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Abstract

Tumors frequently develop clonal dominance, meaning that most cells descend from a
small fraction of initial clones. Such dominance also occurred in published in vitro iterated
growth and passage experiments with tumor cells in which lineage tracing was performed using
genetic barcodes. A potential source for such heterogeneity is that dominant clones derive
from cancer stem cells with an unlimited self-renewal capacity. Alternatively, clonal dominance
may be caused by heterogeneity of division rates between clones. To test which hypothesis can
explain the development of clonal dominance, we build a computational model that accurately
simulates the iterated growth and passage experiments in which clonal dominance emerged.
With this model we show that clonal dominance does not develop in a model where all cells
grow at a uniform rate, even when the population is subdivided in cancer stem cells and
differentiated cells. However, when the division rates vary between clones and are inherited
from parent cells, clonal dominance develops and increases over time. The experimentally
observed evolution of clone loss, clonal dominance, and the clonal overlap across biological
replicates are closely matched by our simulations. Thus, our findings suggest that tumor cells
exhibit a heritable variation in the division rates of individual cells.

Major Findings

The clonal dominance that developed in in vitro iterated growth and passage experiments can
be reproduced with a computational model when the division rates vary between cells and are
inherited to their offspring. In contrast, the experimental results can neither be reproduced
with a model that considers random growth and passage, nor with a model based on cancer
stem cells. These results suggest that clonal dominance, which is frequently also observed in
in vivo tumors, is not always the result of cancer stem cells.

Quick Guide to Equations and Assumptions

The simulations closely follow the experimental procedure of iterated growth and passage:
during growth cells divide randomly with a given rate and during passage a random selection
is made of cells that are passed on to the next generation. Because we aim to understand
the dynamics of sizes of clones, we follow the clone sizes rather than single cells over time by
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employingGillespie’s Stochastic Simulation Algorithm (SSA) [1]. We implemented the SSA
using the τ-leaping algorithm [2], in which size Ni of clone i is described by:

Ni(t + τ) = Ni(t) + ki (1)

with time step τ, and ki taken from a Poisson distribution with mean rNi(t)τ, where r denotes
the division rate. These τ leaps are performed until the population size n =

∑C
i=0 Ni reaches

the critical population size ncrit that matches the in vitro population size right before passage.

Cancer stem cell growth

To test how cancer stem cell (CSC) driven growth affects the clone size evolution, we incor-
porated a previously published model of CSC driven growth [3]. In this model cells are either
CSCs that can divide indefinitely, or differentiated cells (DCs) that divide a limited number
of times. CSCs proliferate at a net growth rate of rCSC and division can result either in two
CSCs with probability p1, in a CSC and a DC with probability p2, or in DCs with probability
p3 (Fig 3A). DCs proliferate at a net growth rate rDC until they reach their maximum number
of divisions M and then, following Weekes et al. [3], they die with a rate rDC. This division
scheme is incorporated in the growth model by defining for each clone i the number of CSCs
NCSC,i and the number of DCs NDCm,i of age m. Then, for each clone i there are 5 possible
transitions:

1. CSC→ 2CSC: NCSC,i(t + τ) = NCSC,i(t) + ki;

2. CSC→ CSC + DC: NDC0,i(t + τ) = NDC0,i(t) + ki;

3. CSC→ 2DC: NCSC,i(t + τ) = NCSC,i(t) − ki and NDC0,i(t + τ) = NDC0,i(t) + 2ki;

4. DCm → DCm+1: NDCm,i(t + τ) = NDCm,i(t) − ki and NDCm+1,i(t + τ) = NDCm+1,i(t) + 2ki for
0 ≤ m < M;

5. DCM →: NDCM,i(t + τ) = NDCM,i(t) − ki,

where the means for the Poisson distributions used to obtain ki are computed in a similar
manner as above, except for transition 1-3 where the CSC division rate is multiplied by the
respective transition probability.

Division rate variability

To test the effect of division rate heterogeneity on the development of the clone distribution,
the default division rate r of the basic model, or the division rates rCSC and rDC for the
CSC model, are multiplied by a value Xi chosen from a normal distribution with mean 1 and
standard deviation σr. Xi is linked to clone i, so division rates are inherited upon division.
Furthermore, each simulation replicate uses the same random seed to initialize the division
rates and therefore the ri values of individual clones are identical across all replicates of a
single simulation.

Introduction

Intratumoral heterogeneity, the genotypic and phenotypic differences within a single tumor, is a

well known feature of cancer [4] and strongly influences the effectiveness of cancer therapy [5].

Genotypic heterogeneity is the result of random mutations, and while most of these mutations are

neutral passenger mutations, some are functional mutations that add to phenotypic heterogeneity.

Phenotypic differences may also be caused by phenomena such as differential signaling from the
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local tumor micro-environment, epigenetic changes, and stochastic gene expression [6]. Another

proposed source of intratumoral, phenotypic heterogeneity is the presence of so-called cancer

stem cells (CSCs) that have an unlimited potential to renew and can differentiate into cells with a

limited potential to renew [7]. The presence of CSCs would result in a tumor containing a mixture

of CSCs, and populations of cells with varying levels of differentiation.

For a long time, evidence for the presence of CSCs was primarily based on xenograft models

in which transplantation of tumor cells into immunodeficient mice resulted in tumor growth in

only a small fraction of the mice [4, 8], suggesting that only a subset of the tumor cells has the

ability to sustain long-term growth. However, the lack of success of initiating tumor growth in

immunodeficient mice may also be related to the incomplete inhibition of the immune response [9],

or to the dramatic change in tumor micro-environment upon transplantation [8]. An alternative

approach to identify the existence of CSCs is to perform lineage tracing by fluorescent marking

of a subpopulation of cells [10]. For example, Schepers et al. [11] managed to trace the lineage

of CSCs by fluorescently labeling cells expressing stem cell markers in mice developing intestinal

adenomas and thereby showed that all cells in small adenomas descended from a single stem cell.

However, fluorescent labeling of stem cells is not possible in all cancer types, and for those cancer

types an alternative approach is taken by labeling a small fraction of the tumor cells in animal

models. Studies employing this strategy showed that the number of colored patches reduced

during tumor growth, while the size of these patches increased [12–14]. These observations are

compatible with the hypothesis that tumor cells descend from a small number of CSCs.

Another, high-resolution, approach to lineage tracing is the application of unique genetic tags,

also called cellular barcodes, to a population of tumor cells [15–21]. Tumors grown in immunod-

eficient mice injected with barcoded tumor cells are dominated by cells that express a only small

subset of the barcodes [17, 18]. Serial implantation of barcoded leukemic cells showed that rare

clones in one mouse can develop dominance after transplantation into a second mouse, indicating

that clonal dominance is not a predetermined property of certain clones [20]. Porter et al. [15] used

cellular barcoding to follow the development of clonal dominance over time in an in vitro setup,

thereby controlling the external factors that could affect clonal dominance. Populations derived

from several polyclonal cell lines were barcoded and grown for three days after which a fraction of

the cells was passed on to the next generation. By repeating this process (Fig 1A) and analyzing

the intermediate clone distributions, Porter et al. [15] showed that clonal dominance progressed

over time (Fig 1B). Interestingly, similar experiments with a monoclonal K562 cell line did not

result in progression of clonal dominance, hinting that an intrinsic variability in the cell population

may cause the progression of clonal dominance. However, Nolan-Stevaux et al. [17] showed that

clonal dominance does not develop during 8 days of in vitro growth without passaging, indicating

that random passage could also play a role in developing clonal dominance.

Although the studies discussed above represent a strong base of evidence for the development

of clonal dominance in vivo as well as in in vitro tumor cell populations, the mechanism that

drives this dominance remains unknown. The presence of CSCs is consistent with the induction

of clonal dominance, but only in some cancers direct evidence for the involvement of CSCs is

available [8]. Alternatively, evolution may cause clones with a higher division or survival rate to

dominate the tumor. Hence, it is necessary to further investigate the CSC hypothesis and to

explore alternative hypotheses. One way to do this in a formal way is to construct computational

models that incorporate different hypotheses and compare the outcome of computer simulations
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to spatio-temporal clonal dynamics observed experimentally. Such an approach has been used

before in numerous studies addressing the temporal and spatial evolution of tumor cell populations

with CSCs, which are thoroughly reviewed in [22]. Several of these modeling studies focused

on the development of spatial tumor heterogeneity by employing cell based models in which

intratumoral heterogeneity is induced by CSCs [23, 24], by CSCs and epigenetic changes [25],

or by mutations [26]. In this work we built a computational model that simulates the iterated

growth and passage experiments described in [15]. By incorporating different hypotheses for the

development of clonal dominance in our model, we show that the presence on CSCs alone does not

suffice to reproduce in vitro clonal dynamics, while simulations with division rate heterogeneity do

closely resemble in vitro results.

Methods

Analysis of sequencing data

The sequencing data was downloaded from the NIH Sequence Read Archive (https://www.

ncbi.nlm.nih.gov/sra/SRX535233) using the SRA Toolkit. The downloaded FASTQ files were

processed using ClusterSeq [15] (https://github.com/adaptivegenome/clusterseq), which

extracts barcodes and their counts from the FASTQ files and removes ambiguous barcodes. To

generate a reference library for the cell lines barcoded with the lentiviral vector, the 4 plasmid

library samples were merged, excluding any barcode with a frequency smaller than 0.0002% or that

appeared in only 1 biological replicate. The resulting reference library, containing 13237 barcodes,

was then used to select only known barcodes from experimental data.

Computational model

The computational model of stochastic growth and passage consists of iterative growth and pas-

sage steps during which the size Ni,s of each clone i of cell type s changes. Each simulation is

initialized with 3 · 105 cells. During the growth phase, cell divisions and cell death (if applica-

ble) occur at random intervals, but with an overall rate rs. When the critical population size

Ncrit = 4 · 106 is reached, npass = 3 · 105 clones are selected randomly and taken to the next

generation. More details can be found in the Quick Guide. All simulations were performed with

a single, custom C++ program, which is available at github (link will be made available upon

publication).

Results

Re-analysis of published sequencing data

We started by re-analyzing the data for the in vitro experiments with the lentivirally barcoded

polyclonal K562 cell line (see Methods section for more details). The transduced cells were grown

and aliquots containing 3 ·105 cells were used to initialize three biological replicates of the iterated

growth and passage experiment. The cells were then, iteratively, grown for 3 days after which

3 · 105 cells were passed on to the next generation (Fig 1A). Iterated growth and passage with

the K562 cell line resulted in a loss of clones and a progressive clonal dominance (Fig 1B-C and
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Figure 1: In vitro iterated growth and passage experiments result in clone loss and clonal domi-

nance. A Experimental setup of Porter et al. [15]. B-D Evolution of the clone distri-

bution visualized by the percentage of clones versus the percentage of the population

represented by those clones (B), the number of clones (C), and the emergence of major

clones (clones representing >1% of the cells) (D). All values are the average of the three

biological replicates and the error bars or colored areas mark the standard deviations. E

Similarity of major clones across the 3 replicates expressed as the percentage of major

clones occurring in in one or more replicates indicated with the colors/numbers.

Fig S1). While the qualitative results are similar for all three replicates, there some variation in

the percentage of remaining clones and the clone distribution. Major clones, clones representing

> 1% of the cell population, emerged in all biological replicates (Fig 1D). Comparing the barcodes

of the major clones in the 3 replicates shows that the majority of major clones coexists in exactly

2 out of 3 replicates (Fig 1E), suggesting that dominance depends on a combination of intrinsic

clonal properties and chance. In the following, we will develop model simulations based on the

experimental setup and compare the model results to the experimental findings with respect to

clonal dominance, clone loss, and the development of major clones.

Iterated growth and passage reduces the number of clones, but does not cause
progressive clonal dominance

The experimental results support the importance of chance in the development of clonal dom-

inance, hence the most straightforward explanation for the development of clonal dominance is

that the iterated passages cause small clones to completely disappear while larger clones remain
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Figure 2: Clonal dominance does not develop for indefinitely dividing cells. A-B Evolution of

clone distribution for Porter’s [15] model with stochastic passage and deterministic

division, with tgrowth = 72 hours and npass = 3 · 105 cells. C-D Evolution of clone dis-

tribution for a model with stochastic division and passage implemented with Gillespie’s

τ-leaping method. Both models were initialized using the experimentally observed

initial clone distribution of the polyclonal K562 cell line that was barcoded using a

lentiviral vector. All values are the mean of 10 simulations and the error bars in A and

C represent the standard deviation.

and grow. This hypothesis is supported by Porter’s in vivo experiments in which no passage oc-

curred and no loss of clones nor clonal dominance was observed [15]. To test whether clone loss

during passage explains clonal loss and progressive clonal dominance, Porter et al. [15] employed

a computational model of iterated deterministic growth phases and random passage, showing that

this could only partially explain the experimentally observed clone loss but not the development of

clonal dominance. In these simulations, all clones grow according to Ni(t+ tgrowth) = Ni(t)ertgrowth ,

where Ni(t) represents the size of clone i at time t, tgrowth the duration of the growth phase,

and r the division rate of the cells. At the end of the passage interval, npass cells are selected

randomly and passed to the next generation (Fig 1A). To confirm the simulation results, we used

the available code [15] and ran simulations starting with C = 14, 000 clones uniformly distributed

over 3 ·105 cells, which indeed resulted in a reduction of the number of clones (Fig S2B). However,

in contrast to the in vitro results, clonal dominance only developed slightly and did not increase

over time, clone loss was small, and no major clones appeared (Fig S2A-B). To test if a realistic

initial clone distribution improved the resemblance between the experimental observations and the

simulation results, we repeated the simulations using the initial clone distribution of the K562 cell

line (Fig 1B) in which clonal dominance is already slightly developed. In this setting the clone

distribution remained unchanged (Fig 2A) and number of remaining clones remained larger than

that for the K562 cells (Fig 2B).

Porter et al. [15] noted that in simulations where more cells were passaged, fewer clones dis-

appeared, indicating that the random process of passage causes some clones to become smaller

and finally disappear. However, because cell division is modeled as a deterministic process, the

clone sizes, relative to other clones, remain similar over time, and the probability to disappear for
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individual clones remains unchanged over time. The assumption of deterministic growth would

be reasonable for large clones, but for small clones, probabilistic events could strongly affect the

simulation outcome. Therefore, we replaced deterministic growth by a stochastic growth model

and performed simulations with stochastic growth initialized with a uniform clone distribution (Fig

S2C-D), or with a the clone distribution derived from the initial clone distribution of the K562

cells (Fig 2C-D). In both cases the results were similar to those with deterministic growth, albeit

with a larger decrease in the number of clones. For simulations with stochastic growth that were

initialized with the K562 distribution, the clone loss resembles the average in vitro clone loss for

passages 10 and 20, but for passage 30 the in vitro clone loss overtook the simulated clone loss

(see Fig 1C and Fig 2D). This suggests that the early clone loss is dominated by the effects of

stochastic division and passage, and that at a later stage another, unknown, mechanism further

increases clone loss. Altogether, these results indicate that stochastic passage and growth can

cause clone loss during passage, but neither of these mechanisms can induce progressive clonal

dominance.

The presence of CSCs does not induce clonal dominance

The presence of CSCs is thought to induce tumor heterogeneity because they generate a, hierar-

chically organized, population of CSCs and differentiated cells (DCs) [27]. To introduce CSCs in

our growth model we added a previously published model of CSC driven growth [3]. In this model

cells are either CSCs that can divide indefinitely, or DCs that divide a limited number of times.

CSCs proliferate at a net growth rate of rCSC and division can result either in two CSCs with

probability p1, in a CSC and a DC with probability p2, or in two DCs with probability p3 (Fig 3A).

DCs proliferate at a net growth rate rDC until they reach their maximum number of divisions M
and then, following Weekes et al. [3], they die with a rate rDC. For simplicity, we did not consider

random cell death of CSCs and DCs, because this process only affects the population growth rate.

We fine-tuned the parameters of the CSC growth model such that the population growth rate

is consistent with the 19 hour doubling time reported by Porter et al. [15]. For this we exploited

the analytical solution of the CSC model elegantly derived by Weekes et al. [3]. This solution

predicts that the population of cells initially grows, and then develops according to one of three

growth regimes determined by β = (p1 − p3)rCSC. When β > 0, the population continues to

grow, when β = 0 the population reaches an equilibrium, and when β < 0 the population will

eventually go extinct. Because the in vitro cells were reported to be in “log phase growth” [15],

we limited the parameter space to β > 0, which ensures a monotonically growing cell population.

A complicating factor is that the parameters determining β do not affect the growth in the first

couple of days. Instead, during this time interval, growth is determined by the division rate of

DCs (rDC) and the maximum number of divisions of DCs (M). Therefore, we explored how much

the simulated population doubling time deviates from the experimental doubling time of 19 hours

for a range of parameter combinations (Fig 3B). Interestingly, there is a minimum value for the

division capacity that DCs need to have in order to reach the in vitro doubling time. To illustrate

the clonal development of the CSC growth model, we choose an arbitrary parameter set from the

region that matches with the experimentally observed population growth rate: M = 10 divisions,

and rDC =
19
24 day −1 (white cross in Fig 3B), with the remaining parameters set to rCSC = 1 day

−1, p1 = 0.5, p2 = 0.5, p3 = 0. The evolution of single clones is strongly affected by the number

of CSCs present in a clone, so it is important to take the initial percentage of CSCs, CSC0, into
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Figure 3: Simulations with the CSC growth model result in massive clone loss and no development

of clonal dominance. A Scheme illustrating the divisions and cell death in the CSC

growth model. B Heatmap showing the difference between in vitro population growth

rate and simulated population growth rate in the CSC growth model depending on the

maximum number of DC divisions (M) and DC division rates (rDC). The white cross

denotes the default model settings and the black crosses depict a set of alternative

settings depicted in Fig S3. C-F Evolution of the clone distribution (C), clone number

(D), major clones (E), and major clone overlap across replicates (F) for the CSC growth

model. The inset in C illustrates how f50 is obtained from the clone distribution. G-H

Effect of symmetric CSC division probability (p1) on clone loss (G) and f50 (H). I-J

Effect of the initial CSC percentage (CSC0) on clone loss (I) and f50 (J). p1 = 0 and

CSC0 = 0% were omitted because, with those settings, the population goes extinct

after a few passages. The simulations (C-J) were performed with the parameter values

mentioned in the main text and CSC0 = 5%, unless mentioned otherwise. All values

in C-E and G-J are the mean of 10 simulation replicates and the error bars (D-E) and

colored areas (G-J) denote the standard deviation.

account. The fraction of CSCs in a tumor is usually thought to be small [7], but recent work has

shown that these low values are likely caused by the experimental setup [9]. Therefore, instead of

fixing the initial CSC percentage, we evaluated our model for a range of initial CSC fractions.

At first sight surprisingly, our simulations with the CSC growth model resulted in a strong re-

duction in clone number while the clone distribution remained virtually unchanged (Fig 3C-D).

As a side effect of the massive clone loss, several clones came to represent more than 1% of the

population (Fig 3E). Nevertheless, clonal dominance did not evolve over time (Fig 3C) due to the

similar dynamics of surviving clones. Most major clones were unique among the 10 simulation

replicates, except for 1 major clone at passage 10 and 1 major clone at passage 30 (Fig 3F), which

occurred because the clone sizes were initialized from the same, non-uniform, distribution. To
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ensure that these results were not caused by the arbitrary choices for M and rDC, we repeated the

simulations with several alternative settings from the optimal region in Fig 3B (see black crosses),

which resulted in nearly identical plots (Fig S3).

The dramatic reduction in clone number can readily be explained: clones frequently loose all CSCs

during passage, which takes away the long-term self-renewal capacity of such clones. We tested

this explanation by varying the initial percentage of CSCs and the probability of a symmetric

CSC differentiation. To easily evaluate the effect of these parameter changes, we devised two

metrics. First, to quantify clonal dominance, we determine the percentage of the population

that contains the largest 50% of the clones, which is referred to as f50 (see inset Fig 3C).

Second, to track clone loss, we measured the percentage of remaining clones at a given passage.

In line with our explanation for the massive clone loss, increasing the probability of symmetric

CSC differentiation (Fig 3G) or increasing the initial CSC percentage reduced clone loss (Fig 3I).

Nevertheless, increasing the initial CSC percentage to 100% did not lead to clone loss matching

that observed experimentally. Moreover, changing these parameters had only little effect on

clonal dominance (Fig 3H and 3J). The lack of progression of clonal dominance over time can be

explained by a lack in difference between the clones: although in the long run all cells descend

from only a few clones, there is no difference in the speed at which each clone generates offspring.

In conclusion, incorporating CSC growth into our passaging simulation resulted in a poor match

to the experimental observations because far too many clones disappeared and the distribution of

the remaining clones did not exhibit clonal dominance.

Division rate variability induces clonal dominance

As shown in the previous section, the presence of CSCs does not suffice to induce clonal dominance

due to the homogeneous division rate of cells. Classical studies have shown that the division rates

of cell lines derived from the same tumor vary in vitro and in vivo [28–30] and that the growth

properties are preserved after transfer [28, 29]. Both these observations suggest that the division

rate of individual cells varies which could lead to fast dividing cells becoming more dominant than

slowly dividing cells. To test if heterogeneity in the division rate between clones induces progressive

clonal dominance, we modified the CSC growth model by replacing the uniform division rates rCSC
and rDC by clone-specific growth rates: rCSC,i = Xi · rCSC and rDC,i = Xi · rDC, where i refers to

clone i, and Xi is taken from a Gaussian distribution N(1, σr) with σr the standard deviation of

the division rate. Since we do not keep track of individual cells within the same clone, the division

rate is implicitly inherited by all offspring of a clone.

In our simulations, the addition of heterogeneous division rates indeed resulted in progression of

clonal dominance (Fig 4A), but this was accompanied by a much larger clone loss than observed

with the K562 cells (Fig 4B). Major clones did develop during these simulations, but nearly all

major clones were unique to their replicate (Fig 4C-D). This indicates that their abundance is not

only caused by their division rate, but is also the result of surviving passage by chance. The clonal

dominance that emerged in our simulations strongly depended on the division rate variability (Fig

4E). This variability also affected the amount of clones lost during the simulation, yet increasing

it only led to a poorer match between the simulation and the in vitro results (Fig 4F). Further

exploration of the model parameters revealed that a reduction of clone loss can be achieved when

the initial CSC percentage (CSC0) and the probability of symmetric CSC division (p1) are increased

(Fig 4G). In fact, the number of remaining clones best approaches the in vitro observations for
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Figure 4: Simulation of the CSC growth model with division rate variability results in clonal

dominance and massive clone loss. A-D Evolution of the clone distribution (A), clone

number (B), major clones (C) and major clone overlap across replicates (D) for the CSC

growth model with division rate variability (σr = 0.05 and CSC0=20%). E-F Relation

between the division rate standard deviation and clone distribution (E) or clone loss (F),

with the horizontal lines in E denoting the corresponding experimental values for the

polyclonal K562 cell line. G Clone loss, indicated by the heatmap color, for simulations

with a varying initial CSC percentage (CSC0) or with a varying symmetric CSC division

probability (p1). The maximum of each colormap is set to the average clone loss, at

the respective passage, of the three biological replicates. All values are the mean of 10

simulation replicates and the error bars (B-C) and colored areas (E-F) represent the

standard deviation.

p1 = 1 and CSC0 = 100, which means that all cells are CSCs that divide indefinitely. Interestingly,

as for the non-CSC growth model with a uniform division rate, the number of clones left for

passage 10 and 20 closely approached the experimental observations, while for passage 30, the

simulated clone loss did not match the experimental observations. Together, these observations

suggest that a further exploration of the non-CSC growth model with a variable growth rate is

needed.

A model with indefinitely growing cells and varying division rates matches in vitro
data

When all cells are CSCs that only divide into CSCs, the heterogeneous division rate is the only

feature that differentiates the CSC model from the model in which all cells have an unlimited

division capacity. This indicates that the presence of CSCs is not at all required for the development

of clonal dominance. To test if such a model without CSCs indeed results in progressive clonal

dominance, we introduced division rate variability to the earlier model where all cells have an

unlimited division potential, according to ri = Xi · r. Indeed, division rate variation alone suffices
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to induce clonal dominance that increases over time (Fig 5A), accompanied by moderate clone

loss (Fig 5B) and the development of several dominant clones of which some are unique to their

replicate and others occur in multiple replicates (Fig 5C-D). The speed of clonal disappearance and

the level of clonal dominance depends on the standard deviation of the growth rate (Figure 5E-F),

and not on the mean division rate (Fig S4). Besides the polyclonal K562 cell line, Porter et al. [15]

tested several others, i.e. human embryonic kidney (HEK) 293T, HeLa, and human non-small-cell

lung cancer (HCC827) polyclonal cell lines, and a monoclonal K562 cell line. Compared to the

polyclonally, lentivirally barcoded K562 cell line (Fig 1) the HEK-293T cells exhibited a similar

progression of clonal dominance, while the HeLa and HCC827 cell lines showed a more pronounced

clonal dominance, and the clonal K562 cell line showed no clonal dominance. The shift towards an

increased or decreased dominance can be obtained in the model by altering the standard deviation

of the division rates (Fig 5E). Hence, it is possible to fine tune our model by searching for the

division rate standard deviation that best fits the in vitro results for a particular cell line.
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Figure 5: Simulation of growth model with indefinitely dividing cells and division rate hetero-

geneity results in clonal dominance and moderate clone loss which both depend on

the division rate SD. A-D Evolution of the clone distribution (A), clone number (B),

major clones (C), and major clone overlap (D) (with σr = 0.04), averaged over 10

simulations. E-F Relation between the growth rate standard deviation (σr) and f50

(F) and the number of remaining clones (F), with the horizontal lines denoting the

corresponding experimental values for the polyclonal K562 cell line. Each data point

represents the mean for 10 simulations and the error bars (B-C) and colored areas

(E-F) represent the standard deviation.

We illustrate this fine-tuning procedure with the polyclonal K562 cell line by running a series

of simulations for a narrow range of division rate standard deviations (10 replicates per standard

deviation) and comparing the simulation results quantitatively with the in vitro data on the clone

distribution (Fig 1B), the number of clones (Fig 1C), and the number of major clones (Fig 1D).

By computing the mean squared error (MSE) for each evaluation criterion and the normalized

average of the MSE of the three criteria, we obtained a measure of the deviation between the

simulation result and the in vitro data. Because the results of the three biological replicates

exhibited some variability, we computed the MSEs per biological replicate and interpreted the

results as a parameter range (replicate A in Fig 6A-D, replicate B in S5A-D, and replicate C in
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Fig S5E-H). The optimal fits range from σr = 0.022, for replicate B, to σr = 0.026, for replicates

A and C. Indeed there is an excellent correspondence in the number of clones (Fig 6E), the

clone distribution (Fig 6F), and the number of major clones (Fig 6G). Moreover, the overlap of

major clones across replicates, which was not a criterion for the optimization of the division rate

standard deviation, is close to the experimental observations (Fig 6H). Nevertheless, there are

small differences: at passage 30, 87.5% of the experimental major clones were found in more

than 1 out of 3 biological replicates (Fig 1E), while in the simulations only 31.25% of the major

clones were found in more than one third of the replicates. Thus, our model can reproduce the

experimentally observed clone distribution, clone loss, and development of major clones, but there

are minor deviations with respect to the clonal overlap across replicates.
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Figure 6: The division rate standard deviation can be fine-tuned to closely match the experi-

mental observations for the polyclonal, lentivirally barcoded K562 cell line. A-D Mean

squared error for the clone distribution (A), the number of clones (B), the number

of major clones (C), and the normalized average of all three metrics (D) between 10

simulation replicates and biological replicate A. E-H simulation results for the optimal

fit to replicate A (σ = 0.026), averaged over 10 simulation replicates with the error

bars (E and F) depicting the standard deviation.

Discussion

Employing a simple model of stochastic cell division and passage, we showed that most of the

clone loss observed during passage, observed by Porter et al. [15], can be explained by the random

loss of clones during passage. In contrast, the progressive clonal dominance that developed in the

same experiments, cannot at all be explained by random clone loss. Extending the simulations

with indefinitely dividing CSCs and DCs with limited division capacity did not induce progressive

clonal dominance and led to a much larger clone loss than observed experimentally. However,

the addition of a heterogeneous, heritable division rate resulted in a progressive clonal dominance

that closely matched the experimental data. The amount of clone loss and the level of clonal

dominance depended solely on the level of division rate heterogeneity in the model, which can be

adapted to closely approximate the in vitro results for the polyclonal K562 cell line.
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Altogether, our model provides strong evidence that CSCs are unlikely to have a role in shaping

the changes in clonal distribution observed by Porter et al. [15]. This contradicts the conclusions

drawn from numerous in vivo, microscopy-based, lineage tracing studies [12, 13], in which the

development of large monochromatic patches from a mosaic pattern is ascribed to CSCs. Based

on these observations, Driessens et al. [12] proposed a mathematical model with CSCs and DCs

that closely fitted the clone sizes they observed in their experiments with skin papilloma. However,

their model assumed that CSCs divided twice as fast as DCs, while CSCs are typically thought

to divide slower or at a similar rate as DCs [7]. Furthermore, while such a model may be able

to correctly predict the development of in vivo clone size, we showed that it could not match

the clonal dynamics observed in vitro. Altogether, while monochromatic patches could be formed

in vivo due to the presence of CSCs, we show that this is not the sole explanation for clonal

dominance.

Although our model results do not point to a role for CSC in the experiments of Porter et

al. [15], there is in general ample evidence for the existence of CSCs in other settings [4, 6, 7].

Indeed, in the CSC growth model with division rate heterogeneity, clonal dominance appeared

in combination with a massive clone loss. This clone loss occurred because only clones that

had a CSC at initialization had any chance of generating offspring, and even those clones could

disappear when CSCs were accidentally lost during passage. Consistent with this explanation,

removing the distinction between CSCs and DCs in our model, led to clone loss closely matching

the experimental observations. Recent studies showed that the CSC fate is plastic, meaning that

differentiated cancer cells sometimes can become CSCs [7, 31]. This CSC plasticity could provide

an alternative mechanism to prevent clone loss, by enabling clones to (re)acquire CSCs. Adding

such plasticity to our CSC growth model would give all clones the potential to generate offspring

indefinitely, making it similar to a model in which all cells divide indefinitely, and may also allow

for a good fit between simulations and in vitro observations.

Reproducing the in vitro results in our simulation was possible when we considered the division

rates of tumor cells to vary between clones and to be fully and directly inherited from the parent

cell. Whereas classical studies have provided ample evidence for division rate heterogeneity among

tumor cells [28–30], direct evidence for its full and direct inheritance has not yet been obtained.

Nevertheless, Gray et al. [28] showed that when melanoma cells are iteratively grown in mice,

isolated, and transferred into new mice, the tumor growth speed increased every generation, which

indicates that fast dividing cells generate offspring that also divide fast. More recent work further

supports the assumption of heritable division rates by showing a strong, positive, correlation in the

division rate of B-cell siblings [32]. However, other studies have shown that the division times of

breast cancer cells correspond less between parents and offspring than between siblings [33], and

that in lymphoblasts the division times of parents and offspring do not correlate at all [34]. These

findings indicate that the child’s division rate is not a direct copy of the parent’s division rate.

Sandler et al. [33] propose a kicked cell cycle model where the cell cycle length is determined by

the level of an oscillating protein which is inherited from the parent and the phase of this protein

determines the time between birth and division. Hence, such a model results in similar division

times for siblings, while the correlation between division times of parents and offspring depends on

the cell cycle duration [33]. These observations show the need for a better understanding of how

the division rate of child cells depend on the parent, which can be achieved from lineage tracing

studies employing imaging of multiple divisions over time.
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While our model explains the strong clonal dominance evolving over time in vitro, it cannot

perfectly match all in vitro observations of Porter et al. [15]. The most obvious difference between

our simulations and the experimental data is the lack of variation between the simulations, while

the experimental data is highly variable. The variability in the experimental data is readily explained

by variable lab conditions, and by the quantification procedure of PCR and sequencing itself.

Another discrepancy is the match between the model results and the results of two alternative

experiments with K562 cells. The first experiment involves a monoclonal K562 cell line, in which

clonal dominance did not develop and clone loss was limited. When we consider that all cells in

the monoclonal K562 cell line have the same division rate, we can reproduce the lack of clonal

dominance, but the associated clone loss is higher. Interestingly, the results that come closest to

the experiments with monoclonal K562 cells are those of Porter’s model with deterministic growth

(Fig 2A-B), which could suggest that the cells in the monoclonal K562 cell population have a

uniform division rate and synchronized cell cycle. The second experiment concerns the K562 cells

barcoded using the zinc-finger technique that, in contrast to the lentiviral vector, allows barcodes

to be inserted at a precise target location. As a result, the barcodes are inserted at a position

where they hardly interfere with cell functions. In comparison with the lentivirally barcoded K562

cells, experiments with the targeted K562 cells quickly developed clonal dominance which barely

progressed after the 10th passage, and results in a much stronger clone loss. From our simulations

we know that clonal dominance develops faster when the simulation starts with a heterogeneous

clone distribution, indicating that the barcode library used for the targeted K562 was likely more

heterogeneous than the lentiviral barcode library. In addition, the pronounced clone loss in targeted

K562 cells was possibly due to the presence of antibiotics in these experiments.

Altogether, in this work we used a computational approach to test two alternative hypothesis for

the development of clonal dominance and showed that only one of the two, division rate hetero-

geneity, can reproduce the experimental observations. This conclusion contradicts the common

thinking that CSCs drive clonal dominance. Hence, this study showcases the value of compu-

tational modeling in the interpretation of experimental results. In the future, the model could

be further extended to improve its power, especially for comparison with in vivo data. For this,

the model should be extended with an explicit representation of space and physical interactions

between cells [35]. With such a model it becomes possible to explore the consequences of division

rate variability while comparing with intra-vital images studies.
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Figure S1: Overview of the three biological replicates of the polyclonal K562 cell line with bar-

codes inserted using lentiviral vectors. A-C Number of clones left at passage 10, 20,

and 30. D-F Clone distribution at passage 10, 20, and 30.
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Figure S2: Evolution of the clone distribution with deterministic growth and stochastic passage

(A-B), or with stochastic growth and passage (C-D). All values are the mean of 10

simulation replicates and the error bars in A and C represent the standard deviation.
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Figure S3: Evolution of the clone distribution and clone loss for the alternative parameters set-

tings for M and rDC, denoted by the black crosses in Fig 3B in the main text, with

m = 10, rCSC = 1 day−1, rDC =
19
24 day−1, p1 = 0.5, p2 = 0.5, p3 = 0, CSC0 = 5%.

All results are the mean of 10 simulation replicates and the error bars denote the

standard deviation.
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Figure S4: Effect of the mean division rate on the clone distribution (A) and clone loss (B). All

points are the mean of 10 simulation replicates and the colored areas represent the

standard deviation.
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Figure S5: Comparison of model results and experimental data for biological replicates B and C.

Mean squared error of the number of clones (A and E), the clone distribution (C and

F), the number of major clones (C and G), and the normalized mean of the three

metrics (D and H).
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