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Abstract

Motivation: Functional annotation and enrichment analysis based
on ontologies has become one of the standard methods of analysis of ex-
perimental results. Over the past decade, many methods have been pro-
posed for statistical quantification of enrichment of different functional
terms and many implementations of these methods are available. As the
popularity of these methods grows, the need for tools facilitating their
automation increases.

Results: We present a complete Python library for statistical enrichment
analysis of gene sets and gene rankings compatible with most available bi-
ological ontologies. It allows the user to perform all necessary steps: read-
ing the ontologies and gene annotations in multiple formats; performing
enrichment analysis using various methods and visualizing the results as
readable reports. Importantly, our library includes methods for correcting
for multiple hypotheses testing including computation of False Discovery
Rates.

Availability: The library is compatible with recent versions of python
interpreter (> 2.6 or > 3.3) and is available on github at:
https://github.com/regulomics/biopython together with an API doc-
umentation and a tutorial. The sample galaxy installation can be found
at http://regulomics.mimuw.edu.pl/wp/GO/.

Contact: bartek@mimuw.edu.pl

1 Introduction

For the past several decades of explosive growth of molecular biology the prob-
lem of aggregating biological information and storing it in a usable format was
a major challenge. Ontologies, i.e. graphical structures representing the hi-
erarchy of terms in a research area together with a curated annotation of the
connections between genes and ontology terms are growing and are becoming
the de facto standard for knowledge representation for computer processing in
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the biomedical area. The publication of the original paper on Gene Ontology
[ABBT00] marks an important step in the process of answering this need and
providing the community with the tools for using it. Since that time, many sci-
entists have engaged in multiple efforts to either create new ontologies or curate
gene annotations to the correct terms of these ontologies most comprehensively
exemplified by the OBO foundry repository [SART07].
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Figure 1: Bio.Ontology statistical term enrichment and visualization workflow

Growing coverage of ontologies makes them more and more useful for au-
tomated analyses of gene sets and gene rankings. However, despite the quick
increase of the number of proposed tools for ontology-based analyses the prob-
lem of finding a tool that can be easily integrated with other analyses remains
unsolved for many researchers. In particular, many of the popular tools are
either web-browser oriented like DAVID [HSLO08] or desktop applications like
GSEA [STM105] or Ontologizer [BGVRO08], making it the user responsibility to
provide integration with the rest of the analysis pipeline. On the other end of
the spectrum, there is a flurry of scattered libraries available online as a source
code, often lacking support and stability required for trusting the results of the
tool. In this work we present a new library for Ontology parsing and enrich-
ment analysis that easily integrates with Biopython [CAC*09], one of the most
popular python libraries for general bioinformatical analyses. It also includes
an interface to the Galaxy web server [GNT10] allowing for integration with the
users analyses both in the form of python scripts and galaxy workflows. In the
following sections we will describe briefly the structure and functionality of the
package together with a few examples of typical usage.

2 Implementation

The Bio.Ontology package consists of three main parts: input and output meth-
ods for reading the ontology and annotations in different formats; statistical
methods for performing functional enrichment analyses on gene sets provided
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by the user and visualization methods for presenting the results. These parts
revolve around the essential parts of workflow when carrying out the analyses
(Fig. 1). Bio.Ontology allows user to find enriched terms in both: gene sets and
gene rankings. To help with the problem of many genes having synonymous
identifiers in different databases, our toolbox provides simple disambiguation
method based on synonyms provided with the ontology annotation. Besides
studied genes user needs an ontology and associations from genes to ontology
terms. Presented software allows to use many different ontologies, many of
which can be found at http://www.obofoundry.org. Bio.Ontology parses files
in the most popular obo format and additionally it can handle the output gen-
erated by novel NeXO [DKS*12] software. Used ontology graph representation
allows for editing: user can get subgraph of parsed graph induced either by spec-
ified set of terms or edges types. Additionally the graph can be visualized with
the help of graphviz library. Bio.Ontology can read associations in standard gaf
format. Depending on the size of annotation graph: smaller (e.g. single model
organism) annotations can be stored in memory for fast access while larger an-
notation sets (e.g. Uniprot database) in a sqlite database to make the analysis
feasible even on an average PC.

After parsing the ontology and annotation data, Bio.Ontology allows the
user to access the imported structures through python API using all biopython
libraries. To facilitate the processing of ontologies, Bio.Ontology provides links
to export the ontology into an object recognized by the networkx library [HSS08]
allowing for wide array of graph algorithms and visualization methods.

As many users are interested in statistical enrichment analysis, Bio.Ontology
provides built-in tools for various established methods for measuring statistical
enrichment. This includes two methods for gene sets analysis: standard and
most widely adopted term-for-term method based on one-tailed Fisher’s ex-
act test and a more advanced parent-child [GBRVO0T7] method which takes the
hierarchical dependencies between the ontology terms into account when calcu-
lating the significance of enrichment. As it has become a standard practice in
recent years, Bio.Ontology also allows for gene rankings analysis. Two methods
available are: GSEA method [STM'05] and novel ranked-parent-child method
developed with the toolbox. All of these are described in more detail in methods
section.

Functional enrichment analysis usually involves testing large number of sta-
tistical hypotheses, standard corrections for multiple hypothesis testing are pro-
vided in our implementation. User can choose between Bonferroni correction
and Benjamini-Hochberg procedure for controlling false discovery rate (FDR)
[BH95]. Additionally, the GSEA method is coupled with its own method for
controlling FDR based on resampling statistics.

All of the features mentioned so far can be also utilized from the provided
interface to the Galaxy server [GNT10]. We provide a demo installation of the
enrichment analysis tools on our website!, however galaxy users deploying their
own servers can also install our package on their servers.

1http ://regulomics.mimuw.edu.pl: 12347
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Figure 2: Bio.Ontology enrichment results from [WF10] visualized as a DAG
using graphviz.
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Obtained results can be filtered by p-value or FDR and then visualized.
Bio.Ontology can generate reports as plain text or as html pages. Another way
is to visualize enriched terms as graphs using either graphviz (an example in Fig.
2 to put the results straight into image file or export them into gml format which
can be later imported and edited using tools as Cytoscape [SMO™T03]. Generated
results can be as well exported to etsv (extended tab separated values) files and
then imported again in the future.

The fact that our software is implemented to be compatible with biopy-
thon and the Galaxy servers allows it to be easily integrated in larger analysis
pipelines. In our experience, it makes for an easy integration with differential
gene expression analysis in Galaxy platform or analysis of genes targeted by a
certain Transcription Factor found in biopython.

3 Methods

Let us first define the standard term-for-term enrichment for gene sets. Essen-
tially, we want to find out whether given term in ontology is connected to set
of genes representing a biological phenomenon such as differential expression in
an experiment.

Let n and m be the size of the study and population sets and let the n; and
my be the number of genes associated with term ¢ in those sets. We calculate
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the probability P of drawing n; or higher number of genes annotated to the
term ¢ given the distribution (hypergeometric) of the population:

min(mq,n) (mt) (n;—:]rfu)

p= > =t

=, (%)

The method described above does not take the dependencies between the
terms into account, which effects in some terms being over-represented. One of
the solutions to this problem is parent-child [GBRV07] method. It calculates the
probability described above but given the distribution of genes annotated to the
parents of term ¢. Set of genes annotated to the parents of ¢ can be computed
in two different ways: either as intersection or sum of sets of genes annotated
to the each parent. Let my) and ny;) be the number of genes annotated to
the parents from population and study set genes respectively. We calculate the
p-value of t as follows:

" () (i )
= (me)
=n¢ p(t)

As mentioned before toolbox contains also methods for computing enrich-
ment for gene rankings. Genes are usually ranked based on some biologically
relevant criteria (e.g. differential expression between samples) and the goal is
to detect any ontology terms enriched in certain extreme parts of the ranking.

First implemented method is GSEA applied to ontology terms. Let S; be
the set of genes connected to term t. We want to find out whether members of
S; are evenly distributed throughout the rank L or not. Sets that contribute to
distinction should have their members concentrated at one part of the ranking.
First step in GSEA method is computing the Enrichment Score - ES. It is
calculated by walking down the L, increasing the ES when we encounter gene
in S; and decreasing it when we encounter genes not in S;. The amount of
increase is proportional to the gene position in ranking. Next step is calculating
the significance of ES. We permute the ranking of genes many times and for each
permutation we compute ES which generates null distribution. Our empirical
p-value is then computed according to this distribution. As we compute the ES
for each term in ontology last step is adjusting the estimated significance level
for multiple hypothesis testing based on Bonferroni correction or Benjamini-
Hochberg’s FDR.

The second method is ranked-parent-child. We create gene set Sy from each
prefix of ranking. Then for each S} we look for enriched terms using described
above parent-child method. Now the term ¢ might be significant for many pre-
fixes with certain p-value. We choose the smallest one as term ¢ enrichment. In
our experience, this method was able to return significant results with efficiency
on par with GSEA method.
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