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Abstract 
Joint genetic models for multiple traits have helped to enhance association analyses. 
Most existing multi-trait models have been designed to increase power for detecting 
associations, whereas the analysis of interactions has received considerably less 
attention. Here, we propose iSet, a method based on linear mixed models to test for 
interactions between sets of variants and environmental states or other contexts. Our 
model generalizes previous interaction tests and in particular provides a test for local 
differences in the genetic architecture between contexts. We first use simulations to 
validate iSet before applying the model to the analysis of genotype-environment 
interactions in an eQTL study. Our model retrieves a larger number of interactions 
than alternative methods and reveals that up to 20% of cases show context-specific 
configurations of causal variants. Finally, we apply iSet to test for sub-group specific 
genetic effects in human lipid levels in a large human cohort, where we identify a 
gene-sex interaction for C-reactive protein that is missed by alternative methods. 
 
Author summary 
Genetic effects on phenotypes can depend on external contexts, including environment. 
Statistical tests for identifying such interactions are important to understand how individual 
genetic variants may act in different contexts. Interaction effects can either be studied using 
measurements of a given phenotype in different contexts, under the same genetic 
backgrounds, or by stratifying a population into subgroups. Here, we derive a method based 
on linear mixed models that can be applied to both of these designs. iSet enables testing for 
interactions between context and sets of variants, and accounts for polygenic effects. We 
validate our model using simulations, before applying it to the genetic analysis of gene 
expression studies and genome-wide association studies of human blood lipid levels. We 
find that modeling interactions with variant sets offers increased power, thereby uncovering 
interactions that cannot be detected by alternative methods.  

Introduction 
Understanding genetic interactions with external context (GxC), including environment, is a 

major challenge in quantitative genetics. Linear mixed models (LMMs) have emerged as the 

framework of choice for many genetic analyses, mainly because the random effect 

component in this class of models provides robust control for population structure [1, 2] and 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 31, 2016. ; https://doi.org/10.1101/097477doi: bioRxiv preprint 

https://doi.org/10.1101/097477
http://creativecommons.org/licenses/by/4.0/


 

2 

other confounding factors [3-5]. More recently, random-effect models have also been shown 

to be effective to test for polygenic effects from multiple causal variants that are in linkage [6-

9] (variant sets). Additionally, multivariate formulations of LMMs have been developed to test 

for genetic effects across multiple correlated traits, both in single-variant analyses [10, 11] 

and more recently for joint tests using variant sets [12]. However, these existing multivariate 

LMMs have primarily been designed to increase the statistical power for detecting 

association signals, whereas methods to test for interactions are only beginning to emerge 

[10, 13]. 

 

 
Figure 1 | Illustration of the iSet model and different architectures of genotype-context 
interactions. (a) Alternative genetic architectures that are explicitly modeled in iSet: 
persistent effects, where causal variants have identical effects across contexts (left panel), 
rescaling-GxC effects, where the effects of causal variants in one context are proportional to 
those in a second contexts (middle), and heterogeneity-GxC effects, with changes of causal 
variants or their relative effect sizes between contexts (right). (b) Illustration of the 
multivariate linear mixed model (LMM) that underlies iSet. Model comparisons of LMMs with 
different trait-context covariance of the set component 𝑪" are used to define tests for general 
associations (mtSet), interactions (iSet) and heterogeneity-GxC effects (iSet-het). 
Additionally, the model can be used to estimate the proportion of variance that can be 
attributed to the corresponding genetic architectures (Methods). (c,d) Applications of iSet to 
a small simulated region. The total genetic effect was simulated as the sum of contributions 
from three loci with a persistent (left), rescaling-GxC (middle) and heterogeneity-GxC effects 
(right). (c) Manhattan plots of P values from a single-variant LMM [10] to test for 
associations (mtLMM) or interactions (mtLMM-int). Lower panel: Corresponding Manhattan 
plots for P values from set tests, considering a test for associations (mtSet), interactions 
(iSet) or heterogeneity-GxC (iSet-het), using consecutive regions (30 kb regions; step size 
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15 kb). Horizontal lines correspond to the 𝛼 = 0.10 significance threshold (Bonferroni 
adjusted). P values of set tests are bounded (>10-6) by the number null model simulations to 
estimate significance levels (Methods). (d) Proportion of variance attributable to persistent 
effects, rescaling-GxC and heterogeneity-GxC, considering the same regions as in c. 
 

Classical single-variant models for GxC use fixed effects to test for differential effect sizes of 

individual variants between contexts, either using an ANOVA [14-16] or LMMs [10, 17]. The 

main advantages of set-based tests compared to single-variant models are twofold. First, set 

tests reduce the effective number of tests and can account for effects due to multiple causal 

variants, thus increasing power for detecting polygenic effects [7, 8, 12, 18]. Second, we 

here show that joint tests across multiple contexts and sets of variants allow for 

characterizing the local architecture of polygenic-GxC interactions. 

 

One way to generalize single-variant interaction tests to variant sets is using a model that 

assumes that context differences cause the same fold-differences in effect size across all 

genetic variants, such that all genetic effects in one context are proportional to the effects in 

a second context; a criterion that has also been considered to assess co-localization of 

multiple traits [19] (Fig. 1a, middle). We denote this class of interactions rescaling-GxC. 

More generally, however, there may also be differences in the configuration of causal 

variants between contexts (Fig. 1a, right), such that not all genetic variants show the same 

fold-difference between contexts, as some become more prominent in particular contexts 

and others less so. We denote these complex interactions heterogeneity-GxC. These two 

classes of interactions have different functional implications – the former suggest no 

difference in causal variants between contexts, and the latter suggest otherwise. 

Distinguishing between them is only possible using multi-variant models such as set tests, 

and is important for identifying different potential causal variants in different contexts. 

 

We here propose a multivariate LMM to test for interactions test between Sets of genetic 

variants and categorical contexts (iSet) and to distinguish between rescaling-GxC and 

heterogeneity-GxC. We find that iSet yields increased power for identifying interactions and 

uniquely is able to robustly differentiate between rescaling-GxC and heterogeneity-GxC. We 

first validate iSet using simulations before applying the model to test for gene-by-sex 

interactions in blood lipid levels [20] as well as gene-by-environment interactions in an 

expression quantitative trait loci (eQTL) study [21]. We identify up to 20% of the stimulus-

specific eQTLs as cases of heterogeneity-GxC, suggesting that context-specific causal 

variants are common. 
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Results 
 

A mixed model approach to test for polygenic GxC 
 

iSet generalizes previous multi-trait set tests [12], while considering the same trait measured 

in two (environmental) contexts. For a fully observed design, where the trait is measured in 

𝑁 individuals and each context, the phenotype matrix 𝒀 is modeled as the sum of a genetic 

effect from a set component and residual noise: 

 

𝒀 = 𝑭𝑩
,-./0	/,,/234

+ 𝑼7
4/3	289:8;/;3

+ 𝝍
;8-4/

. 

 

Here, 𝑭 and 𝑩 denote the design and the effect size matrices of additional fixed effect 

covariates and 𝑼7 and 𝝍 are random effects that follow matrix-variate normal distributions: 

 

𝑼7~MVN(0, 𝑪7, 𝑹7),  𝝍~MVN(0, 𝑪E, 𝑰G), 

 

where 𝑹7 corresponds to a local realized relatedness matrix [22] of the set of interest 𝑠, and 

𝑰G denotes a diagonal covariance, which corresponds to independent and Identically 

distributed residuals. The trait-context covariance matrices 𝑪7	and 𝑪E model correlations 

between contexts due to the set component (𝑪7), and residual noise (𝑪E).  

 

A key insight derived here is that different assumptions on the structure of the trait-context 

covariance 𝑪7 correspond to alternative genetic architectures that can be explained by a 

polygenic model (Fig. 1b, Methods). Persistent genetic effects across contexts (no GxC) 

can be modeled using an LMM with a constant block covariance (Fig. 1b); rescaling GxC, 

where effect sizes in different contexts are proportional to each other, can be captured by a 

trait-covariance with rank one. Note that genetic effects that act only in one context are a 

special case of this model and corresponds to a zero rescaling coefficient. Finally, the most 

general architectures with different relative effect sizes between contexts (heterogeneity-

GxC) can be captured by an LMM with a full-rank trait-context covariance (Methods). By 

comparing LMMs with these alternative covariance structures, it is possible to define set 

tests for general associations (mtSet), which identifies both persistent and context-specific 

effects, a test for genetic interactions, both with or without changes in the configuration of 

causal variants (iSet), and finally a test for heterogeneity-GxC effects (iSet-het), which is 

specific to differences between contexts that cannot be explained by rescaling (Fig. 1b).  
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These multivariate LMMs can be fit using principles we have previously derived for 

multivariate set tests [12], and hence iSet can be applied to large cohorts with up to one 

hundred thousand individuals (Supplementary Fig. 1). Permutation schemes are not well 

defined for interaction models [23], so we use a parametric bootstrap procedure [23] to 

estimate P values. An important advantage compared to previous interaction tests [13, 24-

28] (Methods), is that iSet can be applied both to study designs where all individuals have 

been phenotyped in each context and when stratifying populations into distinct subgroups 

using a context variable (Supplementary Fig. 2). iSet also provides control for population 

structure, either using principal components that are included as fixed covariates, or using 

an additional random effect term (Methods). Finally, iSet can also be used to estimate the 

total phenotypic variance explained by variant sets and the relative proportions captured by 

persistent, rescaling-GxC and heterogeneity-GxC effects (Methods). 

 

To illustrate the polygenic interactions that can be detected using iSet, we first considered a 

basic simulated example (Fig. 1c). We simulated genetic effects for one quantitative trait in 

two contexts, considering polygenic effects at three distinct loci (Methods): a region with 

persistent genetic effects, a region with rescaling-GxC and a region with context-specific 

causal variants (heterogeneity-GxC effects). We tested consecutive regions (30kb region, 

15kb step) using the three tests provided by our model (mtSet, iSet, iSet-het), finding that by 

combining these results, it was indeed possible to resolve the architecture of each of the 

simulated regions (Fig. 1c-d). In particular, this example illustrates that, unlike single-variant 

tests, iSet-het can be used to discern heterogeneity-GxC effects specifically.  

Simulated data 

Next, we used simulations based on genotypes from the 1000 Genomes project [29] to 

assess the statistical calibration and power of iSet. We generated a population of 1,000 

individuals based on genotype data from European populations, initially simulating one 

quantitative trait measured in two distinct contexts in all individuals (Methods). 

 

First, we considered data with simulated persistent polygenic effects, confirming that both 

iSet and iSet-het are calibrated when no interaction effects are simulated (Fig. 2a, 
Supplementary Table 1). Analogously, we also confirmed that iSet-het is calibrated when 

only rescaling-GxC effects are considered (Supplementary Fig. 3), and we assessed the 

robustness of iSet to different types of model misspecification (Supplementary Fig. 4, 
Supplementary Table 1). 
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Figure 2 | Simulated data to assess statistical calibration and power of iSet. (a) QQ 
plot for the P values obtained from iSet and iSet-het when only persistent genetic effects 
were simulated. The step in the QQ-plot for large p-values is observed because the trait-
context covariances are required to be positive-semidefinite. (b) Power comparison of 
alternative models for detecting simulated interactions, considering rescaling-GxC effects 
(without heterogeneity-GxC) for increasing numbers of simulated causal variants. Compared 
were iSet and a single-variant interaction test (mtLMM-int) [10], using two alternative 
approaches to adjust for multiple testing of single variant methods (Bonferroni or eigenMT). 
(c) Lower panel: analogous power comparison as in b, when varying the proportionality 
factor of effect sizes between contexts. A proportionality factor of zero corresponds to 
genetic effects that act only in one of the contexts. See Supplementary Table 3 for the 
relationship of the proportionality factor and fold differences. iSet-het was not considered, 
because all simulated rescaling-GxC are consistent with the null model of iSet-het. Top 
panel: average fraction of genetic variance attributable to persistent, rescaling-GxC and 
heterogeneity-GxC effects for the corresponding simulations. (d) Analogous comparison as 
in c but for simulated heterogeneity-GxC effects, when varying the correlation of the total 
genetic effect between contexts. Additionally, we also considered iSet-het to test for 
heterogeneity-GxC, which was best powered for heterogeneity-GxC effects that were 
uncorrelated between contexts. White stars denote default parameter values that were kept 
constant when varying other parameters (Supplementary Table 2). Statistical power was 
assessed at 5% FDR across 1,000 repeat experiments. 
 

We compared iSet to single-variant interaction tests [10] (mtLMM-int) (Methods), 

considering a wide range of different settings (Supplementary Table 2, Methods). Because 

single-variant methods perform one test for each variant in the set (Supplementary Fig. 5), 

we adjusted for multiple testing using one of two approaches: i) conservative Bonferroni 

adjustment (Bonferroni) or ii) a recently proposed method that estimates the effective 

number of independent tests based on the local structure of linkage disequilibrium (LD) [30] 

(eigenMT). Note that existing set-based interaction tests cannot be applied to complete 

designs with repeat measurements and hence were not considered (Methods, 
Supplementary methods); see below and Fig. 5 for additional experiments where these 

methods were used. As expected, the power advantages of iSet compared to single-variant 

models were largest when multiple causal variants were simulated (Fig. 2b). However, iSet 
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was better powered than mtLMM-int even for a single causal variant. Identical simulations 

based on synthetic independent genotypes (Supplementary Fig. 6) revealed that this effect 

is predominantly due to local LD and advantages due the reduced number of total tests. We 

also considered the impact of different proportionality factors of genetic effects between 

contexts. All models were best powered to detect GxC for negative proportionality factors 

(opposite effects), or when the proportionality factor was close to zero (context-specific 

effects) (Fig. 2c).  

 

Next, we simulated traits with context-specific causal variants (heterogeneity-GxC). 

Heterogeneity-GxC is detectable when there is a change in the local causal configuration, 

which corresponds to the absolute correlation of local genetic effects between contexts (𝑟) 

smaller than 1; the greater the heterogeneity GxC effects, the smaller the absolute 

correlation. Presence of GxC effects under tightly correlated genetic effects (𝑟 ≈ ±1) cannot 

be distinguished from rescaling-GxC. To simulate these different settings, we randomly 

selected two causal variants in each context and varied the extent of correlations of the 

genetic effect between contexts (Fig. 2d). When using iSet-het for detecting heterogeneity-

GxC effects, the model was best powered when there is a moderate to large change in 

causal configuration, corresponding to low correlated genetic effects (>70% power for r2 < 

0.16, Fig. 2d). We also considered additional settings with larger numbers of causal variants 

(Supplementary Fig. 8), and we assessed the accuracy of iSet-het to classify interaction 

effects into heterogeneity-GxC or rescaling-GxC effects (Supplementary Fig. 7, Methods). 

Taken together, these results confirm that iSet-het is a robust test for heterogeneity-GxC. 

 

 

We also investigated the proportion of local genetic variance that can be explained by 

models with persistent, rescaling-GxC and heterogeneity-GxC for the corresponding 

simulations (Fig. 2c-d, Methods). The persistent effect model explained large proportions of 

the simulated genetic variance, even in the presence of positively correlated GxC, but could 

not capture variance due to GxC effects with negative rescaling (Fig. 2c,d). An LMM that 

models rescaling-GxC did account for negative and positive rescaling, and captured some of 

the heterogeneity-GxC effects (Fig. 2d). Finally, variance contributions that were exclusively 

captured by a heterogeneity-GxC model were largest for uncorrelated context-specific 

genetic effects, the same regime where the corresponding test is best powered (Fig. 2d). 

We also confirmed that the most flexible heterogeneity-GxC model yields unbiased 

estimates of the total genetic variance in genomic regions, whereas other models were 

biased for some simulated architectures (Supplementary Fig. 9). 
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Finally, we considered simulations where we varied both the size of the testing region and 

the simulated causal region, using a sliding window analysis (Supplementary Fig. 10, 
Methods). Overall, iSet was markedly robust to the window size, and was best powered 

when the sizes of the testing approached the size of the simulated causal region, which is in 

line with previous findings for set-based association testing [12]. We also observed that iSet-

het is best powered for small causal regions (up to 100kb), and the power for detecting 

heterogeneity-GxC deteriorated when analyzing larger regions. 

Analysis of stimulus-specific eQTLs in monocytes 

We next applied iSet to test for stimulus-specific genetic effects in a monocyte stimulus 

eQTL study [21]. We considered gene expression profiles for 228 individuals in four stimulus 

contexts: naive state (no stimulation), 24 hours after stimulation with interferon-γ (IFN), and 

stimulation with lipopolysaccharide (LPS) after two and 24 hours. 

 

We applied iSet to test for pairwise interaction effects, considering the naive monocyte state 

and each stimulus condition in turn, performing a single test using proximal cis acting 

variants (plus or minus 50kb from the transcription start site; Methods). After quality control, 

we considered 12,677 probes and tested for cis associations (mtSet), GxC interactions (iSet) 

and for heterogeneity-GxC effects (iSet-het). For comparison, we also considered a 

conventional multi-trait LMM [10] and tested for associations and interactions in the same 

genomic regions, using eigenMT [30] to adjust for multiple testing (Methods). Although there 

was substantial overlap of the probes and stimulus conditions for which different methods 

identified significant interactions (Fig. 3b), iSet was better powered (32.7% power increase; 

5,068 versus 3,818 probes and stimuli with an interaction; FDR<5%, Fig. 3a, 
Supplementary Fig. 11-12, Supplementary table 4). Additionally, iSet-het identified 1,135 

probes and stimulus contexts with significant heterogeneity-GxC effects (Fig. 3a,b). This 

shows that a substantial proportion of stimulus-specific eQTLs are associated differences in 

the configuration of causal variants, suggesting context-specific regulatory architectures. 
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Figure 3 | Analysis of stimulus-specific eQTLs in monocytes. (a) Number of probes with 
at least one significant cis association (Association test) or genotype-stimulus interaction 
(Interaction test) for alternative methods and stimulus contexts. Considered were the 
proposed set tests (mtSet, iSet, iSet-het) as well as single-variant multi-trait LMMs (mtLMM, 
mtLMM-int [10]), testing for genetic effects in cis (100kb region centered on the transcription 
start site; FDR < 5%). Additionally, iSet-het was used to test for heterogeneity-GxC effects. 
Individual rows correspond to different stimulus contexts with “All” denoting the total number 
of significant effects across all stimulus contexts. (b) Venn diagram of probes and stimuli 
with significant interactions identified by alternative methods and tests (across all stimuli). (c) 
Bivariate plot of the variance attributed to persistent genetic effects versus genotype-
stimulus interactions for all probes and stimuli. Significant interactions are shown in red. 
Density plots along the axes indicate the marginal distributions of persistent genetic variance 
(top) and variance due to interaction effects (right), either considering all (black) or 
probe/stimulus pairs with significant interactions (iSet in a, dark red). (d) Average 
proportions of cis genetic variance attributable to persistent effects, rescaling effects and 
heterogeneity-GxC, considering probe/stimulus pairs with significant cis effects (5% FDR, 
mtSet), stratified by increasing fractions of the total cis genetic variance. Shown on top of 
each bar is the number of instances in each variance bin. The top panel shows the density 
of probes as a function of the total cis genetic variance. 
 

Although on average the proportion of variance explained by GxC tended to be smaller than 

for persistent effects (median 3.7% for GxC versus median 9.5% for persistent effects, for 

probes with significant GxC, Fig. 3c), GxC was the driving genetic source of variation for 

11.8% of the significant cis eQTLs (Fig. 3d; defined as explaining 50% or more of the cis 

genetic variance). Consistent with previous reports [31, 32], we observed that genes with 
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large relative GxC effects were associated with weak overall cis effects, whereas eQTLs 

with large effect sizes tended to be persistent across stimuli (Fig. 3d). 
 

 

Mechanistic underpinning of heterogeneity eQTLs 
 
To better understand the mechanisms that underlie genes with detected heterogeneity-GxC 

effects, we used an LMM with step-wise selection [33], identifying 15,756, 2,690 and 457 

eQTLs (across all probes and contexts) with a single significant association, significant 

secondary and significant tertiary associations respectively (FDR < 5%, Methods, 

Supplementary Table 4). Probes with significant heterogeneity-GxC were more likely to 

harbor multiple independent associations (Fig. 4a), confirming that heterogeneity-GxC 

eQTLs have complex genetic architectures.  

 

 
Figure 4 | Characterization of genes with significant heterogeneity GxC for stimulus 
eQTLs in monocytes. (a) Cumulative fraction of probe/stimulus pairs with increasing 
numbers of distinct univariate eQTLs (average of the naïve and the stimulated state using 
step-wise selection) for different gene sets (Methods). Shown are cumulative fractions of all 
probe/stimulus pairs (All), those with significant cis associations (mtSet), pairs with 
significant GxC (iSet) and instances with significant heterogeneity GxC (iSet-het). (b) 
Breakdown of 1,281 probe/stimulus pairs with significant heterogeneity GxC into distinct 
classes defined using the results of a single-variant step-wise LMM (Methods). (c-e) 
Manhattan plots for representative probes with significant heterogeneity GxC effects. Grey 
boxes indicate the gene body. (c) Manhattan plot (left) and χ2 statistics for variants in both 
contexts (right) for the gene SLC1A4. Dark circles indicate distinct lead variants in both 
contexts (r2<0.2). (d) Manhattan plot after conditioning on the lead variant (secondary 
associations in the stepwise LMM) for the gene PROK2. The star symbol indicates the 
shared lead variant in both contexts. The conditional analysis reveals a secondary 
association that is specific to the naïve state. (e) Analogous plot as in c for the gene NSUN2, 
for which the single-variant model did not provide an interpretation of heterogeneity-GxC. (f) 
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Breakdown of probe / stimulus pairs with shared lead variants, stratified by concordance of 
the effect direction (opposite-direction versus same-direction eQTLs) and significance of the 
heterogeneity-GxC test (heter vs No heter; FDR 5%). eQTLs with opposite effects were 
enriched for significant heterogeneity-GxC (2.2 fold enrichment, P<4e-2).  
 

When overlaying heterogeneity GxC eQTLs detected using iSet-het with the results obtained 

from the single-variant step-wise LMM, we could attribute 46.2% of the heterogeneity-GxC 

effects (524 out of 1,135) to context-specific lead variants (defined using r2<0.2, FDR<5%, 

Fig. 4b,c, Methods). For an additional 14.6% of the heterogeneity eQTLs (166/1,135) the 

lead variants from a single-variant analysis were in high LD (r2>0.8), with context-specific 

secondary effects (Fig. 4b,d). The remaining 445 heterogeneity eQTLs (39.2%) could not be 

annotated using single-variant models. 

 

One reason why heterogeneity GxC effects cannot be annotated using a single-variant 

model are differences in power. Indeed, for 22.2% of the heterogeneity-GxC cases without a 

single-variant interpretation (99/445), the single-variant LMM did not yield a significant effect 

in either of the two contexts (Supplementary Fig. 13a). For an additional 58.2% of the 

unannotated heterogeneity GxC effects (259/445), the single-variant LMM lead variants were 

in weak linkage (0.2<r2<0.8 example in Fig. 4e), which neither confirms nor rules out distinct 

genetic effects. One explanation for these instances are distinct polygenic architectures in 

both contexts. Consistent with this possibility, we observed that genetic effects captured by a 

polygenic model in both contexts (Best linear unbiased predictor, Methods) were markedly 

less correlated for probes with significant heterogeneity-GxC (Supplementary Fig. 13b,c, 
Methods).  

 

Finally, we explored the relationship between probes with heterogeneity GxC and opposite 

effects as defined using conventional single-variant models. Following [21], we classified 

associations as opposite effects (lead variants r2>0.8 with opposite effect directions, 

Methods), yielding 67 eQTLs with reversed effect directions between contexts. iSet-het 

detected significant heterogeneity-GxC for 8 of these eQTLs, a 2.2 fold enrichment (P<5e-2) 

compared to eQTLs with consistent effect directions between contexts (238 gene/stimulus 

pairs with significant heterogeneity-GxC out of 4,119 eQTLs with consistent direction, Fig. 
4f). Similar enrichments were also observed when considering individual stimulus contexts, 

resulting in significant enrichments for two out of three stimulus contexts (P<5e-2, fold 

change>4 in naïve/IFN and naïve/LPS-24h, Supplementary Table 5). Among the genes 

with significant heterogeneity-GxC are OAS1, LMNA and PTK2B, opposite-effect eQTLs that 

have been reported in the primary analysis of the same data [21] (Supplementary Fig. 14).  
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Using iSet to test for interaction effects in stratified populations 

Thus far, we have considered settings with repeat measurements, where the same 

phenotype is measured in all individuals and contexts. Next, we considered applications of 

iSet to studies where individuals are phenotyped in only one context (Supplementary Fig. 
2, Methods). This is a common strategy in investigation of genotype-context interactions, 

where a population is stratified using a context variable. 

 

We considered simulations analogous to those for complete designs (Fig. 2) to validate iSet 

for this design. We again confirmed statistical calibration of iSet (Supplementary Fig. 15a) 

and found similar power benefits as for complete designs (Fig. 5a,b, Supplementary Fig. 
15b,c). In addition to single-variant LMMs, we also compared to a recently proposed set test 

for interactions (GESAT; [13]), which is designed for stratified populations. Notably, iSet was 

consistently better powered than GESAT, most likely because GESAT does not model 

correlations of the local genetic effect between contexts (Methods, Supplementary 
methods). 

 

 
Figure 5 | Application of iSet to stratified designs. (a,b) Power comparison of iSet and 
alternative methods using simulated data where each individual is phenotyped in one of two 
contexts. Shown is a comparison of power for alternative methods. (a) Power to detect 
interactions when simulating rescaling-GxC for increasing numbers of causal variants. (b) 
Power when varying the factor of proportionality of the variant effect sizes between contexts. 
Considered were iSet, a single-variant interaction test (mtLMM-int, [10]) as well as the 
interaction sequence kernel association test (GESAT, [13]), a set test designed for stratified 
populations. For single-variant models, two alternative approaches to adjust for multiple 
testing were considered (Bonferroni, eigenMT). (c) QQ-plot of P values from genotype-sex 
interaction tests for C-reactive protein levels using individuals from the Northern Finland 
Birth Cohort [20], considering the same methods.  
 

 

Next, we applied iSet to test for genotype-sex interactions in four lipid-related traits (fasting 

HDL and LDL cholesterol levels, triglycerides and C-reactive protein) measured in 5,256 

unrelated individuals from the Northern Finland Birth Cohort (NFBC1966 [20]). We tested 

consecutive 100kb regions (step size 50 kb; 52,819 genome-wide tests), and compared iSet 

to GESAT and the single-variant interaction test (Methods). 
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iSet retrieved one genome-wide significant interaction (C Reactive protein, chr1:40,450,000; 

P=1.47x10-6; FWER<10%), whereas alternative set tests and the single-variant models did 

not yield significant effects (Fig. 5c, Supplementary Fig. 16,17, Supplementary Table 6), 

even when using dense genotypes derived using imputation strategies (Supplementary 
Fig. 18). This interaction was replicated in a large meta-analysis (66,185 individuals [34]), 

which reports both an association for C-reactive protein at the same locus (P<6x10-11) as 

well as a marginal significant interaction with sex (P<5x10-3). Finally, a local single-variant 

analysis, separately for female and male individuals, provided evidence that this interaction 

reflects a male-specific genetic effect (Supplementary Fig. 19). 

 

iSet revealed a second suggestive interaction with sex for LDL cholesterol levels 

(chr3:121,850,000, Supplementary Fig. 16). Although this effect failed genome-wide 

significance (FWER<20%), iSet again yielded stronger evidence than other methods (PiSet = 

3.7x10-6, PGESAT = 4.8x10-6, PmtLMM-int = 3.2x10-5). Among the genes at this locus is ADCY5, 

which has been linked to blood glucose levels in large meta-analyses [35, 36] and hence is a 

plausible candidate to affect LDL via glucose regulation [37].  

 

Finally, we note that context stratification of quantitative traits can increase power for 

detecting associations rather than interactions, which is similar to previous strategies applied 

for single-variant analyses of quantitative [38] and categorical traits [39, 40]. Using this 

generalized association test, we identified three additional associations that were missed by 

conventional set tests and other methods (Supplementary Fig. 16, Supplementary table 
6). These include the same locus with a sex-specific effect on C-reactive protein 

(chr1:40,450,000, P = 1.42x10-7 using mtSet, P=1.89 x10-3 using a standard set test), and 

two associations for HDL cholesterol levels and triglycerides, both of which were replicated 

in larger meta analyses [41].  

 

 

Discussion 
We have here proposed iSet, a method based on linear mixed models to test for gene-

context interactions using variant sets. On simulated data as well as in applications to gene 

expression and human lipid-related traits, we have demonstrated that iSet yields increased 

power and improved interpretation for interaction effects compared to previous methods.  
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Methods for the joint analysis of multiple traits, including tests for genetic interactions, are 

not new per se. Most previous studies have used set-based methods to test for associations 

[7, 8, 12, 18], whereas tests for genotype-context interactions are still primarily carried out 

using single-variant models [10, 17]. iSet unifies several previous models (Methods), and 

uniquely offers set-based interaction tests on phenotypes in different contexts under the 

same or different (stratified) genetic backgrounds. Additionally, we have shown that set-

based interaction tests can be useful to disentangle the genetic architecture of such loci, 

discerning consistent changes of genetic effects between contexts (rescaling-GxC) and 

changes in the configuration of causal variants (heterogeneity-GxC). The heterogeneity GxC 

test we propose is related to co-localization tests [19, 42, 43], however with a different 

objective.  

 

In applications to a stimulus eQTL study we have shown that approximately 20% of the 

gene-stimulus interactions are associated with significant heterogeneity-GxC. This suggests 

that changes in the genetic architecture between stimulus contexts are relatively common. 

Additionally, we have observed that genes with opposite effects are enriched for 

heterogeneity-GxC. This finding points to a possible bias whereby opposite effects identified 

using single-variant models may in part be due to context-specific causal variants that are 

LD-tagged by a shared lead variant. 

 

The proposed iSet model is not free of limitations. First, scalable inference in our model is 

achieved by exploiting the low-rank structure of variant sets, meaning that the number of 

variants in the analyzed region is typically small compared to the number of individuals. 

Similar to previous set-based tests [12], there are trade-offs between power and resolution, 

in particular when analyzing data from densely imputed or sequenced cohorts. General 

strategies for the design of optimal testing regions, for example using genome annotations 

and LD information, are an important area of future work. The inference scheme we have 

derived is efficient if phenotypes are either observed in all contexts and individuals or, 

alternatively, if a cohort is stratified using a context variable. Intermediate designs may also 

be considered, but currently require the use of separate imputation schemes [11, 44]. It is 

also worth noting that the test for heterogeneity-GxC (iSet-het) will be most accurate if all 

individuals are phenotyped in each context. Although in principle the model can also be used 

in stratified designs, there may be concerns that false positive heterogeneity GxC effects 

can arise due to technical factors, for example due to differences in genotyping accuracy or 

variant allele frequencies in the corresponding sub populations. A related issue is the need 

to choose the size of the region-set appropriately. While we find that the model is overall 

robust across a wide range of region sizes (Supplementary Fig. 10), the model will be best 
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powered if the size of true causal regions approximately matches the testing region size, in 

particular for identifying heterogeneity-GxC effects.  

  

Finally, we have here focused on pairwise analyses of different contexts. In principle the 

model could also be applied to analyze multiple related context and different traits, and the 

model could be extended to handle continuous environmental states, which currently require 

discretization. A related extension of the model is to test for genetic effects that are exclusive 

to one of the considered contexts. Developments in these directions are future work. 

 

Methods 

Software availability 
iSet is freely available as part of the LIMIX package (http://github.com/PMBio/limix). Tutorials 

for using iSet either as command line tool or via a Python API can be found at 

https://github.com/PMBio/limix-tutorials/blob/master/iSet. 

The interaction set test (iSet) 
To derive the model, we start assuming a fully observed design, where phenotypic 

measurements are available for all individuals and for each context. Briefly, the 𝑁×𝐶 

phenotype matrix 𝑌 for 𝑁 individuals and two or more contexts (𝐶) is modeled as sum of 

fixed effects of 𝐾 covariates, effects from 𝑆 genetic variants in the region of interest (set 

component) and residual noise: 

 

𝒀 = 𝑭𝑩
,-./0	/,,/234

+ 𝑮𝑾
4/3	289:8;/;3

+ 𝝍
;8-4/

.     (1) 

 

Here 𝑭 (𝑁×𝐾) and 𝑮 (𝑁×𝑆) denote respectively the fixed-effect covariates and the 

standardized genotypes of the variant set and 𝑩 (𝐾×𝐶) and 𝑾 (𝑆×𝐶) denote the 

corresponding effect sizes. The noise component 𝝍 is assumed to follow a matrix-variate 

normal distribution, 𝝍~MVN(0, 𝑪E, 𝑰G), where 𝑪E is a 𝐶×𝐶 covariance matrix that models 

residual covariances between traits. Note that in this formulation, population structure can be 

accounted for by including the leading principal component of the 𝑁×𝑁 (global) realized 

relatedness matrix [22] into the model as fixed effects [12]. In human populations, 10-20 

principal components are typically sufficient to adjust for such structure [45]. Note that iSet 

can also account for population structure using an additional random effect term into the 

model (see Supplementary Methods). While computationally more expensive, this 
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approach provides for additional robustness and calibration when analyzing cohorts with 

related individuals (see [12] for a discussion). All experiments reported here have been 

carried out using adjustment based on principal components, considering 10 PCs.  

 

Relationship between the trait-context covariance and the genetic architecture 

To simplify the notation, we consider the case of two contexts, however the same derivation 

holds for larger numbers of contexts. Different genetic architectures between contexts are 

cast as specific assumptions on the 𝑆×𝐶 matrix of the variant effect sizes 𝑾. A persistent 

genetic effect can be expressed as 𝑾 = 𝑎T𝜸𝟏W𝑻, where a shared genetic signal 𝜸 (𝑆×1) has a 

common scale 𝑎T in both contexts. Rescaling-GxC can be expressed as 𝑾 = 𝜸𝒂Z, where a 

common genetic signal 𝜸 (𝑆×1) is modulated by context-specific scales 𝒂 = 𝑎[;	𝑎W 		(2×1). 

Finally, in the most general case, the configuration of causal variants and their effects is 

independent between contexts, corresponding to 𝑾 = [𝜸[, 𝜸W]𝑨Z, with genetic signals 𝜸[ 

(𝑆×1) and 𝜸W (𝑆×1) and general scaling factor matrix 𝑨 = [𝑎[[, 𝑎[W; 𝑎W[, 𝑎WW] (2×2). 

 

Marginalizing over the genetic signal 𝜸, 𝜸[ and 𝜸W, assuming independent unit-variance 

normal prior distributions, results in a marginal likelihood of the form 

 

p 𝒀	 	𝑭,𝑾, 𝑪b, 𝑹b, 𝑪c, 𝑹c, 𝑪E) = 		N vec(𝒀)	 vec(𝑭𝑩)
,-./0	/,,/234

, 𝑪"⨂𝑹"
4/3	289:8;/;3

+ 𝑪E⨂𝑰G
;8-4/

.   (2)	

					 

 

Here, vec denotes the stack-column operation, ⨂ the Kronecker product, 𝑪" is the 𝐶×𝐶 trait-

context covariance for the set component and 𝑹" is the local realized relatedness matrix 

(𝑹" =
[
7
𝑮𝑮Z). The stated alternative generative models for the structure of 𝑾 have a one-to-

one correspondence with alternative covariance structures for 𝑪" (Supplementary 

Methods), where for persistent effects 𝑪" is a block covariance (𝑪" = 𝑎T𝟏W×W), rescaling-

GxC correspond to 𝑪" with a rank-one structure (𝑪" = 𝒂𝒂Z) and the most case of 

independent architectures in both contexts can be captured by a full rank covariance (𝑪" =

𝑨𝑨Z). In order to test for associations, we additionally consider a null model without a set 

component (𝑪" = 𝟎). The trait-context covariances 𝑪", 𝑪E and the fixed effect weights 𝑩 are 

estimated using (restricted) maximum likelihood with constraints to obey the alternative 

structures of 𝑪". Model parameters are optimized based on the restricted log marginal 

likelihood as objective, using a low-memory Broyden-Fletcher-Goldfarb-Shanno optizmier (L-

BFGS) [46], implemented in the fmin_l_bfgs_b optimisation method of the SciPy python 
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library. Specific tests are implemented as pairwise likelihood ratio (LLR) tests, considering 

LMMs with different trait-context covariances (See also Fig. 1b): 

• mtSet: full-rank versus null 

• iSet: full-rank versus block covariance 

• iSet-het: full-rank versus rank-one 

 

Obtaining P values 

Empirical P values are estimated from the distribution of LLRs under the null. As permutation 

procedures are not well defined for interaction tests, for both iSet and iSet-het we generate 

test statistics from an empirical null distribution using a parametric bootstrap procedure [23]. 

Briefly, this procedure consists of sampling phenotypes from the null model with parameter 

values that maximize the likelihood on the observed data. Similarly to [8, 12], we consider a 

small number of parametric bootstraps for each region (typically 10-100 bootstraps) and pool 

the obtained null LLRs across all tested regions. The estimated distribution of null LLRs is 

used to obtain empirical P values. In an analysis of T genomic regions, the procedure to 

obtain P-values for the three tests can be summarized as follows: 

• fit the no-association model (null), the block covariance model (block), the 

rank-one covariance model (rank-one) and the full-rank covariance model 

(full) and estimate LLRs for mtSet (full vs null), iSet (full vs block) and iSet-het 

(full vs rank-one); 

• for each genomic region, sample J LLRs from the null for each of the three 

tests (we J permutations for mtSet, J parametric bootstraps for iSet and J 

parametric bootstraps for iSet-het); 

• for each of the theses tests, pool the JT null LLRs across regions to obtain an 

empirical null and compute empirical P values. 

Note that the number of parametric bootstraps / permutations will determine the minimum P 

value that can be obtained. For example, for T tests and B=30 bootstraps the minimum P 

value that can be estimated is 1/(BT), which correspond to a FWER of 1/B » 0.03. While 30-

100 bootstraps will be sufficient to reach typical thresholds in genome-wide studies, more 

stringent thresholds on significance levels (FWER<=1%) require a larger number of 

parametric bootstraps (see section below for computational considerations). For mtSet we 

use the same procedure but with permutations [12]. 

 

Data design, relatedness and scalability 

Parameter inference using naïve implementations to fit the marginal likelihood model in iSet 

(Eqn. (2)) would scale cubically with the number of samples and contexts. iSet is optimized 
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for cohorts with unrelated individuals, in which case population structure can be accounted 

for by including the top principal components (PCs) as fixed effect covariates. We have 

adapted prior work on set multi-trait tests, which for fully observed designs results in a 

computational complexity of 𝑂(𝑁𝑅W + 𝑡𝑁𝑁lmW ), where 𝑁 denotes the number of individuals, 𝑅 

denotes the number of variants in the region, 𝑁lm is the number of PCs and 𝑡 corresponds to 

the number of function evaluations of the optimizer (See [12] for details). iSet will be most 

efficient when the number of variants in the set is small compared to the number of 

individuals. To enable applications to stratified cohorts, we have extended this inference 

scheme to designs where phenotype data from each sample are observed in only one of the 

contexts, resulting in a computational complexity of 𝑂(𝑡𝑁(𝑁lmW + 𝑅W)) (see Supplementary 

Methods). For cohorts with related individuals and fully observed designs, iSet can also be 

applied with an additional random effect term in the model. In this case, we again re-use 

efficient inference schemes for multi-trait set tests [12]. This model is computationally more 

expensive, and scale with of 𝑂(𝑁n + 𝑁W𝑅 + 𝑡𝑁𝑅W). Note that for fully observed designs 

without the relatedness component, our implementation retains efficiency even if the number 

of genetic variants in the region set if greater than the number of individuals, i.e. it has 

complexity O(𝑁n + 𝑡𝑁𝑁lmW ). A tabular summary of the computational complexity of iSet for 

alternative data designs, confounder correction strategies and analysis settings is provided 

in Supplementary Table 7. Finally, while iSet is designed for the analysis of pairs of 

context, the model can also be applied to smaller numbers of contexts. In this case the 

method scales O(𝑡𝑁𝐶W) with the number of contexts 𝐶. 

 

Empirical runtime estimates in Supplementary Fig. 1 were reported for different designs, 

using synthetic cohorts generated using data from the 1000 Genomes Project (phase 1, 

Supplementary Methods). We report the average per-region compute time measured on 

100 regions with size 30 kb, considering a single core of an Intel Xeon CPU E5-2670 2.60-

GHz to fit iSet. The runtime for all three considered tests, mtSet, iSet and iSet-het (including 

bootstraps) on the eQTL analysis took on average 28.7s per gene, resulting ~100h of 

compute time for a genome-wide analysis using a single core. Similarly, the runtime for all 

three tests for the NFBC data took was on average 107s per testing region, resulting in 

~1,500h of compute time for a genome-wide analysis.  

 

Finally, we note that the software implementation of iSet allows for efficient parallelization 

across multiple compute nodes and cores, similar to conventional GWAS approaches.  
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Variance decomposition model 

The LMMs in iSet can also be used to estimate the phenotypic variance explained by the 

variant set for their persistent, rescaling-GxC and heterogeneity-GxC effects 

(Supplementary Methods). 

Relationship to existing methods 
iSet generalizes previous interaction set tests and multi-trait mixed models. Existing 

interaction set tests [13, 24-28] are designed for the analysis of stratified individuals and are 

not applicable to designs with repeat measurements, where the same trait is phenotyped in 

the same individuals in multiple contexts. Moreover, these existing methods do not account 

for correlated genetic effects within the region set and their underlying LMMs assume that 

the signal to noise ratio is identical in both contexts. The iSet model is more flexible and 

accounts for arbitrary genetic correlations and residuals covariances, using a null model that 

is similar to previous single-variant interaction tests [10]. iSet combines the advantages of 

several of these previous models; see Supplementary Methods for details. 

Choice of the window size 
As for any set test, the size of the region set is an important parameter in iSet. The specific 

choice will depend on the biological application, LD and marker density. We have previously 

explored trade-offs between the computational efficiency and power of association tests for 

different choices of the window size [12]. We here examined how the choice of the window 

size affects the power of detecting interaction and heterogeneity-GxC by considering sliding-

window experiments with alternative windows sizes in simulations (Supplementary Fig. 10, 
see below). For the simulation experiments shown in Fig. 2, we considered sets with 30kb, 

which captures local LD in the data (Supplementary Fig. 5). For the analysis of the stimulus 

eQTL study, we have considered gene-based sets using a 100kb cis genetic region 

centered on the TSS, which is in line with other cis eQTL analyses [32]. Finally, for the 

genotype-sex interaction analysis in blood lipid levels we followed [12] and considered a 

sliding window approach with 100kb regions and a step size of 50kb. 

Simulation study for fully observed designs 

Simulations were carried out using a synthetic cohort of 1,000 individuals derived from 

genotypes of European populations in the 1000 Genomes project [29] (phase 1, 1,092 

individuals, 379 Europeans). Following [12, 47], we composed synthetic genotypes as a 

mosaic of real genotypes from individuals of European ancestry, while preserving population 

structure (Supplementary Methods). We considered single-nucleotide polymorphism with a 
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minor allele frequency of at least 2% (Supplementary Fig. 4). In all simulations, we 

simulated two contexts, modeled as the sum of a genetic contribution from a 30kb causal 

region, effects due to population structure, hidden covariates and identically distributed 

Gaussian noise. Effects due to population structure and hidden confounders were simulated 

with partial correlations across contexts, explaining variable proportions of the total 

phenotypic variance in each context (Supplementary Table 2, Supplementary Methods). 

 

Statistical calibration 

To assess the calibration of P values obtained from the interaction test (iSet) and the test for 

heterogeneity-GxC (iSet-het), we considered 100,000 datasets with two contexts where only 

persistent genetic effects (no interactions) were simulated (Fig. 2a). For each simulation we 

randomly selected a 30kb region and generated phenotypes simulating persistent effects 

from four causal variants and tested for GxC interaction in the region. To estimate P values, 

we used 30 parametric bootstraps for each test, resulting in a total of 3,000,000 null LLRs to 

estimate P values. Analogously, we assessed the calibration of iSet-het, where exclusively 

rescaling-GxC effects were simulated (Supplementary Fig. 3). Again, we considered 30 

parametric bootstraps for each test and pooled LLRs to estimate P values. 

 

Comparison with alternative methods 

For comparison, we considered single-variant interaction tests as in [10] (mtLMM-SV-int), 

using an implementation in LIMIX [48]. To obtain region-based P values, we considered the 

minimum P value across all variants in the region, following adjustment for multiple testing. 

We consider two alternative strategies to adjust for multiple testing within variant sets: i) a 

conservative Bonferroni approach and ii) the recently proposed eigenMT model [30], which 

adjusts for the effective number of independent tests estimated based on the local LD 

structure. Existing set tests are not applicable for fully observed designs and hence were not 

considered (Supplementary Methods).  

 

Power comparison 

To assess power of iSet for alternative genetic architectures, we simulated interaction 

effects from a 30kb region either considering rescaling-GxC effects or more general effects 

that include heterogeneity-GxC, using the simulation settings in Supplementary Table 2. 

The total variance explained by the causal region across all traits was set to 2%. In the case 

of rescaling-GxC, we varied i) the number of causal variants in the region (from 1 to 20; Fig. 
2b), and ii) the proportionality factor of the effect sizes between contexts (from -1 to 1, Fig. 
2c). When simulating general effects that include heterogeneity-GxC, we randomly selected 

an equal number of context-specific causal variants and monitored the correlation of the total 
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simulated genetic effects across contexts, thereby controlling the extent of heterogeneity-

GxC. Again, local genetic effects were simulated to explain 2% of the total phenotypic 

variance in each context. We varied (see Supplementary Table 2) i) the extent of simulated 

heterogeneity-GxC (Fig. 2d) and ii) the total number of causal variants across contexts 

(Supplementary Fig. 8). For each parameter setting, we considered 1,000 repeat 

experiments. To obtain P values for set tests we considered 30 parametric bootstraps for 

each test and computed empirical P values from 30,000 null LLRs in each simulated 

scenarios. We used the Benjamini-Hochberg procedure to adjust for multiple testing across 

repeat experiments and assessed all methods in terms of power at a fixed FDR<5%. 

 

Illustration case 

For the simulated example region to illustrate iSet and alternative genetic architectures (Fig. 
1c,d), we used a simulation procedure analogous to the strategy described above. 

Phenotypes were simulated as the sum of genetic effects from three distinct causal regions 

(30kb) within a 5Mb region on chromosome 13, harboring respectively persistent, rescaling-

GxC and heterogeneity-GxC effects. The effects from individual regions was simulated to 

explain 5% of the total phenotype variance. 

 

Comparison of iSet-het with a baseline test for heterogeneity-GxC 

As an additional assessment of the accuracy of iSet-het to detect heterogeneity-GxC effects, 

we tested how well the model discriminates between regions with and without simulated 

heterogeneity-GxC. We considered the identical 10,000 regions in Fig. 2c for which no 

heterogeneity-GxC effects were simulated as well as the 10,000 regions in Fig. 2d with 

heterogeneity-GxC. We ranked all 20,000 regions based on the LLR of the heterogeneity 

test and used the receiver-operating characteristic (ROC) and precision-recall curves 

(Supplementary Fig. 7) to assess the ability of discriminating between these types of 

genetic effects. For comparison, we also considered a univariate baseline approach, scoring 

regions with significant associations using the squared Pearson correlation between the lead 

variants in both contexts (low squared Pearson correspond to high rank). We considered 

alternative significance thresholds on region-based P values obtained using eigenMT (P < 

0.5, 0.01, 1e-2, 1e-3). 

 

Choice of window size in sliding-window experiments 

To study the effect of alternative sizes of the testing region on the power of iSet and iSet-het 

under different simulated scenarios, we considered sliding-window experiments using 

simulated data, when varying both the size of the simulated causal and of the testing region. 

Phenotypes were simulated across two contexts using the approach as described above, 
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considering a causal region with variable size (30kb, 100kb, 300kb and 1Mb). For each of 

these simulation settings, we carried out a sliding window analysis in the surrounding 1 Mb 

region with testing windows of 30kb, 100kb, 300kb and 1Mb (the step size was set to the 

half of the size of the testing region). We used Bonferroni to adjust for multiple testing across 

regions. For comparison, we also considered the single-variant test for interactions (mtLMM-

int), applied to the same variants in the 1Mb region, and used eigenMT to adjust for multiple 

testing across variants while accounting for LD. For each scenario, we considered 200 

repeat experiments and assessed power at FDR=5%. We considered either simulated pure 

rescaling-GxC (Supplementary Fig. 10a) or more general effects (rescaling+heterogeneity-

GxC, Supplementary Fig. 10b-c). For both sets of simulations, we considered the default 

simulation parameter values (Supplementary Table 2). 

Monocyte eQTL dataset 
 

Data pre-processing 

The dataset consists of gene expression levels from primary monocytes, both in a naïve 

state and three different stimulus contexts, profiled in 432 genotyped individuals of European 

ancestry. Gene expression levels in the naïve state, after exposure to IFN-γ, after 24-hour 

LPS and after 2-hour LPS were available for 414, 367, 322 and 261 individuals respectively. 

Normalization, correction for batch and probe filtering were done as in [21]. Following [21], 

we only considered probes that (i) map to only one genomic location, (ii) do not overlap with 

SNPs (MAF>1% in Europeans populations of 1000 Genomes Project), (iii) map to regions on 

autosomal chromosomes, and (iv) were detected in sufficient number of samples (see [21] 

for more details). Additionally, we discarded probes that could not be mapped to ensemble 

gene IDs. Collectively, these filters resulted in 12,677 probes for analysis (out of 15,421). 

We further limited our analysis to the set of 228 individuals for which gene expression levels 

were available in all the four (stimulus) contexts. To account for hidden covariates and 

confounding factors, we applied PEER [49] with default parameter values, fitting 30 hidden 

factors across all samples (individuals and stimulus states). PEER residuals for each gene 

and context were quantile-normalized to a standard normal distribution and used for all 

genetic analysis. Again, following the primary analysis [21], genotypes were imputed against 

the 1000 Genomes Project reference panel. After excluding variants with MAF<4%, variants 

with low imputation score (<0.9) and variants that deviate from the Hardy-Weinberg 

equilibrium (pv<10-3), we were left with 5,729,118 genome-wide variants (4,967,901 unique 

variants). 

 

eQTL mapping 
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Association and interaction tests were carried out considering 100 kb regions centered on 

the transcription start site of genes corresponding to individual probes (Supplementary Fig. 
4). All tests were applied considering a pair-wise approach, jointly testing for eQTLs in the 

naive state and one of the stimulated states, considering set tests for association (mtSet), 

interaction (iSet) and heterogeneity-GxC (iSet-het). For comparison we also applied a 

single-variant tests using the same variants, testing for association (mtLMM) and stimulus 

interaction (mtLMM-int). For single-variant tests, we estimated gene-level significance using 

the P value of the lead cis variant (adjusted within cis regions using eigenMT, [30]). 

Empirical P values for iSet and iSet-het were estimated from 30 parametric bootstraps per-

gene and stimulus, combining all null LLRs across probes (resulting in 380,310 null LLRs 

per stimulus overall). Empirical P values for mtSet were obtained using the same 

permutation procedure as in [12]. Results from all methods were adjusted for multiple testing 

across probes using the Benjamini Hochberg procedure applied to each stimulus context 

separately. Reported results correspond to significant effects at genome-wide FDR < 5% 

(Fig. 3a, Supplementary Table 4). 

 

Best linear unbiased predictor from single-context set test 

To illustrate the properties of the heterogeneity-GxC QTLs detected by iSet-het, we 

additionally considered univariate set tests in the same cis regions, however independently 

modeling each cellular context. At FDR<5% this analysis revealed 4,187, 4,786, 4,240 and 

4,620 probes with an eQTL respectively in the naive, IFN-gamma, LPS2h and LPS24h 

states (Supplementary Table 4). To estimate the cis-genetic contribution to gene-

expression in each context we calculated the Best Linear Unbiased Predictor (BLUP) from 

the model as 𝒚2-4 = 𝜎2-4W 𝑲2-4𝑽s[(𝒚 − 𝟏𝜇), where 𝜇 is the estimated mean, 𝜎vw"W  is the 

estimated variance explained by cis variants, 𝑲vw" is the cis realized relatedness matrix, 𝑽s[ 

is the inverse of the total estimated covariance and 𝒚 is the gene-expression vector in the 

corresponding context. 

 

Single-variant forward selection LMM 

We used a single-variant forward selection LMM [33] to characterize eQTLs with significant 

heterogeneity-GxC effects. The model was fit considering up to three steps for gene and 

context, iteratively accounting for lead variant as additional fixed effect covariates when 

significant (FDR<5%). For each cellular context, region-based P values were adjusted for 

multiple testing across probes using the Benjamini Hochberg procedure for each of the three 

steps (only across probes that were tested at that specific step). This analysis yielded 

15,756, 2,690 and 457 instances (across all genes and contexts) with one, two or three 

associations respectively (Supplementary Table 4). 
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Results from step-wise analysis were used to annotate probes with significant heterogeneity-

GxC. We denoted the 1,449 probes that have significant marginal associations in both 

contexts and independent lead variants (𝑟W < 0.20) as a shift in lead variants between the 

two contexts. Probes with a shared lead eQTL (significant in both contexts, lead variants 

𝑟W > 0.80) were annotated using secondary effects. Among the 4,186 probes with shared 

main effects, this analysis revealed context-specific secondary QTLs were identified for 999 

genes. Context-specific secondary effects were defined when either i) the secondary effect 

was significant in only one of the two contexts or ii) the secondary effects lead variants were 

in low LD (𝑟W < 0.20) (Fig. 4b). 

 

Annotation of opposite-effect eQTLs 

We classified the 4,186 eQTLs with shared lead eQTL into directionally consistent and 

opposite-effect eQTLs. Briefly, opposite effects were defined by three criteria, i) marginal 

significance in both contexts, ii) LD between contexts (r2>0.8) and iii) negative correlation of 

genetic effects. These criteria resulted in 67 opposite-direction QTLs. Directionally 

consistent eQTLs correspond to criteria i) and ii) but positive correlated genetic effects, 

resulting in 4,119 co-located QTLs. Statistical significance of the enrichment for significant 

heterogeneity-GxC effects in opposite-direction eQTLs rather than same-direction eQTLs 

was assessed using a one-sided Fisher’s exact test (Fig. 4f). 

iSet for analysis of stratified cohorts 
 

Simulations for analysis of stratified individuals 

To study performance of iSet when considering interaction analyses in stratified cohorts, we 

considered simulation experiments analogous to those for fully observed designs. We 

generated a synthetic cohort of 2,000 Europeans where each individual was phenotyped in 

only in one of two contexts. For each individual, the phenotyped context was independently 

selected using a draw from a Bernoulli distribution (symmetric, 50% success rate). Statistical 

calibration and power simulations were performed analogously to the approach used for fully 

observed designs. Population structure was accounted for using the first ten principal 

components of the realized relatedness matrix as fixed effect covariates. We did not 

consider tests for heterogeneity-GxC, as differential tagging of causal variants could 

potentially result in spurious heterogeneity-GxC signals, and hence additional controls would 

be required. However, in principle the test applies to stratified populations.  
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Comparison to alternative methods 

We compared iSet to the single-variant interaction tests as in [10] (mtLMM-int) and the gene-

environment set association test (GESAT) [13]. The latter approach is representative for a 

family of closely related set tests that can only be applied to test for interaction effects in 

stratified populations (See Supplementary Methods). As an additional comparison, we 

extended the single-variant interaction test in [10] for stratified cohorts. To the best of our 

knowledge there are currently no implementations of mtLMM-int that can be applied to such 

designs. The models are available within the LIMIX package [48] (for full details see 

Supplementary Methods). GESAT was run using the function GESAT of the package 

iSKAT version 1.2. Both iSet and GESAT were applied on identically processed 

standardized variants. 

 

Genotype-sex interaction tests in lipid traits 

We performed a genotype-sex interaction analysis of four blood lipid phenotypes (C-reactive 

protein (CRP), triglycerides (TRIGL), LDL and HDL cholesterol levels) measured in 5,256 

unrelated individuals from the NFBC1966 cohort [20] (phs000276.v1.p1). Following [11, 12], 

we regressed out major covariates, following a quantile-normalization of each trait 

individually. In order to correct for population structure, we considered the first ten principal 

components of the realized relatedness matrix as fixed effect covariates. 

 

We applied mtSet and iSet to 318,653 genome-wide variants with an allele frequency of at 

least 1% using a sliding-window approach (100kb regions, 50kb step size; resulting in 

52,819 windows overall; (Supplementary Fig. 4). For comparison we considered the single-

variant interaction test [10], GESAT [13] and stSet [8], a univariate set test without 

stratification by sex. For each window we considered 100 permutations for mtSet and stSet 

and 100 parametric bootstraps for iSet and combined the obtained null LLRs across 

windows and traits (for a total of 21,127,600 null LLRs per test) to obtain empirical P values. 

Significance of the considered statistical tests was assessed at FWER=10%. Summary 

results from all considered methods are reported in Supplementary Table 6. 

 

Imputation of NFBC1966 genotypes 

Genotype data from NFBC1966.phs000276.v1.p1 were imputed using the 1000 Genomes 

Project phase 3 reference panel as described in the following. After aligning the dataset to 

the reference panel, we ran shapeit v2.r727 [50] with recommended parameters on each 

chromosome to produce haplotype estimates. We used impute2 v2.3.2 [51] with 

recommended parameters to impute untyped genotypes. Imputation was performed on 
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chunks of approximately 5Mb. We merged region with less than 200 SNPs and avoided 

considering regions that span the centromere. 

Supplementary Information 
Tables 

• Supplementary Table 1 | Type-1 error estimates on simulated data. 

• Supplementary Table 2 | Simulation settings. 

• Supplementary Table 3 | Relationship between the proportionality factor of the effect 

sizes used in simulations, fold change and relative direction of genetic effects across 

contexts. 

• Supplementary Table 4 | Tabular summary of results from the monocyte gene 

expression analyses. 

• Supplementary Table 5 | Enrichment analysis of heterogeneity-QTLs in opposite 

direction QTLs. 

•  Supplementary Table 6 | Tabular summary of the gene-by-sex interaction analysis in 

human blood lipid traits from NFBC1966 cohort. 

• Supplementary Table 7 | Computational complexity of iSet. 

 

Figures 

• Supplementary Fig. 1 | Computational cost of iSet for alternative designs and cohort 

sizes.  

• Supplementary Fig. 2 | Alternative study designs supported by iSet. 

• Supplementary Fig. 3 | Statistical calibration of iSet-het when only rescaling-GxC 

effects are simulated. 

• Supplementary Fig. 4 | Assessment of calibration under different types of model 

mismatch. 
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• Supplementary Fig. 5 | Distribution of the number of variants, the number of effective 

tests estimated by eigenMT and the average squared correlation within the testing 

regions in the different datasets. 

• Supplementary Fig. 6 | Simulation results for synthetic genotypes without LD. 

• Supplementary Fig. 7 | Comparison of iSet-het and single-variant strategies for 

discriminating rescaling from heterogeneity-GxC. 

• Supplementary Fig. 8 | Power of iSet and iSet-het when simulating heterogeneity-

GxC effects and increasing numbers of causal variants. 

• Supplementary Fig. 9 | Assessment of genetic variance estimates from iSet using 

different covariance models. 

• Supplementary Fig. 10 | Power of iSet and iSet-het in sliding window experiments 

with different sizes of the testing regions. 

• Supplementary Fig. 11 | Number of positives for single-variant methods and set tests 

as a function of the false discovery rate in the monocyte stimulus QTL data. 

• Supplementary Fig. 12 | Comparison of single-variant methods and set tests in the 

monocyte stimulus eQTL data. 

• Supplementary Fig. 13 | Results from single-trait set tests applied to individual 

cellular contexts. 

• Supplementary Fig. 14 | Examples of opposite-effect eQTLs with significant 

heterogeneity-GxC effects. 

• Supplementary Fig. 15 | Calibration and power simulations for different GxE methods 

for analysis of stratified cohorts. 

• Supplementary Fig. 16 | Manhattan plots from alternative methods applied for the 

genome-wide analysis of human lipid levels in the NFBC1966 cohort. 

• Supplementary Fig. 17 | QQ plots when applying alternative methods to lipid levels in 

NFBC1966. 
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• Supplementary Fig. 18 | Manhattan plot in the interaction locus for C-reactive protein 

using single-variant interaction tests on imputed variants. 

• Supplementary Fig. 19 | The interaction for C-Reactive protein on chromosome 1 is a 

male-specific effect. 
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