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Abstract	

Cancer sequencing predicts driver genes using recurrent protein-altering mutations, but detecting 
recurrence for non-coding mutations remains unsolved. Here, we present a convergence framework for 
recurrence analysis of non-coding mutations, using three-dimensional co-localization of epigenomically-
defined regions. We define the regulatory plexus of each gene as its cell-type-specific three-
dimensional gene-regulatory neighborhood, inferred using Hi-C chromosomal interactions and 
chromatin state annotations. Using 16 matched tumor-normal prostate transcriptomes, we predict 
tumor-upregulated genes, and find enriched plexus mutations in distal regulatory regions normally 
repressed in prostate, suggesting out-of-context de-repression. Using 55 matched tumor-normal 
prostate genomes, we predict 15 driver genes by convergence of dispersed, low-frequency mutations 
into high-frequency dysregulatory events along prostate-specific plexi, controlling for mutational 
heterogeneity across regions, chromatin states, and patients. These play roles in growth signaling, 
immune evasion, mitochondrial function, and vascularization, suggesting higher-order pathway-level 
convergence. We experimentally validate the PLCB4 plexus and its ability to affect the canonical PI3K 
cancer pathway.  

Introduction	

Sequencing has revealed both germ-line variants that underlie cancer risk and somatic mutations that 
drive cancer progression. However, disparate perspectives emerge from each. Germ-line variants 
identified in genome-wide association studies (GWAS) are predominantly distal to genes. When 
experimentally characterized they appear to interact with gene promoters by folding to their physical 
location in three-dimensional space. These variants have slight/subtle effects on transcription factor 
binding and gene expression but ultimately stack the odds towards disease development. By contrast, 
somatic alterations identified through tumor sequencing are far more severe and have a direct impact 
on gene sequences. Both emerging perspectives, the germ-line and the somatic, belong to the same 
disease, but it is not yet clear how they are related.  

Here, we present a unifying framework to reconcile these disparate perspectives and venture into the 
continuum between them. In this framework we propose the existence of a theoretical genomic event in 
which heterogeneous variants that are scattered and far from each other on the one-dimensional 
genome sequence but that are physically adjacent to each other in the three-dimensional volume of the 
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cell nucleus manifest as a coherent cellular phenotype. We define a plexus as a set of interacting loci 
that are next to each other in the cell volume but scattered over the genome sequence. The number of 
possible plexi quickly becomes astronomical, even when they are composed of a handful of loci. 
Without experimental knowledge of the location of active loci and their interactions, the plexus 
framework is computationally and statistically intractable. Minimally, looking for a driver plexus requires 
whole genome sequencing of cancer-normal pairs and maps of chromatin states and chromosome 
interactions for the cancer’s tissue of origin.  

In this study, we apply the plexus framework to prostate adenocarcinoma. We use matched ChIP-seq 
and Hi-C to map the locations of regulatory elements and their interactions in normal prostate cells 
(RWPE1). We then build the prostate-specific plexus for every protein-coding gene in the human 
genome. We initially use the plexi to analyze dysregulated genes in 16 cancer-normal transcriptome 
pairs. This approach reveals that the plexi of dysregulated genes enrich in dispersed non-coding 
mutations that converge on gene promoters and disrupt their function. We then develop a plexus 
recurrence test that we apply to 55 cancer-normal whole genome pairs. This test allows us to uncover 
15 driver plexi containing novel candidate cancer genes with diverse roles that further converge on 
growth signaling, immune evasion, mitochondrial function and vascularization. Finally, we 
experimentally demonstrate how our most robust result, the PLCB4 plexus, disrupts the PI3K pathway 
to alter cell growth and drive tumor progression. Our results have broad implications beyond identifying 
cancer genes. We hope the plexus framework will boost power in sequence association studies and 
facilitate the interpretation of rare and private variants in the context of precision medicine.  

The	plexus	framework	

The leading paradigm for identifying driver genes in cancer genomics has been to search for recurrent 
mutations in multiple independent patients. This process is confounded by many factors, such as the 
variation in mutation rates across the genome due to transcription and replication timing1. While cancer 
recurrence has typically focused on protein-coding mutations, recent studies show that regulatory 
regions can also be the targets of recurrent mutations. In particular, single regulatory regions linked to 
the TERT2 and TAL1 genes3. But in contrast to coding recurrence, where hundreds of genes have been 
identified and many more remain to be discovered4, the analysis of recurrence at single regulatory 
regions has not yielded conclusive results5.  

Expanding the concept of recurrence to non-coding mutations poses several challenges that are 
currently unmet. First, cancer is a highly heterogeneous disease among patients. Because multiple 
regulatory loci can be associated with the same gene, each locus might be mutated in a different tumor 
sample, requiring methods that go beyond a single region. Second, regulatory loci can lie far from the 
genes they regulate. This demands precise methods for identifying interacting loci over long-range 
chromatin conformation loops6-9. Third, mutation rates are heterogeneous over the genome. Regions 
associated with active histone modification marks, for example, can show dramatically lower 
background mutation rates due to higher accessibility for the DNA repair machinery10-12. Fourth, the 
regulatory code is poorly understood. This complicates the prioritization of mutations and the 
assessment of regulatory consequences8,13,14. Fifth, all the parameters used in the statistical modeling 
vary by cell type. The interactions between loci, chromatin states, DNA accessibility and the 
concentrations of the transcription factors decoding the regulatory instructions are specific to each and 
every cell type in the human body. 

Here, we directly address these challenges and introduce a theoretical and methodological framework 
for recurrence analysis of non-coding mutations in prostate cancer. We begin by inferring the plexus of 
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every protein-coding gene (Fig. 1a), defined as the set of all proximal and distal regulatory elements 
acting through intra- or inter-chromosomal interactions (also cis and trans, respectively) based on their 
chromatin state and their three-dimensional links to their target genes. This allows us to collapse 
mutations that are heterogeneous across samples and scattered over multiple genomic loci (Fig. 1b). 
Furthermore, functional annotations allow us to separate sparse driver mutations among confounding 
passenger mutations. Finally, we effectively aggregate mutations that are individually low in frequency 
into high-frequency regulatory recurrence events, based on their convergence into common target 
genes (Fig. 1c). This can be achieved even in the absence of local alterations, protein coding or 
otherwise. 

Plexus	assembly	from	matched	Hi-C	and	ChIP-seq	

We first establish the prostate-specific plexus of every protein-coding gene in the human genome. 
Regulatory annotations are highly tissue specific15. We therefore use the RWPE1 prostate cell line as a 
reference, and profile five histone modification marks using ChIP-Seq. We use ChromHMM16 to define 
eight chromatin state annotations consisting of: promoters ('pro') with strong H3K4me3 but no 
H3K4me1; enhancers ('enh') with H3K4me1 but no H3K4me3; regulatory elements ('reg') marked with 
both enhancer and promoter signatures; transcription-associated regions ('txn') with H3K36me3; poised 
elements ('poi') with H3K27me3 and at least one other active mark; repressed elements ('rep') with 
H3K27me3 only; and low-activity regions ('low') where no marks are detected (Fig. 2a, S1). Raw plexi 
exhibit an over-abundance of active regulatory states (opn, pro, reg, enh), especially through proximal 
interactions (Table S1). We treat open chromatin regions ('opn'), based on DNaseI in RWPE117, as a 
separate class, regardless of their enclosing chromatin state.  

We find large variation in mutation rates, across both chromatin states and tumor samples (Fig. 2b). 
Open chromatin regions show the lowest mutation rate (1.5 mutations/Mb), consistent with previous 
reports10,12,18, attributed to their increased association with the DNA repair machinery11. However, even 
outside DNaseI regions, mutation rates vary greatly across chromatin states (from 1.6 to 6.9 
mutations/Mb on average), and across tumors (from 0.7 to 2.8 mutations/Mb for low-activity regions). 
Mutation rates do not correlate with GC content, CpG dinucleotide rate, nucleotide, or di-nucleotide 
composition (Table S2), and chromatin states preserve their relative mutation rates across tumors (Fig. 
2b), suggesting sequence-independent mechanisms, possibly due to differential interactions with the 
repair machinery by chromatin regulators. Surprisingly, once open chromatin regions are excluded from 
chromatin state annotations, the expected inverse correlation between epigenomic activity and 
mutation rate is lost. Instead, promoter regions free of open chromatin show the second highest 
mutation rate.  

We link these regulatory annotations to each gene using a prostate-specific map of chromosomal 
interactions that is also derived from the RWPE1 cell line19 (Data S1). With this data we generate two 
types of plexus for each protein-coding gene: a raw plexus, which contains any locus with evidence of 
interaction, and a cut plexus, in which each interaction is assessed using a permutation test and filtered 
based on a p-value cutoff of 0.05 (See Methods). While the short lengths of regulatory elements make 
contiguous, single-element recurrence rare (Fig. S2), through its plexus a gene can be associated with 
a much higher richness of variation across a patient cohort. The set of raw plexi associates genes with 
a median of 106 linked proximal elements (within 100kb), 1420 distal intra-chromosomally (cis), and 
1824 inter-chromosomally (trans) interacting elements; providing an abundant source of mutation to 
each gene (Fig. S3a, data S2). Indeed, each gene interacts with a median of 21 mutations in proximal 
elements, 399 mutations in distal cis-elements, and 625 mutations in trans-interactions (Fig. 2c), 
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providing sufficient power to study plexus-level mutation. We use the raw plexi to identify recurrent 
driver events across the 55 patients; in this way we cast a broad net that we progressively tighten to 
further concentrate our candidates. Conversely, cut plexi associate each gene with a median of 30 
interacting proximal elements (within 100kb), 319 distal cis-elements, and 227 trans-elements (Fig. 
S3b, data S2). This leads to a more focused source of mutation, with each gene being associated with 
a median of 1 mutation in proximal elements, 24 mutations in distal cis-elements, and 17 mutations in 
trans-elements (Fig. 2d). We exploit the stringent interactions of the cut plexi for intra-chromosomal 
interactions to look for enrichment of distal mutations in cancer-dysregulated genes. 

Dysregulated	genes	enrich	in	plexus	mutations	

To study the relevance of plexus mutations as a mechanism of gene dysregulation we use whole 
transcriptomes obtained from 16 of the 55 patients with whole genomes20. Every tumor sample has a 
matched normal sample from adjacent prostate tissue. From the normal tissue, we establish an 
expected range for every gene and use each distribution to normalize tumor transcriptomes (Fig. 3a, 
see Methods). Tumor samples showed significantly greater variance (Wilcoxon P < 10-15.7) in 
expression than normal prostate samples (Fig. 3b). For each gene, we search for pairs of tumor 
samples were one gene instance is dysregulated in one patient and the other is unchanged. Pairing 
multiple gene instances in this manner allows us to compare a large set of dysregulated gene instances 
against a control set that is matched one-to-one so as to preserve the genomic and epigenomic 
properties between the two sets (Fig. 3a). Mutational properties between the two sets, which contain 
different compositions of patients, are corrected by incorporating the patient- and chromatin-specific 
mutation rates into the enrichment calculations (See Methods). Additionally, we only use dysregulated 
and unchanged gene instances when the normal prostate samples for the same two individuals show 
normal expression. We do this to ensure that dysregulation is not already present in the adjacent 
matched tissue before tumor development. Through this approach we identify 17,850 dysregulated-
unchanged paired samples over a total of 2,579 genes (Fig. 3c, data S3), of which 83% are up 
regulated (14,893), and only 17% are down regulated (2,957).  

We test the hypothesis that the plexi of dysregulated gene instances are enriched for mutations that are 
distal to the gene (>100Kb from gene body). For this we only use high confidence interactions from the 
cut plexi (p-value < 0.05; intra-chromosomal), and restrict our analysis to up-regulated genes were we 
have more power to detect an effect. We perform enrichment tests for mutations across all chromatin 
states and over a range of magnitudes for up-regulation. We find a consistent enrichment for ‘pro’ 
elements that increases as dysregulation becomes more extreme (Fig 3d). This enrichment peaks at 10 
standard deviations from normal expression (PBonf < 0.05; 20,000 permutations). These enrichments 
remain even when we repeat the analysis removing all gene instances with copy number alterations, 
albeit with less statistical power (Fig. S4). Interestingly, ‘opn’ and ‘reg’ elements show signs of being 
protected from mutation; perhaps they represent a set of highly optimized activators that are less likely 
to increase their function through random mutation. 

Based on our previous work regarding the gain and loss of enhancers in tumor initiation in colon 
cancer21 and tumor progression in breast cancer22, we hypothesize that a fraction of mutations in ‘low’ 
elements for prostate might be active in non-prostate cell lines, thus driving dysregulation activity in 
prostate cancer through out-of-context de-repression of existing but dormant regulatory elements, as 
opposed to creating them from scratch. Indeed, ‘low’ elements harboring mutations are strongly 
enriched for both promoter (Wilcoxon P<10-11) and enhancer states (Wilcoxon P<10-11) in other cell 
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types (Fig. 3e). These are active in a diverse panel of cell and tissue types23, including immune cells, 
GI-tract, and ESCs (Fig. 3f), suggesting co-option of diverse, non-prostate elements.  

Plexus	recurrence	test	reveals	hidden	drivers	

Having established that dysregulated genes are enriched in distal plexus mutations, we next sought to 
identify individual genes with an excess of mutations in their plexi in the whole genomes of the 55 
tumors samples. It is highly unlikely that positive selection acts exclusively on cancer driver genes 
through coding and proximal promoter mutations, especially considering how most GWAS variants that 
increase the risk of cancer act through distal regulatory mechanism, and the bewildering diversity of 
mutational processes in tumor evolution.  

A plexus recurrence test is faced with the same confounders as recurrence tests for coding genes, 
namely mutational heterogeneity across genomic regions due to cell-type-specific transcriptional 
activity1 and chromatin states, in addition to variability among patient and tumor mutational signatures. 
In testing a plexus we must also account for changes in the confounders across the constituent loci 
(Fig. 4a). Incidentally, we find that regional mutational heterogeneity is even more extreme than 
previously recognized, following a power-law distribution at the 50kb scale (Fig. 4b), suggesting 
localized mutational bursts. The plexus recurrence tests starts by gathering a plexus’ mutations, 
regional mutation rate estimates and chromatin states for all the loci it contains. These layers of 
information are stored at a resolution of 100bp; we refer to these intervals as ‘tiles’. We retrieve a tile 
array for every protein-coding gene in the human genome through that gene’s raw plexus. The tile array 
is then decomposed into the two major confounders: regional mutation rate and chromatin state (Fig. 
4c). We compress mutation rates into 15 bins of exponentially increasing mutational intensity (taken 
from the tile’s 50kb context). Chromatin states are stored as the 8 categories previous described.  

Statistical significance is computed through permutation. The tile decomposition of a plexus is used to 
guide the random sampling of tiles from the whole genome so as to match the chromatin state and 
regional mutation rate properties of the test plexus. We then retrieve patient mutations for the permuted 
tile array so as to match the heterogeneity of the mutation rate in the patients. By aggregating 
mutations over all permutations we obtain the expected number of mutations for each patient and 
chromatin state over the tile array (Fig. 4d). The expected mutation counts allow us to convert 
observed mutations (Fig. 4e), into enrichment scores (Fig. 4f). Because the enrichments we previously 
observe for dysregulated genes in plexus mutations are highly dependent on chromatin state, we test 
each chromatin state separately. We combine the enrichment scores across all 55 patients to obtain a 
final list of p-values for each of the chromatin states and for the gene’s exons (Fig. 4g). We refer to this 
procedure simply as ‘the plexus recurrence test’ (See Methods). 

Applying the plexus recurrence test to the 55 prostate cancer whole-genome sequences, we identify 15 
recurrently mutated plexi that are statistically significant (Fig. 4h, table S3, data S4). The genes varied 
greatly in the enriched chromatin state (‘txn’, ‘pro’, ‘rep’, ‘poi’, ‘enh’), convergence rate (35%-89%), 
number of mutated elements (7-62), and number of mutations (24-150). The plexi do not share 
regulatory regions, however, the RRAD plexus also contains the FAM96B gene (Table S4). These 15 
genes lie in a small number of common pathways, suggesting higher-order functional convergence. 
They are involved in cell growth, migration and proliferation through overlapping roles in androgen, 
insulin and circadian rhythm signaling (INSRR, PLCB4, CRY2, RRAD, SPANX and SSX), immune 
evasion (ITM2A, IDO2, ZC3H12B and ZBED2), mitochondrial function (COQ3 and SLC25A5) and 
vascularization (EDNRA). Two genes remain uncharacterized (C14orf180 and ZCCHC16). Several of 
these genes have been linked to cancer (INSRR24, RRAD25, SSX26,) and prostate cancer, specifically 
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(CRY227,28). However, the most clinically relevant gene we identify is probably IDO2, a critical partner of 
IDO129. IDO genes constitute a key mechanisms of immune evasion and have recently become central 
targets in immuno-oncology 30.  

PLCB4	plexus	3C	loops	and	epigenomic	landscape	

Having identified a list of candidate driver plexi, we select one for experimental validation. Through the 
permutation approach we use to obtain the cut plexi, we use the p-values assigned to each of the 
edges of the 15 raw plexi. We then apply increasingly stringent thresholds to each plexus and 
recompute the plexus recurrence test at each step. As the cut plexi shrink they lose both mutated and 
non-mutated loci, making the recurrence signal oscillate and ultimately decay completely. The PLCB4 
plexus has the most robust recurrence signal among all 15 plexi (Fig. 5a). The signal comes from 79 
mutations in ‘txn’ elements that are distal to the PLCB4 gene body. Of these, 30 are on the same 
chromosome and spread over 12 loci. We perform chromatin conformation capture (3C) experiments 
and confirm 5 out of the 12 interactions with the PLCB4 promoter (Fig. 5b, S5, table S5, See 
Methods). We group these elements into four loci and refer to them by their mega base coordinates on 
chromosome 20: 9.0 (which contains the PLCB4 gene body), 9.2, 10.4, 18.5 and 30.0. In addition to the 
3C experiments, the five loci are woven together by numerous direct and indirect Hi-C interactions (Fig. 
5c).  

The 3C-validated loci contain 15 mutations for 12 patients in the significant chromatin state, ‘txn’, and 
36 mutations for 24 patients over all chromatin states (Fig. 5d). The significant (‘txn’) and extended (all 
states) mutation sets represent 22% and 44% of the 55 total patients, respectively. The recurrence 
frequency at the PLCB4 plexus is high compared to coding genes identified in exome sequencing 
studies of prostate cancer. The top three genes by frequency, SPOP, TP53 and PTEN, are mutated in 
13%, 6% and 4% of patients, respectively 31. However, the impact of mutations in coding regions is well 
understood. Annotations across 127 reference epigenomes from the Roadmap and ENCODE 
projects17,23 help infer the regulatory potential of the loci mutated in the PLCB4 plexus. Gene 
dysregulation through out-of-context de-repression would require latent or poised regulatory elements 
to be present in the loci in cell types other than prostate. Although incomplete, the Roadmap and 
ENCODE collection of cell types can give some indication of regulatory activity, even when highly 
specific to a few non-prostate cell types. The annotations show highly diverse regulatory contexts in the 
~40Kb regions containing the mutations (Fig. 5d). Some loci show consistent activity across all tissues, 
whereas others reveal striking prostate specificity. Finally, three out of the four distal loci in the PLCB4 
plexus (9.2, 10.4 and 30.0) contain eQTLs for PLCB4 expression based on the analysis of 87 prostate 
samples from the Genotype-Tissue Expression (GTEx) project32 (Fig. 5e, data S5, See Methods). 

PLCB4	plexus	disruption	and	the	PI3K	pathway	

The study of cancer recurrence in coding regions benefits from knowledge of the genetic code and 
allows filtering of mutations based on synonymity. In the regulatory setting we need tissue-specific 
annotations and models of protein-DNA binding to obtain a similar understanding. Unfortunately, a 
comprehensive regulatory code is still unavailable. However, we are able to infer a portion of the code 
in prostate cells by leveraging a subset of transcription factors binding profiles across canonical 
prostate cell lines. We first scanned the 15 mutations in the PLCB4 plexus for binding of transcription 
factors in any human cell type using ReMap 33. Five of the seven mutations at the 30.0 locus overlap 
binding sites for ERG, TP63, SP1 or BRD4 (Fig. 6a). All of these factors are involved in gains, losses or 
fusions in prostate cancer34-37. We then interrogated the five canonical histone marks (H3K4me1, 
H3K4me3, H3K36me3, H3K27me3 and H3K27ac) and open chromatin in five additional prostate cell 
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lines, ranging from normal tissue (RWPE1, PWR1E) to low (LNCaP), moderate (DU145) and high 
(22Rv1, PC3) tumorigenicity (Fig. 6b). The reference for this study, RWPE1, shows active transcription 
marks across all four loci in addition to promoter marks at 9.2 and 30.0. The 9.2 and 10.4 loci show 
variability in the normal tissue and loss of histone marks across all cancer cell lines. Locus 18.5 is 
consistently active in all cell lines, whereas locus 30.0 shows a strong gain in enhancer marks in cell 
lines with high tumorigenicity and one normal cell line. These results suggest that gains and losses of 
activity in the PLCB4 plexus relate to a range of cancerous phenotypes in a standard collection of 
prostate cell lines. 

In order to assess the role of the tumor mutations in the PLCB4 plexus on these activity patterns, we 
consider their effects on the binding of key transcription factors that are likely mediating the deposition 
of active histone marks. We built affinity models for all prostate transcription factors in the Cistrome 
database of ChIP-seq experiments (http://cistrome.org/db) using the Intra-Genomic Replicates (IGR) 
method 8 (See Methods). We found that mutations in the 9.2 locus tend to increase the binding of AR, 
GR, FOXA1 and BRD4 factors, whereas mutations in the 30.0 locus tend to consistently decrease 
binding of BRD4, ERG, GABPA and ETV1 (Fig. 6c). However, the most commonly affected factor is 
AR, with disruptive mutations in all four loci. Each of the 14 mutations probed with IGR (single-
nucleotide) had a large effect for at least one of the factors. Among the most dramatic results we find 
the creation of a FOXA1 binding site at locus 10.4 and the destruction of two binding sites for AR and 
ETV1 at the 30.0 locus (Fig. 6d). Interestingly, we found a significant enrichment in binding-altering 
mutations for ETV1 (QFDR < 0.024) across all 35 mutations at the PLCB4 locus (See Methods). 

PLCB4, or phospholipase Cβ4, has been extensively studied in the context of circadian rhythms and 
auriculocondylar syndrome, where it has strong effects when disrupted38,39. The role of PLCB4 in 
prostate cancer is unknown, although it has been identified in a set of 96 genes associated with in vivo 
progression to castration-recurrent prostate cancer 40. Considering its ability to directly affect cell 
membrane lipid metabolism and the phosphatidylinositides, we tested the impact of PLCB4 deletion or 
overexpression on the phosphoinositide-regulated PI3K/AKT signaling pathway in PC3 cells. While 
PLCB4 deletion led to a decrease in PI3K/AKT signaling throughput (Fig. 6e), its overexpression 
resulted in activation of the PI3K pathway (Fig. 6f), revealing a direct link between the levels of PLCB4 
expression and the activity of this major oncogenic signaling cascade. 

Discussion	
We present the first scan for driver genes with a plexus recurrence test and, more generally, 
demonstrate the use of long-range chromatin loops to decipher genetic heterogeneity by collapsing the 
combinatorics of high-order, multi-locus interactions with a genome-wide adjacency matrix. We find that 
dispersed non-coding mutations that are individually too low in frequency for viable statistical analysis 
nevertheless converge into high frequency recurrence events. These events reveal novel driver genes 
with known and putative roles in prostate cancer even in the absence of proximal mutations (protein 
coding or otherwise), which have been the focus of previous studies. Furthermore, these genes show 
pathway-level convergence in androgen, insulin and circadian rhythm signaling, immune evasion, 
mitochondrial function and vascularization, providing new insights into biological processes known to 
underlie prostate cancer. Most notably, we identify PLCB4, which we validate as capable of affecting 
the canonical PI3K cancer pathway, and IDO2, a gene whose function is currently a central target in 
immuno-oncology and responsible for hundreds of millions of dollars in biotech investment and 
acquisitions30.  
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We believe the plexus framework will be especially valuable for cancers with low mutation rates. 
Ependymoma, an extreme example, lacks any detectable mutational recurrence41. We can now qualify 
this statement by saying that it lacks proximal and contiguous mutational recurrence for any gene. 
However, plexus mutational recurrence might still be an important driver in such tumors. Indeed, many 
of the genes we have identified have no mutations in their gene bodies or in proximal regions. The 
plexus framework might also shed light into the temporal and functional interplay of diverse types of 
mutations through tumor initiation and progression. We hypothesize that the first somatic aberrations 
that propel a cell towards cancer act much like risk-associated variants. These primordial DNA 
mutations or epigenomic alterations are likely distal and regulatory in nature, having subtle and 
heterogeneous effects at first. But as these changes accumulate, triggering out-of-context de-
repression of regulatory elements, they gradually converge on the hallmark pathways of cancer. 
Furthermore, plexus mutations are less likely to be immunogenic, allowing for the creation of a neutral 
evolutionary space in which pre-cancerous cells would accumulate a high degree of variability which, in 
turn, would provide a rich substrate for selection when it arises. Exploring this ‘plexus first’ hypothesis 
of cancer emergence and evolution poses a daunting challenge, as it will require the comprehensive 
mapping of multi-locus interactions in normal and cancerous cells across all human tissues.  

Beyond cancer, the plexus framework introduced here is broadly applicable to the analysis of common, 
rare and private variants in any human disease or trait. Genetic heterogeneity in sequence association 
studies currently hinders our ability to uncover the molecular basis of heritability in complex traits. We 
hope that applying the plexus framework to association studies will reveal trait-associated plexi (and the 
genes therein) where, although each constituent locus explains only a small subset of the individuals, 
the whole plexus accounts for a significant proportion of the cohort. The low frequency problem of 
contiguous variation has led researchers of type 2 diabetes to conclude that rare variants do not 
contribute significantly to disease risk42. However, with our method the frequency of collapsed alleles 
increases and the number of tests decreases. Therefore, the plexus framework might boost power in 
such studies and allow for a more effective use of whole genome data. Similarly, the plexus framework 
could constitute a broader foundation for the interpretation of individual genomes. Instead of limiting 
analyses to the 1.5% of the genome that encodes proteins, all variants could be used. Ultimately, we 
wish to help advance personalized therapeutics and precision medicine by empowering those using 
whole-genome sequencing in the understanding, prediction and treatment of complex disease. 
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Figure	legends		

Figure 1 | The plexus framework reveals the convergence of heterogeneous mutations. a, 
Visualization of a hypothetical plexus composed of four loci. The four loci contain a variety of active and 
inactive genomic elements (arcs with colored segments within an encompassing gray circle). The 
plexus’ gene (red circle) has an active promoter (‘pro’, red) and a transcribed region (‘txn’, green). Intra- 
and inter-chromosomal Hi-C interactions connect the plexus’ gene to regulatory elements elsewhere in 
the plexus (red Bezier curves). Additional Hi-C interaction help maintain the four loci together within the 
volume of the cell nucleus (gray Bezier curves). Dispersed mutations in active elements (putative 
drivers, red dots) are interspersed with mutations in inactive chromatin (likely passengers, gray dots). 
Active elements harboring mutations include enhancers (‘enh’, yellow) and poised regulatory elements 
(‘poi’, pink), among others. b, Dispersed active (red) and interspersed inactive (gray) mutations 
arranged by tumor sample. Mutational heterogeneity across samples leads to low-frequency mutation 
events at single elements or loci, each accounting for a common mechanism of tumorigenesis in only a 
small number of patients (3-5 out of 20). c, Aggregating low-frequency mutation events through a 
gene’s plexus can reveal high-frequency driver events through convergent dysregulation of the same 
gene; a single mechanism now accounting for a majority of patient tumor samples (16 out of 20). 

Figure 2 | Plexus assembly by connecting dispersed mutations to protein-coding genes. a, 
Chromatin states in normal prostate. We profiled five histone marks (columns) in RWPE1 cells, and 
used ChromHMM to learn 15 chromatin states (rows), which we further group in eight aggregate states 
(colors). We treat open chromatin regions, regardless of chromatin state, as a separate class (not 
shown). b, Mutation rate heterogeneity across chromatin states and tumor samples. Scatter plot 
showing mutation rates (x-axis) across 55 prostate tumor samples (y-axis) for eight chromatin states 
(colors). Tumor samples are sorted by average mutation rate in low-activity regions (low). Colored 
vertical bars indicate median mutation rate for each state across tumor samples. c, d, Linear 
histograms show the number of plexi (y-axis) by the mutation count in connected elements (x-axis) for 
raw (c) and cut plexi (d) assembled around all protein-coding genes. Plexus mutations counts are 
calculated separately for chromatin states (colors) and three classes of distance to the plexus’ gene 
(columns). Colored vertical bars indicate the median number of mutations per gene for each chromatin 
state.  

Figure 3 | Dysregulated genes are enriched in dispersed plexus mutations. a, An example of a 
dysregulated and unchanged gene instance pair, showing normalized expression (core score; y-axis) 
across 16 patients (x-axis) for exemplar gene YJEFN3. Tumor (top) and matched normal samples 
(bottom) are used to identify viable pairs across the whole transcriptome. A viable pair (red and green 
columns) is composed of a dysregulated (top, red, >3 SDs) and an unchanged tumor sample (top, 
green, <1 SD) where both samples have normal expression (bottom, dark grey, <1 SD) in the matched 
normal prostate tissue. Gray regions and red horizontal lines indicate the +/-1 and +/-3 SD intervals. b, 
Gene expression in tumor cells is more variable than in normal tissue. Relative standard deviation 
(RSD) of gene expression in 16 prostate tumor samples (y-axis) and 16 matched normal prostate 
samples (x-axis). Genes selected as dysregulated in viable gene instance pairs (panels a, c) are shown 
in red. c, Dysregulated and unchanged gene instance pairs are predominantly up-regulated. Scatter 
plot shows the normalized expression values (core score; y-axis) for every gene used in the analysis of 
dysregulated genes (x-axis). The most extreme dysregulated gene instance (>3std, red) and most 
normal unchanged instance (<1std, green) are plotted for every gene (as defined in panel a). All 16 
normal prostate controls are shown in grey. Both up-regulated (n=2156) and down-regulated (n=423) 
genes are ordered by absolute expression difference between pairs (red vs. green). Vertical line 
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denotes the YJEFN3 gene shown in panel a. d, Enrichment scores for mutations in the distal loci of 
plexi containing up-regulated genes, also referred to as mutations linked to dysregulation (high-
confidence, intra-chromosomal interactions). Histograms show the log2 ratio of observed over expected 
mutation counts (y-axis) at increasing levels of dysregulation (x-axis). Significant enrichments are 
indicated with an asterisk (PBonf<0.05; 20,000 permutations). e, Mutations linked to dysregulation enrich 
in promoters and enhancers of non-prostate tissues. Histograms showing the ratios of overlap between 
mutations linked to dysregulation against those linked to unchanged gene instances (fold changes; y-
axis). Mutations linked to dysregulation enrich in promoters (red) and enhancers (yellow) when 
considering the breadth of Epigenome Roadmap cell and tissue types (x-axis). Numbers denote -log10 
P-value of Wilcoxon enrichment. f, Out-of-context de-repression. Scatterplot showing the number of 
enhancers overlapping mutations linked to dysregulation (y-axis) against those linked to unchanged 
gene instances (x-axis). Both classes of mutations are contained in low-activity regions in prostate. 
Colors denote tissues from the Epigenome Roadmap project. Mutations linked to dysregulation are 
significantly more likely to lie in enhancer regions in non-prostate samples (Wilcoxon P = 10-4.81). 

Figure 4 | Plexus recurrence test identifies putative driver genes. a, The ITM2A plexus, visualized 
as in Fig. 1a, is used as an example. b, Regional mutation rate heterogeneity. Mutation rates (x-axis) 
assessed over a sliding window of 50Kb for every 100bp tile in the human genome (number of tiles, y-
axis) follow a power-law distribution. Vertical bars denote boundaries of mutational bins used in tile 
resampling. Inset: Power-law distribution of regional mutation rates holds for each chromatin state. c-f, 
The plexus recurrence test for ITM2A. First, we tally the number of 100bp tiles in the ITM2A plexus and 
store them in a matrix structured by mutational bin (columns) and chromatin state (rows). This is the 
plexus tile decomposition for ITM2A (c). Second, we randomly sample 100bp tiles from the whole 
genome in such a way as to match the tile decomposition of the ITM2A plexus. From this we obtain a 
matrix of expected mutation counts for every patient (columns) and chromatin state (rows) combination 
(d). Third, we tally the mutations in the ITM2A plexus and obtain the matrix of observed mutation 
counts (e). Fourth, we use the observed and expected counts to obtain enrichment scores for each 
patient and chromatin state combination (f). Finally, the enrichment scores are aggregated across 
patients in order to obtain a final, permutation-based P-value for each chromatin state. Shading 
denotes intensity in the matrices; rows are independently normalized. g, The plexus recurrence test 
identifies 15 recurrently mutated plexi. Convergence across patients for the top plexi ranges from 35% 
to 89% of tumor samples (left group). When all regulatory mutations are taken into account 
convergence ranges from 78% to 100% of tumor samples (right group). Mutations: total number of 
mutations. Elements: number of mutated elements. Chromosomes: number of chromosomes 
containing mutated elements. Convergence element: largest percentage of patients with mutations in a 
single element. Convergence plexus: percentage of patients with mutations at the plexus level. 

Figure 5 | The 3C structure and epigenomic landscape of the PLCB4 plexus.  a, Signal decay rate 
of the plexus recurrence test for the top 15 plexi. We re-compute p-values (y-axis) as we increase the 
stringency of Hi-C interactions (y-axis). The PLCB4 plexus (gold) shows the most robust signal. b, 
Chromatin interactions between the PLCB4 promoter and the rest of the plexus in the RWPE1 prostate 
epithelial cell line. Box plots show the chromatin conformation capture (3C) interaction strength 
between the PLCB4 promoter and each of the other four loci in the plexus. Adjacent EcoRI fragments 
are used as controls. Error bars represent SD of three biological replicates assayed in duplicate. c, The 
3C-validated PLCB4 plexus visualized as in Fig. 1a with the following differences: only mutations for the 
significant ‘txn’ state are shown in red, scale marks for each locus are drawn every 5kb, and Bezier 
curves depict 3C-validated (red) and Hi-C (grey) interactions. d, Epigenome Roadmap annotations for 
the five loci of the 3C-validated PLCB4 plexus (x-axis) depicted linearly across 127 cell types (y-axis; 
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15-state model). e, GTEx eQTLs for PLCB4 in 87 prostate samples. Scatter plot depicts the –log10 P-
value (y-axis) of PLCB4 eQTLs for 783 variants (97, genotyped in red; 686 imputed in dark red) 
contained in the five of the 3C-validated PLCB4 plexus (x-axis). 

Figure 6 | PLCB4 plexus mutations affect the binding of key prostate transcription factors. 
Regulatory annotations for 15 non-coding mutations (columns) in the 3C-validated PLBC4 plexus 
overlapping ‘txn’ state elements. a, Cancer transcription factor binding sites in non-prostate cells 
overlap mutations in the 30.0 locus. b, Histone marks in six prostate cell lines of increasing tumorigenic 
potential (from the bottom to the top) show losses at the 9.2 and 10.4 loci, but consistent activity at the 
18.5 and 30.0 loci. Distance of the mutation to the closest region is indicated by saturation, where full 
saturation indicates direct overlap and minimum saturation indicates a 10kb distance. c, Intra-genomic 
Replicates (IGR) measures of affinity modulation for a collection of prostate related transcription factors 
assayed in prostate cell lines. Gains (red) and losses (blue) in binding are shown for significant results. 
Nested cells show results from multiple replicates of the same factor. d, IGR profile plots showing the 
most disruptive effect for each of the 14 single-nucleotide mutations in the 3C-validated PLCB4 plexus. 
Each plot shows the affinity estimation (y-axis) for each of the reference (blue) and mutated (red) 
sequences. Affinity estimate profiles are shown over a 400bp window (x-axis) centered on the k-mer. 
Only the maximum affinity k-mer for each allele is presented in the final IGR result. e, PLCB4 loss 
lowers PI3K signaling. Three independent PLCB4-deficient PC3 lines were engineered using 
CRISPR/Cas9 and their lysates immunoblotted with the indicated antibodies.  f, PLCB4 overexpression 
increases PI3K signaling. Three independent PC3 lines stably transduced with pBABE myc-PLCB4 
were isolated and their lysates immunoblotted with the indicated antibodies. 

Supplementary	figure	legends	

Supplementary Figure 1 | ChromHMM states and aggregate states. Emission parameters for the 
15-state model learnt on the five core histone marks. Aggregate states represent simplified regulatory 
roles. 

Supplementary Figure 2 | Recurrence at contiguous genomic elements is rare. a. Genome 
coverage for each of the eight aggregate chromatin states in prostate tissue (RWPE1). b. Number of 
elements (y-axis) and size of elements (x-axis) for each of the eight chromatin states, showing the 
distribution of regulatory element size in prostate tissue. The majority of regulatory elements are a few 
Kb in size. c, Percentage of measurements (y-axis) obtained from sliding a window of variable length 
(1,6 to 819 Kb) and calculating the percentage of all tumors that harbor at least one mutation in that 
window (x-axis). Sliding a window of 13 Kb (orange), the size of the largest regulatory elements, yields 
a distribution of recurrence events across all tumors that rarely exceeds 15% of prostate tumor 
samples.  

Supplementary Figure 3 | Plexus composition across all genes. a and b. Number of genes (y-axis) 
and number of elements, nucleotides and mutations for raw (a) or cut (b) plexi (x-axes) for each of the 
eight aggregate states that are proximal (left), distal intra-chromosomal (cis; middle) or distal inter-
chromosomal (trans; right) with respect to the gene body. 

Supplementary figure 4 | Enrichment copy number corrected. Enrichment scores for mutations in 
the distal loci of plexi containing up-regulated genes, also referred to as mutations linked to 
dysregulation (high-confidence, intra-chromosomal interactions). Histograms show the log2 ratio of 
observed over expected mutation counts (y-axis) at increasing levels of dysregulation (x-axis). 
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Supplementary figure 5 | PLCB4 3C chromatograms. Sanger sequence chromatograms of 3C 
ligation products formed between the PLBC4 promoter and mutated genomic loci. 

Supplementary	table	legends	

Supplementary Table 1 | Plexus of protein-coding genes are enriched for regulatory chromatin 
states. Ratio between the number of tiles observed on average for each plexus and the number of tiles 
expected based on genomic proportions in prostate cancer. 

Supplementary Table 2 | Nucleotide and dinucleotide composition of chromatin states in 
prostate tissue. Nucleotide and dinucleotide counts and proportions (columns) for all eight aggregate 
chromatin states in prostate tissue (rows). 

Supplementary Table 3 | Plexus recurrence test results for all GENCODE protein-coding genes. 
Expanded table of 15 cancer-associated genes with significantly mutated chromatin states in their 
plexus.  

Supplementary Table 4 | Plexus intersections of all novel cancer-associated genes. Number of 
shared tiles between all pairs of genes among those identified under regulatory convergence. Only the 
portions of the plexus marked by the significantly mutated chromatin state are intersected. 

Supplementary table 5 | PLCB4 oligonucleotides. Nucleotide sequence of primers used in chromatin 
conformation capture (3C) experiments validating the PLCB4 plexus interactions.  

Supplementary	datasets	

Supplementary Data 1 | Number of interactions in the plexi of protein coding genes.  Table 
header: Internal gene ID, GENCODE gene symbol, Gene class, Number of unique anchors at TSS, 
Number of proximal interactions, Number of distal cis interactions, Number of distal trans interactions.  

Supplementary Data 2 | Number of tiles, elements and mutations in the plexi of protein-coding 
genes. Table header: Internal gene ID, GENCODE gene symbol, Stringency class, Annotation class, 
Distance class, opn, pro, reg, enh, txn, poi, rep, low. 

Supplementary Data 3 | Dysregulated-unchanged gene-instance pairs. Table header: Internal 
gene ID, Gene normal core median, Gene normal core SD, Dysregulated index, Dysregulated patient 
ID, Dysregulated core score, Unchanged index, Unchanged patient ID, Unchanged core score. 

Supplementary Data 4 | Plexus recurrence test results for all GENCODE protein-coding genes. 
P-values for the permutation test for regulatory convergence. Table header: Most significant p-value, 
Internal gene ID, opn, pro, reg, enh, txn, poi, rep, low, exn, Ensembl gene ID, Gene symbol. 

Supplementary Data 5 | PLCB4 3C plexus eQTL results in normal prostate. Table header: 
Chromosome, Start, End, Gene isoform, Beta, T-statistic, P-value, FDR. 
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Methods 
Data sources 
Normal prostate Hi-C chromosome interaction data (chromatin loops) in the RWPE1 cell line were 
downloaded from the Gene Expression Omnibus (GEO) database at www.ncbi.nlm.nih.gov/geo 
(accession number: GSE37752) as part of the work of Rickman et al.19 Prostate cancer-normal whole 
genome and transcriptome pairs for 55 prostate adenocarcinoma patients were obtained through the 
database of Genotypes and Phenotypes (dbGaP) at www.ncbi.nlm.nih.gov/gap (accession number 
phs000447.v1.p1) and directly at the Broad Institute as part of the work of Baca et al.20 Gene 
annotations were downloaded from GENCODE at www.gencodegenes.org (version 18). DNase 
annotations generated as part of the ENCODE project were downloaded from the UCSC Genome 
Browser at genome.ucsc.edu. Epigenome Roadmap promoter and enhancer annotations were 
obtained at the Broad Institute (www.broadinstitute.org/~meuleman/reg2map/HoneyBadger_release). 
Normal prostate transcriptomes and genotypes for eQTL analysis were obtained from the Genotype-
Tissue Expression (GTEx) project at www.gtexportal.org. Additional ChIP-seq data for epigenomic and 
transcription factor binding analyses were downloaded from cistrome.org/db. Copy number data for the 
55 prostate adenocarcinoma patients was obtained from www.cbioportal.org. 

Epigenomic profiling of healthy prostate chromatin state 
Healthy prostate ChIP-seq data for five core histone marks (H3K4me1, H3K4me3, H3K36me3, 
H3K27me3 and H3K27ac) and DNase was generated in the RWPE1 cell line with the same protocols 
used in Cowper-Sallari et al.8 except using sonication instead MNase and the Illumina HiSeq 2000 
instead of the Genome Analyzer. Chromatin states were learned with ChromHMM16. We used 100bp 
elements in order to maintain the granularity of the smaller DNase annotations from ENCODE. The 
Epigenome Roadmap 15-state ChromHMM model was further aggregated into eight broader functional 
categories: open chromatin, promoter, regulatory (with mixed promoter and enhancer marks), 
enhancer, transcribed (with no other function), poised (promoter, enhancer and transcribed), repressed, 
and low (no marks). These aggregate states are denoted by the following three-character mnemonics: 
opn, pro, reg, enh, txn, poi, rep and low (Figure 1 and Supplementary Figure 1). All source data can be 
downloaded from www.pmgenomics.ca/lupienlab/tools.html. 

Plexus assembly 
Objective - The plexus framework seeks to identify cellular functions that are dysregulated through 
alterations distributed over multiple loci in the context of cancer recurrence and trait association studies. 
It is predicated on the notion that the set of loci that affect any given cellular function are likely to be 
non-contiguous and sparse on the one-dimensional sequence of the genome. Identifying these sets of 
loci from sequence alone or through exhaustive testing is currently infeasible; we therefore use 
experimentally derived annotations for both the locations and interactions of these sets of loci in order 
to address the sparseness and non-contiguity problems, respectively. Furthermore, both the locations 
and interactions of the loci that determine cellular functions are highly variable from one cell type to 
another. The use of cell types that are relevant to the trait or disease under study is critical. In principle, 
the framework can use any source of alteration. In this study we focus on somatic, single nucleotide 
variants in a cohort of 55 prostate adenocarcinoma patients, but we look forward to expanding the 
repertoire of alterations to germ line variants, all structural classes of mutations, and epigenetic and 
transcription factor binding changes. We define the plexus as the comprehensive set of genomic loci 
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that when altered can modulate a cellular function. In this study we focus on the expression of protein-
coding genes. We first build the cell-type-specific plexus for every protein-coding gene; this includes 
regulatory elements that are both proximal and distal to the gene body, on both the same (cis) and 
other (trans) chromosomes. Specifically, we do this with histone marks and chromosome interactions 
(chromatin loops) obtained for the same cell-type in which the mutations originate. Ultimately, this 
allows us to search for genes that have more mutations in their regulatory elements or gene body than 
expected by chance alone. We use two types of plexus in this study: a lenient “raw” plexus, which 
intends to encompass as many of the true interacting loci as possible, and a stringent “cut” plexus, 
where interactions are filtered based on a permutations test. 
Raw plexus - We retrieve transcription start site (TSS) and exon annotations from the GENCODE 
database (version 18) for all protein-coding genes. We segment the human genome (hg19) into 100bp 
tiles and assign a chromatin states to every tile (opn, pro, reg, enh, txn, poi, rep or low). Chromosome 
interactions (chromatin loops) were originally generated through the Hi-C sequencing technique. 
Interactions between loci are mediated through DNA binding proteins. Each binding site at the terminus 
of an interaction likely covers a few tens of bases. However, the Hi-C technique can only resolve the 
positions of the interaction termini to a few kilobases. This is due to the use of the HindIII restriction 
enzyme that cuts the DNA. The ends of Hi-C sequencing reads are unambiguously assigned to HindIII 
fragments, but the exact location of the terminus within the fragment cannot currently be determined. 
We refer to each segment of the genome contained between two HindIII restriction sites as an “anchor”. 
Every 100bp tile is therefore contained within a HindIII anchor, and anchors are connected to each 
other through Hi-C interactions. Through this network we assign tiles to the plexus of every gene. First 
we retrieve all anchors within 10Kb up and downstream of the gene’s TSS. For each anchor at the 
TSS, we then retrieve all other anchors connected through Hi-C interactions. Each of these anchors is 
extended 10Kb in both directions. We then store all tiles that overlap either a TSS anchor, any of the 
gene’s exons, or any of the extended anchors at the distal ends of the Hi-C interactions. The list of 
100bp tiles is then sorted and filtered down to an array of unique tile indices. Raw plexus tile arrays 
frequently span multiple chromosomes and several megabases (Fig. S3). They also contain a variety of 
chromatin states and disparate regions of the genome with highly discordant mutation rates. The plexus 
tile array is the representation of all the proximal and distal elements that potentially impinge on a 
gene’s function. We compute plexus tile arrays for every protein-coding gene in the human genome 
(Data S1), and then retrieve tumor mutations for every array (Data S2). The raw plexi constitute the 
basis for our plexus recurrence test.  
Cut plexus - Several factors can account for the presence of reads spanning two loci in a Hi-C library, 
many of which are confounders to identifying true regulatory interactions. We set out to assign a 
measure of confidence on putative interactions present in each of the raw plexi previously defined. The 
cut plexus program takes the raw plexus of a gene as input. It then loads the Hi-C matrices for the 
chromosome that contains the gene. The matrices are binned at 10Kb intervals for the intra-
chromosomal interactions (inter-chromosomal are discarded for the cut plexi) and computed using the 
hiclib library (mirnylab.bitbucket.org/hiclib). The raw data from Rickman et al. contains four replicates 
'GFP1', 'GFP2’, ’ERG1' and ’ERG2' of varying sequencing depth. Interactions are tested separately 
across the four replicates and aggregated at the very end of execution. The GFP and ERG conditions 
are intended to simulate normal and cancerous cell states. We want to capture interactions that can 
occur across the carcinogenic continuum. Furthermore, we are primarily interested in identifying loci 
that can interact rather than loci that interact frequently. Therefore, because these loops might vary 
over time, identifying a loop in a single replicate is valid. We then assess each of the locus pairs in the 
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raw plexus. Interactions that are less than 100Kb from the gene promoter are tagged as “proximal”. 
Because for now we are only concerned with intra-chromosomal interactions, the rest are tagged as 
“distal_cis”. We generate a p-value for each of the four replicates by permuting matrix counts between 
the two loci. 
Hi-C null - This null distribution represents the expected counts given the distance between loci and the 
genomic background at each of the loci. To compute the null we start by tallying the observed matrix 
count. This number is the largest value among the cells corresponding to the bins containing the pair of 
loci or any of the eight adjacent cells. We do this in order to include arrangements in which the probed 
loci and interaction anchors are separated in adjacent bins. The anchors that mediate the interactions 
between genes and regulatory elements might not overlap perfectly43. True interactions can be 
mediated by physical interactions that are some kilobases away. Additionally, restriction fragment 
processing makes the exact location of these interactions uncertain. We then take a segment of the 
diagonal that crosses the cell addressed by bin coordinates of the loci. This diagonal slice of the matrix 
expands 100 cells upstream and downstream parallel to the diagonal and two cells perpendicular. We 
tally the matrix values (balanced reads) over the diagonal slice. And then randomly reassign the same 
number of reads over a matrix of the same dimensions as the diagonal slice. We count the number of 
times that we see values larger than or equal to the observed matrix count in the permuted matrix. We 
then regenerate the randomized matrix 100 times to improve this estimate. The p-value for each 
replicate is calculated by dividing the number of cells with tallies larger or equal than the observed 
value over the total number of cells and matrix randomizations. This is equivalent to averaging the 
expectation estimate over multiple permutations. We combine the p-values over the four replicates 
using Fisher’s method. This final p-value is what we use to filter the locus pairs in the raw plexus to 
generate cut plexi of varying stringency. Through this approach we attempt to estimate the probability 
of the observed read count given the genomic context of the two loci.  Our intention is to correct for the 
interface or area of interaction between the loci at the level of chromosome territories. We do this at a 
scale that is much larger than the individual loci but that retains the local conformational background. 
We run the permutation test on all GENCODE V18 genes marked as ‘protein_coding’ for all 
chromosomes except Y and M, which yields a total of 20,233 genes. We use a p-value threshold of 
0.05 to define all subsequent statistics for cut plexi. 

Dysregulated	gene	analysis	

Core scores - We identify dysregulated copies of genes in specific patients, referred to as “gene 
instances”, across 16 cancer transcriptomes by normalizing every gene’s expression using an 
aggregate of values in the matched normal prostate tissue. The normalized measure we use is a slight 
variation on z-scores, which we refer to as “core scores”. We calculate the median and standard 
deviation (SD) of each gene from the 16 normal transcriptomes. Because prostate cancer has a strong 
genetic component we consider that some gene instances might already be dysregulated in the 
matched normal tissue. Therefore, we discard the six most extreme values for each gene. We do this 
by sorting all gene-instances for each gene and finding the sequence of ten consecutive instances with 
the smallest SD. Because removing the extremes of any distribution will warp the estimates of its SD, 
we estimate the distortion factor extracting the core from random sets of 16 values sampled from the 
normal distribution and correct the core-scores accordingly (distortion factor ~2). Finally, we filter out 
lowly expressed genes where the normal core has a median FPKM value under 
0.3{Ramskold:2009wu}.  

Matching of pairs - We search for genes where at least one instance has an absolute core score larger 
than three SDs (dysregulated) and one other instance has an absolute core score smaller than one SD 
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(unchanged). These dysregulated and unchanged gene instance pairs allow us to study transcriptional 
dysregulation in one patient while having a control instance of the same gene in a second patient. The 
expression values for patients in normal tissue need to have an absolute core score smaller than one 
SD in order to be included in the analysis. We do this to ensure that dysregulation is not already 
present in the adjacent matched tissue before tumor development. We identify 17,850 viable, 
dysregulated and unchanged gene instance pairs over a total of 2,579 genes (Fig. 3c, data S3), of 
which 83% are up regulated (14,893), and only 17% are down regulated (2,957).  

Enrichment scores - We use the cut plexi (p-value < 0.05) to assign mutations to each of the gene 
instances for all viable pairs. We use cut plexi and intra-chromosomal interactions in order to enrich for 
true interactions, as the Hi-C is noisy. Because we are strictly interested in the effect of distal 
mutations, we only consider those that are beyond 100Kb of the plexus’ gene promoter. Additionally, 
we restrict our analysis to up-regulated genes were we have more power to detect an effect. Having 
gathered mutations for both dysregulated and unchanged gene instances in the tumor samples, we can 
compute the enrichment of mutations in dysregulated gene instances by comparing the two groups in 
aggregate. Because the specific contribution of different classes of regulatory elements to 
tumorigenesis is unknown, we compute enrichment scores for each of the chromatin states separately. 

Pair resampling - We test several intensities of dysregulation for enrichment in mutations, from core 
scores between 3 and 12 SDs. For each baseline we pick all the pairs in the 17,850 viable pair set 
where the core score of the dysregulated gene instance exceeds or equals the baseline core score. A 
permuted set of pairs of the same size as the one defined by the core score baseline is resampled 
within the same collection of genes by randomizing the indices of the dysregulated and unchanged 
instances between genes. This is similar to randomly sampling 16x16 patient sample pairs, but with a 
non-uniform distribution over the patients. By simply permuting the indices between genes, the 
distribution approximately preserves the patient proportions among the dysregulated and unchanged 
categories across all genes. We then retrieve the plexus mutations for the dysregulated and unchanged 
gene instances and append them to the their respective mutation matrices (gene instances by 
chromatin states). As we increase the core score baseline, the number of viable pairs decreases and 
the analysis looses power. 

Patient balancing - Patient proportions in the dysregulated and unchanged matrices are not balanced. 
When selecting gene instance pairs for a given core score baseline, we tally the number of times each 
patient appears in either category. Based on the mutation rate heterogeneity across patients, we 
compute the expected dysregulated to unchanged ratio of mutations for each chromatin state. We then 
compare this to the dysregulated to unchanged ratios between the two mutation matrices. The ratio of 
ratios is log2 transformed and constitutes the enrichment score for each chromatin state at each 
baseline. We derive a p-value for this test by counting the number of times that the observed 
enrichment score is larger than the enrichment scores in the permuted gene instance pairs. Finally, we 
correct the p-values by the 10 core scores baselines and 8 chromatin states tested (Bonferroni; 80 
tests). 

Copy number correction - If dysregulation is due to regional copy number alteration, then the region is 
likely to have more mutations assigned to it during variant calling, as the copies are conflated in the 
variant calling. This could lead to the appearance of enrichment when compared to an unchanged gene 
instances in a patient with no copy number alterations in that region. We therefore add an additional 
condition to the previous approach in order to avoid the possible effect of copy number alterations in 
our study of dysregulated genes. When collecting gene instance pairs for each core score baseline, a 
pair is only considered if it has copy number data available and neither gene instance has a copy 
number alteration. This filter is applied to both the observed and permuted pair sets. 
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Plexus recurrence test 
Tile resampling - The plexus recurrence test is designed to identify gene plexi that harbor more 
mutations than are expected by chance alone. It estimates the expected number of mutations through 
resampling. Its null distribution accounts for critical confounders that have been previously identified in 
the search for driver events in cancer genomes1. Namely, it accounts for heterogeneous mutation rates 
across patients, chromatin states and genomic regions. The null distribution is computed from a 
resampling matrix in which all 100bp tiles used to assemble the plexi are binned based on their 
chromatin state and regional mutation rate. The regional mutation rate at each tile is calculated from its 
surrounding 50Kb by pooling mutations across all patients. We find that larger windows fail to account 
for the broad variations in mutation rates, whereas smaller windows are similar in size to genes, which 
can be legitimate units of selection. Each tile is assigned its mutational bin number based on the log2 of 
its regional mutation rate (Fig. 4b). The two-dimensional binning of all tiles in the human genome 
results in a matrix of tile arrays of 15 mutation bins by 8 chromatin states. Each tiles retains the 
assignment of mutations for each patient; thus preserving mutation rate heterogeneity within the cohort. 
A similar two-dimensional binning is applied to the tile array of the test plexus, where instead of tile 
index list we store tile tallies (Fig. 4c). We refer to this matrix of tile tallies as the “tile decomposition” of 
the plexus, it encodes our understanding of the attributes across the loci that compose the plexus that 
affect its accumulation of mutations but that are independent of selection; i.e. the mutational 
confounders. The plexus tile decomposition guides the resampling in each permutation. Tiles are 
picked at random and with replacement from the resampling matrix such as to match the tile 
decomposition of the test plexus and control for the mutational confounders. The collection of permuted 
tile arrays constitutes the null distribution with which to estimate expected mutation rates for each 
patient and chromatin state combination. 
Centroid score - In the next step, the plexus recurrence test retrieves the patient mutations for the test 
plexus’ and each of the permutation’s tile arrays. A tile is considered mutated for a patient if it contains 
one or more mutations. Each tile is therefore associated with a binary array with an entry for each 
patient. Mutations for the permuted tile arrays retain their original assignments to patients in order to 
control for mutation rate heterogeneity in the cohort, including patient-specific variation in chromatin 
sate mutation rates. Observed mutations in the test plexus’ tile array are compared to mutations in the 
permutation’s tile arrays using a separate centroid score for each chromatin state and the exon 
annotations contained in the plexus (referred to just as “states” for brevity). The centroid score is 
computed in the following manner. Mutations are tallied in state by patient matrices for all tile arrays 
(Fig. 4d and 4e). Tally matrices for the permutations are stored as a three-dimensional null volume. 
Each list of mutation tallies for each state and patient combination is upper quartile normalized across 
the permutation dimension. Positive normalized tallies summed across patients constitute the centroid 
score, which are calculated separately for each state. This produces nine centroid scores for the test 
plexus and each of the permutations. Each patient contributes to the centroid score proportionally to 
how much it positively deviates from what is expected for that patient and chromatin state combination 
(Figure 4f). 
Significance - Statistical significance for the test plexus is computed by comparing its centroid scores 
against those of the permutations. The size of the null distribution (number of permutations) is 
increased until a reliable P-value is determined. Every plexus is tested with at least one thousand 
permutations. The number increases by an order of ten in each subsequent round. Only plexi in which 
one or more of the nine tests (eight chromatin states and exons) have two or fewer permutations that 
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have a centroid score larger or equal to that of the null pass on to the next round. Obtaining P-values 
for all plexi requires up to ten million permutations in some cases, which is consistent with the number 
of hypotheses tested. We perform nine tests on each of the 20,318 protein-coding genes and correct 
the P-values accordingly with the Benjamini-Hochberg method (Supplementary data 4). 
Discussion - Many features remain to be incorporated and explored in future version of the plexus 
recurrence test. First, due to limited availability and high cost of Hi-C data, we constructed the plexus of 
each gene in reference to a single prostate cell line. This single reference practice is common in 
functional genomic studies of GWAS trait-associated variants, which rely on small numbers of model 
cell lines relevant to the trait or disease being studied. However, profiling chromatin states, DNase 
hypersensitivity regions, and especially Hi-C interactions in each tumor and normal sample individually 
would provide for a much richer analysis of each patient’s disease. The direct incorporation of variability 
in plexus structure between individuals and the regulatory rewiring within tumors would be particularly 
interesting. Second, even though we corrected for mutation rate differences between chromatin states, 
we treated all mutations in the same chromatin state as equally likely to have a regulatory effect and 
drive tumorigenesis. Protein-coding models that distinguish between synonymous and non-
synonymous mutations and attempt to predict the effect of variants are readily available. However, 
similar models for regulatory alterations are not as developed. Richer regulatory models will allow future 
iterations of the test to incorporate the magnitude and direction of effect for non-coding mutations in the 
expectations derived from resampling. For example, by pre-computing the likelihood of a mutation 
perturbing enhancer activity or modulating binding of a transcription factor. The models will eventually 
leverage tumor-specific information on regulator activity, such as the intra-cellular concentration of 
aberrant transcription factors. Third, the three-dimensional structure of the genome has been shown to 
be scale-free, with rich patterns of chromosome interactions at multiple scales. Therefore, our test of 
non-contiguous recurrence should not be limited to a single scale, in this case the organization of 
regulatory elements around a single gene, but should consider both smaller and larger structures. The 
tested units could range from enhancer clusters or sets of interaction termini to transcriptional factories 
or topological domains. The pathway-level convergence we observe among the 15 drivers we identify 
suggests another set of layered recurrence tests across the hierarchy of cellular functions. A 
hierarchical recurrence test could reveal convergent mutations in the merged plexi of protein 
complexes, metabolic pathways and cancer hallmarks. Finally, the plexus recurrence test should 
combine somatic and germ line variants of strong and weak effects, that are rare to common in 
frequency, both protein-coding and non-coding, to cover the entire causal timeline of cancer, from 
inherent risk to emergence and evolution. This would constitute the first approximation of a unified 
model of tumorigenesis  

PLCB4	plexus	chromatin	conformation	capture	(3C)		
The RWPE-1 (normal prostate epithelial) cell line was kindly provided by Dr Jyotsna Batra (Queensland 
University of Technology, Brisbane, Australia) and cultured in KSFM supplemented with 5 ng/ml 
epidermal growth factor, 25 μg/ml bovine pituitary extract and 2 mM glutamine. 3C libraries were 
generated using EcoRI as described previously{Ghoussaini:2014uq}. 3C interactions were quantitated 
by real-time PCR (Q-PCR) using primers designed within EcoRI restriction fragments (Fig. S5, table 
S5). Q-PCR was performed on a RotorGene 6000 using MyTaq HS DNA polymerase (Bioline) with the 
addition of 5 mM of Syto9, annealing temperature of 66oC and extension of 30sec. 3C analyses were 
performed in three independent library preparations with each experiment quantified in duplicate. 
Bacterial artificial chromosome (BAC) clones were used to create artificial libraries of ligation products 
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in order to normalize for PCR efficiency. Q-PCR products were electrophoresed on 2% agarose gels, 
gel purified and sequenced to verify the 3C product.  

eQTL	analysis	of	variants	in	the	PLCB4	plexus		 	
The Genotype-Tissue Expression (GTEx) project is a publicly available resource that provides matched 
genotype and expression data from normal human donors{Ardlie:2015tv}. 87 of these donors have 
transcriptome data (RNA-seq) for prostate, in addition to genotype and covariates data. We intersect 
the five 3C-validated loci with the GTEx genotypes and obtain 783 variants (97 genotyped, 686 
imputed) for the PLCB4 plexus. Nine transcripts of PLCB4 (ENSG00000101333.12) have detectable 
expression in at least one of the 87 prostate transcriptomes (ENST00000278655.4; a, 
ENST00000334005.3; b, ENST00000378473.3; c, ENST00000378501.2; d, ENST00000416836.1; e, 
ENST00000464199.1; f, ENST00000473151.1; g, ENST00000482123.1; h, ENST00000492632.1; i). 
We compute expression quantitative trait loci (eQTLs) for the nine transcripts and the 783 variants 
using the Matrix eQTL R package44. The Bonferroni cutoff for statistical significance is 10-5.149 (0.05 / 
(783 * 9)). We used the age, race and ethnicity of the 87 GTEx donors as covariates in the analysis. 

Intra-genomic	replicates	(IGR)	analysis	of	PLCB4	plexus	mutations	

We downloaded signal tracks from Cistrome DB for 118 ChIP-Seq experiments performed in prostate 
cell lines, as well as ERG and GABPA in Jurkat cells45. We construct 400bp window 7mer and 8mer 
IGR models for each track, as previously described8 except that we do not apply the competition filter. 
We use 373,359 active prostate elements genome wide as the IGR regional filter. We define these 
regions as the union of peaks across 29 experiments profiling DNase, H3K27ac, H3K4me1, H3K4me2, 
and H3K4me3 in the same prostate cell lines. Using these models, we run the IGR algorithm on 14 out 
of the 15 mutations in ‘txn’ states and 35 of the 36 total mutations contained in the PLCB4 plexus (only 
single-nucleotide variants). Many of these mutations show statistically significant affinity modulation of 
transcription factor binding between the reference and alternate alleles (Bonferroni corrected).  

IGR filters - We have updated the original IGR program with two new filters. First, in order to discard 
noisy affinity models lacking sufficient instances of a given k-mer genome wide to make a clean 
prediction we devise the “quality” and “symmetry” filters. IGR computes an averaged binding profile for 
every k-mer; in this case along a 400bp window centred on the k-mer. Every k-mer has two profiles for 
its forward and reverse complement orientations, and every IGR result has two final k-mers for the 
highest affinity among the reference and alternate allele k-mer sets. The correlation between the 
forward profile and the mirror image of the reverse profile constitutes the measure of quality. The 
correlation between the forward profile and its own mirror image constitutes the measure of symmetry. 
We then remove any mutations results where either reference and alternate final k-mer profiles had 
either symmetry or quality smaller than 0.5 and both had symmetry and quality smaller than 0.85. 
Second, in order to only select mutations for which the effect size was large enough we calculated 
baseline-offset affinities for each of the final k-mer profiles. This measure compares the affinity centred 
at the k-mer, minus the average of the signal 195-200bp away from the k-mer in both forward and 
reverse orientations. Using these, we define the “maximum prominence” as the highest absolute 
baseline-corrected affinity in either the reference or alternate allele within 200bp of the k-mer and the 
“maximum difference” as the largest absolute difference between baseline-corrected reference and 
alternate alleles within 200bp of the k-mer. We exclude all mutation results for which the ratio between 
the maximum difference and maximum prominence was less than 0.5. 

Enrichment analysis - We test PLCB4 plexus mutations for enrichment of affinity modulating results that 
satisfy all of the previous filters. We assess the set of mutations in the PLCB4 plexus as a whole using 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 30, 2016. ; https://doi.org/10.1101/097451doi: bioRxiv preprint 

https://doi.org/10.1101/097451


20 

Fisher’s exact test within each experimental setup. Enrichments were corrected using FDR and only 
significant IGR mutations were used when counting (q-value < 0.024; estimate = 6.73 for 8-mers) 

PLCB4	overexpression	
PC3 cells were transfected with PolyJet (SignaGen Laboratories) as per manufacturer’s instructions.  
Briefly, cells were plated the night before transfection to achieve 70% confluence on 10 cm dishes. PC3 
cells were transfected with empty vector, pcDNA3.1-mycHis-PLCB4, p3xFlag-CMV10-PTEN or both.  
Forty-eight hours later, the cells were harvested by washing and scraping in ice-cold PBS followed by 
centrifugation at 1500 x g for 5 minutes at 4°C.  The cell pellet was lysed in 160 μL of CHAPS lysis 
buffer (40 mM HEPES pH 7.5, 0.3% CHAPS, 120 mM NaCl, 1 mM EDTA, 50 mM sodium fluoride, 20 
mM beta-glycerophosphate, protease inhibitor cocktail) on ice for 20 minutes. The cell lysate was 
clarified by centrifugation at 15,000g for 15 minutes at 4°C and the supernatant was normalized for total 
protein using the Bradford assay (Biorad). SDS loading buffer was added to the normalized samples 
and 30 μg of total protein was loaded on 8% acrylamide gels and transferred to PVDF membranes. The 
membranes were blocked in 5% BSA in TBST and immunoblotted with anti-PLCB4 (sc-20760, Santa 
Cruz Biotech), anti-phospho Akt (#4058, Cell Signaling), anti-phospho Erk (#9106, Cell Signaling), anti-
Akt (#4691, Cell Signaling), anti-Erk (#9102, Cell Signaling) and anti-PTEN (#9559, Cell Signaling). 
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opn pro reg enh txn poi rep low
proximal 2.0           1.9           2.0           1.7           1.8           1.3           1.1           0.8           
distal_cis 1.4           1.2           1.4           1.3           1.4           1.1           1.1           0.9           
distal_trans 1.2           1.1           1.2           1.2           1.2           1.1           1.1           1.0           

Supplementary Table 1 - Plexus of protein-coding genes are enriched for regulatory chromatin states
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state AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT ALL MutRteRnk #MutRank CpG
opn 2038057 1524985 2309776 1556218 2265764 2443163 958272 2306343 1894140 2113434 2447267 1527792 1231077 1891959 2267317 2032368 30808000 7 8 958272
pro 2850215 1813475 2504225 2088332 2557736 2697172 1134351 2497855 2178040 2208747 2704144 1820505 1670258 2167723 2568709 2839258 36302800 2 6 1134351
reg 4536920 2684157 3888668 3209327 3836214 3515950 1025191 3883141 3201168 2870862 3521743 2683325 2744768 3189527 3841497 4526761 53163100 5 7 1025191
enh 20782788 12158882 17706751 14843783 17795488 15074062 3605952 17703523 14331455 12624896 15115886 12198874 12582471 14321193 17842511 20830775 239524700 4 2 3605952
txn 8427032 5025053 7125216 6412020 7345157 5890525 1216510 7142206 5865845 4795317 5879282 5033817 5351281 5883509 7353251 8479075 97228000 6 5 1216510
poi 2864388 1815799 2735960 2026880 2729322 2670090 864113 2737504 2310818 2207247 2676597 1827499 1538498 2307901 2745484 2867079 36927400 1 4 864113
rep 12465058 7717502 11671769 9430412 11807671 9982999 1872983 11672542 9687046 7945696 9987565 7738311 7324961 9690006 11826294 12496591 153321100 3 3 1872983

state AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT ALL MutRteRnk #MutRank CpG
opn 0.066 0.049 0.075 0.051 0.074 0.079 0.031 0.075 0.061 0.069 0.079 0.050 0.040 0.061 0.074 0.066 1.000 6 8 3.1%
pro 0.079 0.050 0.069 0.058 0.070 0.074 0.031 0.069 0.060 0.061 0.074 0.050 0.046 0.060 0.071 0.078 1.000 2 6 3.1%
reg 0.085 0.050 0.073 0.060 0.072 0.066 0.019 0.073 0.060 0.054 0.066 0.050 0.052 0.060 0.072 0.085 1.000 4 7 1.9%
enh 0.087 0.051 0.074 0.062 0.074 0.063 0.015 0.074 0.060 0.053 0.063 0.051 0.053 0.060 0.074 0.087 1.000 4 2 1.5%
txn 0.087 0.052 0.073 0.066 0.076 0.061 0.013 0.073 0.060 0.049 0.060 0.052 0.055 0.061 0.076 0.087 1.000 5 5 1.3%
poi 0.078 0.049 0.074 0.055 0.074 0.072 0.023 0.074 0.063 0.060 0.072 0.049 0.042 0.062 0.074 0.078 1.000 1 4 2.3%
rep 0.081 0.050 0.076 0.062 0.077 0.065 0.012 0.076 0.063 0.052 0.065 0.050 0.048 0.063 0.077 0.082 1.000 3 3 1.2%

state A C G T ALL MutRteRnk #MutRank
poi 9443030 9001040 9022162 9458966 36927400 1 4
pro 9256251 8887120 8911439 9245952 36302800 2 6
rep 41284745 35336209 35358625 41337860 153321100 3 3
enh 65492215 54179045 54271121 65576964 239524700 4 2
reg 14319074 12260501 12277107 14302561 53163100 5 7
txn 26989323 21594408 21574265 27067122 97228000 6 5
opn 7429038 7973543 7982634 7422722 30808000 7 8

state A C G T ALL MutRteRnk #MutRank GC%
txn 28% 22% 22% 28% 1 6 5 44%
enh 27% 23% 23% 27% 1 4 2 45%
rep 27% 23% 23% 27% 1 3 3 46%
reg 27% 23% 23% 27% 1 5 7 46%
poi 26% 24% 24% 26% 1 1 4 49%
pro 25% 24% 25% 25% 1 2 6 49%
opn 24% 26% 26% 24% 1 7 8 52%

Supplementary Table 2 - Nucleotide and dinucleotide composition of chromatin states in prostate tissue
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state P-val. Nmuts N=1 N>1 Nmuts N=1 N>1 State All
ITM2A enh 1E-07 58 9 7 16 / 245 9 / 20 13 24% 31 56% 129 18 18 36 / 793 12 / 20 14 25% 48 87% 181 483.4
INSRR poi 2E-07 76 8 9 17 / 142 11 / 18 12 22% 34 62% 267 49 40 89 / 2727 22 / 23 21 38% 55 100% 99.4 1756
ZCCHC16 txn 3E-07 63 20 5 25 / 193 17 / 22 16 29% 33 60% 275 60 55 115 / 2138 23 / 23 18 33% 54 98% 251 1347
ZBED2 pro 9E-07 72 23 12 35 / 331 13 / 21 10 18% 39 71% 421 74 69 143 / 4173 22 / 23 34 62% 55 100% 176 2771
SPANXN3 pro 1E-06 24 2 5 7 / 76 4 / 14 5 9% 19 35% 124 31 24 55 / 1047 17 / 22 12 22% 47 85% 37.2 709.9
PLCB4 txn 2E-06 79 9 15 24 / 341 14 / 23 10 18% 37 67% 362 59 54 113 / 3576 23 / 23 34 62% 54 98% 419 2497
COQ3 pro 2E-06 58 19 9 28 / 247 11 / 20 9 16% 35 64% 326 57 58 115 / 2913 22 / 23 27 49% 55 100% 125 1957
EDNRA txn 2E-06 102 19 18 37 / 452 14 / 19 10 18% 41 75% 392 80 63 143 / 4238 21 / 23 42 76% 55 100% 586 2734
CRY2 txn 3E-06 83 18 16 34 / 358 13 / 21 11 20% 36 65% 289 70 48 118 / 3569 20 / 23 33 60% 55 100% 455 2376
ZC3H12B rep 3E-06 150 38 24 62 / 576 16 / 22 20 36% 49 89% 415 75 66 141 / 2661 23 / 23 39 71% 55 100% 505 1754
C14orf180 txn 4E-06 49 5 11 16 / 133 11 / 19 6 11% 28 51% 142 26 26 52 / 1700 20 / 23 30 55% 51 93% 161 1243
IDO2 rep 4E-06 98 27 18 45 / 378 17 / 20 12 22% 48 87% 189 38 34 72 / 1525 19 / 21 26 47% 54 98% 368 1058
RRAD poi 4E-06 47 5 8 13 / 113 8 / 20 11 20% 28 51% 180 30 27 57 / 2091 19 / 22 30 55% 52 95% 71.8 1430
SLC25A5 rep 4E-06 68 16 11 27 / 196 12 / 18 10 18% 37 67% 143 26 24 50 / 1332 17 / 21 16 29% 50 91% 189 852.7
SSX3 enh 4E-06 53 6 8 14 / 230 9 / 20 14 25% 36 65% 104 14 17 31 / 682 17 / 21 14 25% 43 78% 196 468.4

N=1 number of loci mutated in exactly one tumor
N>1 number of loci mutated in two or more tumors
Mut elmts number of mutated elements / Total number of elements in plexus
MutChrm number of mutated chromosomes / Total number of chromosomes in plexus
Size Total size of regulatory plexus for enrichment chromatin state, and for all regulatory states

Supplementary Table 3 - Plexus recurrence test results for all GENCODE protein-coding genes

SinglElmt PlexusMut elmts MutChrm SinglElmt Plexus Mut elmts MutChrm

Enriched chromatin state All regulatory states
Size (kb)Enrichment Mutations Fraction mutated Convergence Mutations Fraction mutated Convergence
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internal_gene_id internal_gene_id internal_gene_id
G55697 ITM2A enh 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G03424 INSRR poi 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G56086 ZCCHC16 txn 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0
G37166 ZBED2 pro 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0
G56583 SPANXN3 pro 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0
G32563 PLCB4 txn 0 0 0 0 0 54 5 0 0 0 0 0 0 0 0 0
G40609 EDNRA txn 0 0 0 0 0 5 77 0 0 0 0 0 0 0 0 0
G45904 COQ3 pro 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0
G08510 CRY2 txn 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0
G20773 RRAD poi 0 0 0 0 0 0 0 0 0 26 23 0 0 0 0 0
G20774 FAM96B(joined with RRAD) poi 0 0 0 0 0 0 0 0 0 23 37 0 0 0 0 0
G55439 ZC3H12B rep 0 0 0 0 0 0 0 0 0 0 0 125 0 0 0 0
G16752 C14orf180 txn 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0
G50554 IDO2 rep 0 0 0 0 0 0 0 0 0 0 0 0 0 84 0 0
G56193 SLC25A5 rep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0
G55121 SSX3 enh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37

Supplementary Table 4 - Plexus intersections of all novel cancer-associated genes
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Eco RI fragment 
(chr20; hg19)

PLCB4 promoter Bait 9,044,304 gccattatggccttctcttggttcactgtgg

Control 1 9,266,126 ccaggagaactctttactgggtcacacagagtagc

Locus 9.2a Test 9,272,249 cgcccaaaattgttccacctgaagtcc

Control 2 9,279,603 gagccttcacacatcccagttatgactgatcc

Control 1 9,291,851 ggtgtggtgtatgatgcaattctcctctgc

Locus 9.2b Test 9,292,762 gatacaagaaagtcccatgggcaagaagaagg

Control 2 9,296,754 cccattctcatttccctaagaaatgtcttggg

Control 1 10,429,887 gcaaactagcaccatctgtcacctgtagaattgc

Locus 10.4 Test 10,433,106 cgattctcctgtctcagcttcccgagtagc

Control 2 10,440,835 ggaagtggaggatacaaacttcctgtttgaaagagc

Control 1 18,529,891 cgtatcggtgggttccacatctataaattcaacc

Locus 18.5 Test 18,541,239 ctggttgtatcctcagcttaacaggcactgg

Control 2 18,544,452 gcttttcattttctcaactgtgaccttcaaagagc

Control 1 30,049,488 ctggcttattcggattcttattgcacatatttgc

Locus 30 Test 30,053,453 ccagtgttagtgaatctgtggcctaacttgtgacc

Control 2 30,061,463 gcatcattcacttagactatgacatgcacgatgc

Supplementary Table 5 - PLCB4  oligonucleotides

3C Eco RI 
primers Sequence (5’ to 3’)Plexus loci
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