indicate increased sensitivity to topology within modules when expression is increased, while
negative values indicate increased sensitivity to topology between modules when expression is increased. (D) Distribution of Pearson correlation coeflicient values
between subgraph expression and time-varying module sensitivity of subgraphs in increasing order over subjects (N = 20). Compared to a null model in which
temporal expression weights were permuted uniformly at random, subgraphs 1-6 (blue) exhibited increased sensitivity to between-module topology with increased
expression, subgraphs 11-16 exhibited increased sensitivity to within-module topology with increased expression, and subgraphs 7-10 exhibited non-significant
relationships between module sensitivity and expression (Bonferroni corrected #-tests; p < 0.05). These results support the hypothesis that different subgraph
topologies capture varying degrees of edge co-variance within or between network modules specific to time periods of heightened expression. (E) An example of a
between-module subgraph with significant negative Pearson correlation values (left), and an example of a within-module subgraph with significant positive Pearson
correlation values (right). The between-module subgraph exemplifies strong edges distributed between modules and the within-module subgraph exemplifies strong
edges localized within modules.
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To accommodate greater model flexibility in characterizing
network organization and dynamics, we turned to soft parti-
tioning approaches — such as NMF — that afford the ability to
statistically learn important rules regarding the behavior of a
system through observational data. Unlike hard partitioning
approaches — such as community detection — that may be tai-
lored to understand different facets of network organization un-
der particular constraints, soft partitioning deconstructs the sta-
tistical space of dynamic networks, provided there is working
knowledge of the underlying distribution of that space. Put sim-
ply, hard partitioning approaches ask “Are brain networks orga-
nized in a particular way?”, while soft partitioning approaches
ask “What are the rules underlying the observed network or-
ganization?” Thus, community detection clusters brain regions
into modules based on the strength of their interactions, while
NMF clusters functional interactions into subgraphs based on
their cohesive fluctuations over time.

4.2. Spatial and temporal constraints on functional interac-
tions

Fundamentally, subgraphs represent constraints on the func-
tional interactions that the observed network is able to support.
Intriguingly, prior work demonstrates that functional subgraphs
share resounding similarity to empirically-defined brain sys-
tems [27] — such as the executive system [108, 105, 88] and
default mode network [95, 96] — supporting the theory that sub-
graphs prescribe a foundational substrate for the functional in-
teractions underlying cognitive processes and resulting behav-
ior. In our study, we observe that functional subgraphs support
heterogeneous topography of interactions over short and long
distances. The observed stratification of distance-based interac-
tions over several subgraphs suggests that these subgraphs also
represent unique topological relationships. Our findings are
supported by previous studies that use both descriptive statis-
tics [75, 7, 67] and generative models [122, 17] to investigate
the relative importance of topography and topology in anatomi-
cal networks. Functionally, subgraphs that separately support
short-range and long-range interactions could be further ex-
plored in their potential role in shaping human intelligence,
which has been linked to long-distance interactions that pro-
mote global efficiency [74, 119, 104].

A long purported role of multi-scale network topology is to
support segregated processing of functionally specialized infor-
mation and integrated processing of distinct pieces of informa-
tion [23, 18]. Prior studies demonstrate an ability to capture
the functional substrates of integration and segregation during
learning [9, 13, 48], linguistic processing [29, 42], aging [31,
19, 81], executive function [22, 20], attention [77, 115], and
rest [16] using modular decomposition. While modular organi-
zation helps compartmentalize function-specific computations
within individual modules, the finer-scale topology that actu-
ates this computation has remained elusive. Our results demon-
strate that subgraph topologies differentially express functional
interactions within and between modules. These within- and
between-module subgraphs may help define a clearer functional
role for putative provincial and connector hubs in the context
of local and distributed computations [16]. In addition to a
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topological basis for module-based processing, our results sug-
gest that subgraph dynamics may distinguish different stages
of integrated and segregated processing. The ability to track
the relative expression of subgraphs during these stages is cru-
cial for understanding the temporal dynamics that embody so
called cognitive control processes [82] that govern our ability
to modulate attention [68, 47, 34] and switch between tasks
[102, 64, 121].

Network flexibility, the ability for modular architecture to
reorganize, has recently been considered a putative functional
driver of cognitive control [33, 13, 22], and is demonstrably al-
tered in psychiatric disorders such as schizophrenia [20], which
are also characterized by deficits in executive function [108, 6].
In this study, we explore possible relationships between mod-
ular reorganization and subgraph dynamics and find that sub-
graphs that are more sensitive to topology within modules have
stronger relationships between their temporal pattern of expres-
sion and network flexibility. First, these subgraphs are more
energetically expressed in individuals who exhibit less flexible
functional modules, potentially implicating expression energy
as a stabilizer of network architecture. Such a theory is corrobo-
rated by prior work that finds subgraphs of the executive system
are more energetically expressed in young adults compared to
children [27], which might be explained by less impulsive and
more proactive behavior [117, 32]. Second, individuals with
module-sensitive subgraphs that are more transiently expressed
tend to exhibit more flexible functional modules, instantiating
expression transience as an intermittent modulator of network
architecture. Subgraphs with more transient dynamics might
signal important transition states that potentially drive changes
in overall network topology in an inherently rough energy land-
scape [3, 123, 54, 98].

4.3. Conclusions

In this study, we introduce a machine learning approach for
decomposing dynamic functional networks into subgraphs and
characterizing their architecture in the context of topography
and topology. We show that subgraphs stratify groups of func-
tional interactions that are expressed over a variety of spatial
distances. Furthermore, subgraphs express topologies that obey
the modular architecture of functional brain networks. These
topological constraints lend subgraphs an important ability to
signal dynamical states of inter- and intra-module processing.
In general, our framework can be used to examine the func-
tional substrates underlying various behavioral and cognitive
states, such as the coordination of different groups of functional
interactions during a task. Importantly, the NMF-based ap-
proach would highlight which brain regions are engaged during
these states and how these engagements shift over time. Fur-
ther methodological development could highlight sequences of
subgraph expression that could be used to understand dynamics
associated with cognitively effortful tasks, and their alteration
in patients with neurological disorders or psychiatric disease,
and pinpoint causal drivers of network dynamics [76, 50].
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