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Abstract. Chemical cross-linking coupled with mass spectrometry is a powerful tool to study protein-
protein interactions and protein conformations. Two linked peptides were ionized and fragmented to
produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from
two peptides. The peptide identification problem becomes a peptide pair identification problem. Most
tools, however, don’t search all possible pairs due to the long computational time. Consequently, a
significant proportion of all linked peptides are missed. In our earlier work, we developed a tool named
ECL to search all pairs of peptides exhaustively. However, compared to tools only pairing a small
number of peptides, ECL is still too slow when the database is large.

Here, we propose an advanced version of ECL, named ECL 2.0. It achieves linear time and space
complexity by taking advantage of the additive property of a score function. It can exhaustively search
tens of thousands of spectra against a database containing thousands of proteins in a few hours. Among
another four state-of-the-art tools, ECL 2.0 is much faster than pLink, StavroX, and ProteinProspector,
but slower than Kojak which, however, only searches the smallest proportion of all peptide-peptide pairs
among the five tools.
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1 Introduction

The power of chemical cross-linking coupled with mass spectrometry (XL-MS) has been well demon-
strated in modeling protein structures and understanding protein-protein interactions [8, 9, 30, 34,
49]. However, identifying cross-linked peptides from XL-MS data is computationally challenging.
The time complexity is quadratic with respect to the number of peptides in a database. Thus,
exhaustively searching all peptide-peptide pairs is time consuming and resource demanding. For
example, there are around 3 × 106 peptides in the homo sapiens (human) database (UniProtKB
/ Swiss-Prot, 2015-11 release, 20,205 proteins). Supposing the precursor mass tolerance is 10 ppm
(parts per million), there will be, on average, around 107 peptide-peptide pairs for each spectrum.

Many methods [1, 3, 6, 7, 10, 11, 13, 19, 22, 25, 27–29, 31, 36, 37, 40, 42, 45–47] have been
developed. These methods can be classified into two groups. The first group converts searching
peptide-peptide pairs into searching two peptides sequentially with the help of special cross-linkers.
The second group limits the number of peptide-peptide pairs with heuristic pre-filtering.

Methods in the first group convert the quadratic time complexity into a linear time complexity
by using mass-spectrometry-cleavable cross-linkers [15, 17, 32, 33]. This kind of cross-linkers can
be broken during dissociation (e.g. collision-induced dissociation (CID)). Huang et al. proposed to
couple such cross-linkers with three levels of mass spectrometry (i.e. MS1, MS2, and MS3) [15, 17].
Generating three levels of mass spectra requires a longer cycle time. Liu et al. [6, 23] proposed
to use cross-linker-cleaved signature peaks to infer the masses of two peptide chains. This method
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avoids generating three levels of mass spectrometry. However, the cross-linker-cleaved signature
peaks may sometimes not be observed, which results in loss of useful data.

xQuest/xProphet [35, 43], pLink [45], ProteinProspector [42], StavroX [7], and Kojak [11] are
typical tools in the second group. They only keep a fixed number of peptides to generate peptide-
peptide pairs for each experimental spectrum. For example, xQuest/xProphet first uses the top
5000 peptides for pairing. Then, it filters all peptide-peptide pairs with a fast pre-score. Finally,
the top 50 peptide-peptide pairs are used for fine scoring. Similarly, pLink, ProteinProspector,
and Kojak use the top 500, 1000, and 250 peptides to generate peptide-peptide pairs, respectively.
Such a strategy, however, only searches a fraction of all possible peptide-peptide pairs. Let’s take
the homo sapiens (human) database as an example. There are around 107 peptide-peptide pairs
for each spectrum. With a rough estimation, pLink, ProteinProspector, and Kojak only search
about 1.2%, 5.0%, and 0.3% of all peptide-peptide pairs, respectively. Thus, the non-exhaustive
search strategy cannot guarantee to find a spectrum’s highest scored peptide-peptide pair. The
result is highly variable with respect to database size. Our experiments show that the sensitivity
decreases greatly as the size of the database increases. Meanwhile, the corresponding false discovery
proportion (FDP) increases considerably.

In XL-MS, using a noncleavable amine-reactive cross-linker, such as disuccinimidyl suberate
(DSS) and bis(sulfosuccinimidyl) suberate (BS3), to link two proteins is a widely used protocol. In
order to process XL-MS data using a noncleavable cross-linker, we developed a tool named ECL
[48] that can exhaustively search a database in tens of hours. However, the running time of ECL
increases quadratically with respect to the increase of the database size. Comparison with the four
above-mentioned representative benchmark methods in the second group shows that, although ECL
is faster than xQuest and pLink, it is slower than ProteinProspector [42] and Kojak [11] when the
database is large.

In this paper, we propose a tool, named ECL 2.0, that can search all peptide-peptide pairs with
a linear time and space complexity. Given a file with tens of thousands of MS2 spectra, ECL 2.0
can exhaustively search them against a database containing thousands of proteins in a few hours.
ECL 2.0 is much faster than pLink, StavroX, and ProteinProspector. ECL 2.0 is still slower than
Kojak. But ECL 2.0 explores 100% of the search space, while Kojak only explores a small fraction,
as we just described.

The rest of the paper is organized as follows: Section 2 describe the algorithm of ECL 2.0.
Section 3 demonstrates the performance of ECL 2.0 with real data sets. Section 4 concludes the
paper.

2 Method

In XL-MS, we first link proteins with a cross-linker. Then, we quench the reaction and digest the
proteins. Finally, after digestion, we obtain pairs of linked peptides. By convention [36, 45], two
linked peptides are called α chain and β chain, respectively. After dissociation (e.g. CID), there
are fragmented ions from two peptide chains. Figure 1 illustrates the ions with marks: green marks
indicate linear ions that only contain one chain’s ions; red marks indicate cross-linking ions that
contain one chain’s ions plus a modification containing the cross-linker and the other whole peptide.

Given an experimental spectrum, the objective of identifying cross-linked peptides can be ex-
pressed as

max
t

s(e, t),

s.t. |m(e)−m(t)| ≤ τ1, (1)
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where s(e, t) is a score function, e is the experimental spectrum, t is the theoretical spectrum
of cross-linked peptides, m(•) is the precursor mass of a spectrum, and τ1 is the precursor mass
tolerance. Existing tools pair two peptide chains to generate the corresponding theoretical spectra,
which results in a quadratic time complexity.
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Fig. 1. An illustration of cross-linked peptides. Green marks indicate linear ions and red marks indicate cross-linking
ions.

We observe that, with an additive score function [12, 20], the score corresponding to a peptide-
peptide pair equals the sum of two scores corresponding to two peptide chains. Other researchers
have also made this observation [27, 37], but they did not take advantage of it to reduce the time
complexity. Based on this observation, we propose a new algorithm that achieves a linear time
complexity. In the following, we first describe what an additive score function is. Then, we show
ECL 2.0’s algorithm and its computational complexity. Finally, we describe the work-flow of ECL
2.0.

2.1 Additive Score Function

Given a spectrum, we can digitize the whole m/z range into bins based on the MS2 m/z tolerance:
i = m

τ2
− o, where i is the index of the digitized bin, m is an m/z value, τ2 is the MS2 m/z

tolerance, and o is an offset. For the i-th bin, the corresponding intensity can be obtained as

vi =
∑(i+1+o)×τ2

m=(i+o)×τ2
pm, where vi is the i-th value in the digitized vector and pm is the peak intensity

whose m/z value is m. If there is no peak at the location m, pm = 0. Then, we have the following
definition:

Definition 1. Given a digitized experimental spectrum e and a digitized theoretical spectrum t, an
additive score function reads

s(e, t) =
∑
j

∑
i

f(gi(e), tj), (2)

where gi(e) is a measure of the i-th bin in the experimental spectrum, tj is the j-th value in t, and
f(gi(e), tj) is a score term.

Roughly speaking, there are two types of score functions in linear/cross-linked peptides identi-
fication tools [5, 11, 14, 18, 21, 27, 35, 41–45]:

1. Dot-product-based score functions, such as the dot product [18, 21, 42], intensity summation
[35, 43], XCorr [5, 11, 14, 27, 35, 43], and the kernel spectral dot product (KSDP) [44, 45].

2. Probability based score functions, such as the match-odds [35, 43] and log-odds function [41].
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The dot product, intensity summation and XCorr are additive score functions. For example,
XCorr can be expressed as:

XCorr(e, t) =
∑
i

ei × ti −
1

150

∑
i

75∑
δ=−75,δ ̸=0

ei+δ × ti

=
∑
i

(ei −
1

150

75∑
δ=−75,δ ̸=0

ei+δ)× ti

=
∑
i

gi(e)× ti, (3)

where δ is an m/z offset and gi(e) = ei − 1
150

∑75
δ=−75,δ ̸=0 ei+δ. Here, we assume that there are no

overlapping peaks in the theoretical spectrum. The power of XCorr has been demonstrated in many
methods [11, 12, 16, 35, 38]. Thus, we use it as the score function of ECL 2.0.

According to Figure 1, peaks forming a theoretical spectrum are from four sources: linear ions
and cross-linking ions from α chain; linear ions and cross-linking ions from β chain. Correspondingly,
a score of two linked peptides can be expressed as

s(e, t) =
∑
j

∑
i

f(gi(e), tj)

=
∑
jα

∑
i

f(gi(e), tjα) +
∑
jβ

∑
i

f(gi(e), tjβ )

= s(e, tα) + s(e, tβ), (4)

where jα is a bin index corresponding to the peak from α chain, jβ is a bin index corresponding to
the peak from β chain, tα is a digitized theoretical spectrum containing peaks from α chain only,
and tβ is a digitized theoretical spectrum containing peaks from β chain only. Let’s call s(e, tα)
and s(e, tβ) chain scores for convenience. With Equation (4), Equation (1) can be expressed as

max
t

s(e, tα) + s(e, tβ),

s.t. |m(e)−m(tα)−m(tβ)−mx| ≤ τ1, (5)

where mx is the mass of the cross-linker.

2.2 Searching Cross-Linked Peptides

Equation (5) implies that, given an experimental spectrum, we can first calculate all chain scores
independently (Algorithm 1). Then, we can add pairs of chain scores whose total mass is in a
certain range. The time complexity of adding all possible pairs of scores is quadratic with respect
to the number of chain scores. In this section, we propose a digitization-based algorithm to achieve
linear time complexity. We first describe the procedure of searching cross-linked peptides given an
experimental spectrum. Then, we analyze this procedure’s time and space complexity.

Given a database, we first in silicon digest all proteins into n peptide chains. All the peptide
chains are sorted based on their masses. Then, we split the whole mass range into multiple intervals.
The width of the intervals w is much smaller than the precursor mass tolerance τ1. Here, we set
the width w to 0.001 Da. The number of intervals is equal to b = mmax−mmin

w + 1, where b is the
number of intervals, mmax is the maximal considered peptide chain mass, and mmin is the minimal
considered peptide chain mass. All of these values are pre-fixed before the database search. Finally,
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Algorithm 1 Calculating chain scores. Without loss of generality, we use ions fragmented from
CID. It can be easily applied to other dissociation methods by changing b/y-ion to a/x-ion or
c/z-ion. b is a vector of b-ion masses from the peptide chain, and y is a vector of y-ion masses from
the peptide chain. We assume that the difference of any two masses is larger than the MS2 m/z
tolerance. x is the mass of the cross-linker, mc is the mass of the peptide chain, e is the digitized
experimental spectrum, me is the mass of the experimental spectrum, τ2 is the MS2 m/z tolerance,
and o is the offset in digitization.
1: procedure ChainScore(b,y, x,mc, e,me, τ2, o)
2: c← vector[len(e)]
3: s← 0
4:
5: for i← 1, len(b) do ◃ fill bins corresponding to b-ions
6: if i < x then
7: c[⌊bi/τ2 + o⌋]← 1
8: else
9: c[⌊(bi +me −mc)/τ2 + o⌋]← 1
10: end if
11: end for
12:
13: for i← 1, len(y) do ◃ fill bins corresponding to y-ions
14: if i > x then
15: c[⌊yi/τ2 + o⌋]← 1
16: else
17: c[⌊(yi +me −mc)/τ2 + o⌋]← 1
18: end if
19: end for
20:
21: for j ← 1, len(c) do ◃ calculate the chain score
22: for i← 1, len(e) do
23: s← s+ f(gi(e), c[j]) ◃ f(gi(e), c[j]) is the score function
24: end for
25: end for
26:
27: return s
28: end procedure

we assign all peptide chains into different intervals based on their masses, and all peptide chains in
the same interval are treated as having the same mass.

Given an experimental spectrum, we calculate the chain scores with respect to all possible
peptide chains using Algorithm 1 and assign them to the corresponding intervals. According to
Section 2.1, the highest score must come from one of the following situations:

– Two peptide chains are from different intervals: the highest score is equal to the sum of the two
top chain scores in two different intervals.

– Two peptide chains are from the same interval: the highest score is equal to two times the top
chain score in the interval.

Thus, we only need to keep the top-scored peptide chain and the chain score in each interval during
the calculation of s(e, t). Given a peptide chain in the i-th interval, another peptide chain must be
in the interval satisfying |(i+ j)× w −m(e) +mx| ∈ [−τ1, τ1]. Here, we ignore the rounding error
because w (i.e. 0.001 Da) is much smaller than τ1 (e.g. 0.05 Da) in practice. Algorithm 2 shows the
pseudo code of identifying cross-linked peptides given a set of peptide chains and an experimental
spectrum.
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Algorithm 2 Identifying cross-linked peptides with linear time and space complexity. {bi} is a set
of b-ion mass vectors from all peptide chains, {yi} is a set of y-ion mass vectors from all peptide
chains, {xi} is a set of link-site indexed corresponding to all peptide chains, {mci} is a set of peptide
chain masses, e is a digitized experimental spectrum, me is the mass of the experimental spectrum,
mx is the mass of the cross-linker, τ1 is the precursor mass tolerance, τ2 is the MS2 m/z tolerance,
and o is the offset in digitization.
1: procedure Search({bi}, {yi}, {xi}, {mci}, e,me,mx, τ1, τ2, o) ◃ i ∈ [1, n]
2: sc ← vector[⌈max({mCi})/τ1⌉]
3: s← 0
4: c1 ← −1
5: c2 ← −1
6:
7: for i← 1, |{mci}| do ◃ calculate chain scores and assign them to ranges
8: s← ChainScore(bi,yi, xi,mci , e,me, τ2, o)
9: if sc[⌊mci/τ1⌋] < s then
10: sc[⌊mci/τ1⌋]← s
11: end if
12: end for
13:
14: for i← 1, ⌈max({mci})/0.001⌉/2 do ◃ pair peptide peptide pairs
15: for j ← (me −mx −mci − τ1)/0.001− i, (me −mx −mci + τ1)/0.001− i do
16: if sc[i] + sc[j] > s then
17: s← sc[i] + sc[j]
18: c1 ← i
19: c2 ← j
20: end if
21: end for
22: end for
23:
24: return s, c1, c2
25: end procedure

In the following, we analyze the time and space complexity of Algorithm 2. The time complexity
of mass range splitting and peptide chains assignment is

O(n). (6)

Without loss of generality, we suppose that the time and space complexity of calculating a chain
score is independent of the number of peptides. The time complexity of calculating all chain scores
and assigning them to intervals is

O(n). (7)

The time complexity of finding pairs of peptide chains, summing chain scores, and keeping the
highest-scored pair is

O =

(
mmax −mmin

w
· τ1
w

)
. (8)

Combining Equation (6), (7), and (8), we obtain the total time complexity:

O
(
n+

(mmax −mmin)τ1
w2

)
= O(n). (9)

Because mmax, mmin, τ1, and w are pre-fixed and independent of the database size, the total time
complexity is linear with respect to the number of peptide chains. It is easy to see that the space
complexity is also linear: O(n+ (mmax −mmin)/w).
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2.3 The Work-Flow of ECL 2.0

Figure 2 shows the work-flow of ECL 2.0. It takes a data file and a protein database file as inputs.
After digitizing spectra, digesting protein sequences, and in silicon fragmenting peptide sequences,
it calculates chain scores using Algorithm 1. Once is has obtained each spectrum’s chain scores,
the method pairs peptide chains and finds the highest-scored pair using Algorithm 2. It then
calculates an e-value using the linear tail-fit method [24]. Finally, it estimates each spectrum’s
q-value according to the estimated e-values. There are three kinds of peptide-spectrum matches
(PSMs): the first contains two peptide chains from the target database, the second contains two
peptide chains from the decoy database, and the third contains one peptide chain from the target
database and another peptide chain from the decoy database. Thus, we can estimate the false
discovery rate (FDR) using [43, 45] FDR(s) = f(s)−d(s)

t(s) , where s is an e-value, t(s) is the number

of the first kind of PSMs whose e-values are smaller than or equal to s, d(s) is the number of the
second kind of PSMs whose e-values are smaller than or equal to s, and f(s) is the number of the
third kind of PSMs whose e-values are smaller than or equal to s. Finally, we convert the FDR to
a q-value [39] using q(t) = mins≥t FDR(s), where t is a threshold.
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Fig. 2. The workflow of ECL 2.0.

3 Experiments

We use the public data in Makowski et al. [26] to demonstrate the performance of ECL 2.0. There are
10 data files from the cross-linking of human tissues, containing about 3×105 MS2 spectra in total.
Please refer to Makowski et al. [26] for the details of the sample preparation and data acquisition.
The paper reported 19 cross-linked proteins with high confidence. In order to demonstrate the effect
of database size, we generate 6 databases of various sizes:
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1. The first database contains the 19 from Makowski et al. [26] proteins and 50 randomly selected
proteins.

2. The second database contains all proteins in the first database and an additional 50 randomly
selected proteins.

3. The third database contains all proteins in the second database and adds an additional 100
randomly selected proteins.

4. The fourth database contains all proteins in the third database and adds an additional 300
randomly selected proteins.

5. The fifth database contains all proteins in the fourth database and adds an additional 500
randomly selected proteins.

6. The last database contains all proteins in the fifth database and adds an additional 4000 ran-
domly selected proteins.

The randomly selected proteins are from Arabidopsis thaliana, while the samples are from human
tissue. Thus, without considering decoy sequences, we have 6 databases whose protein numbers are
69, 119, 219, 519, 1019, and 5019, respectively.

We use StavroX (Version 3.6.0), pLink (Version 1.23), ProteinProspector (Version 5.17.1), Ko-
jak (Version 1.4.3), and ECL 2.0 (Version 2.3.1) to search these data files against 6 databases,
respectively. The precursor mass tolerance is 10 ppm, and the MS2 m/z tolerance is 0.02 Da. The
allowed maximum missed cleavage is 2. The allowed precursor masses are from 1000 Da to 12000
Da and the allowed peptide chain lengths are from 5 amino acids to 50 amino acids. All 5 tools use
the target-decoy strategy [4, 43, 45] to estimate the q-value. We use a q-value ≤ 0.05 as the cut-off.
StavroX and pLink provide q-values for their own results. We estimate q-values for the results of
ProteinProspector, Kojak, and ECL 2.0, respectively. With the cut-off results, the PSMs from the
cross-linking of the 19 proteins are treated as true positive PSMs, and the PSMs containing at least
one peptide chain from the randomly selected proteins are treated as false positive PSMs.

3.1 Sensitivity and False Discovery Proportion

We summarize the true positive PSMs and false positive PSMs identified by those 5 tools. StavroX
cannot handle a database with more than 119 proteins and pLink cannot handle a database with
more than 1019 proteins. Figure 3 shows the bar plots of the true and false positive PSMs. The
blue bars denote the true positive PSMs and the orange bars denote the false positive PSMs. The
numbers at the top of the bar are the corresponding FDPs: FDP = S

max(V+S,1) , where V is the
number of true positives and S is the number of false positives. Because the correctness of a PSM
is decided from its peptide chains’ protein type, the calculated FDP is the lower bound of the
underlying true FDP.

Figure 3 shows that ECL 2.0 has the lowest FDP. Its sensitivity is similar to that of the other
state-of-the-art tools. Figure 3 also shows that the FDP increases and the number of true positive
PSMs decreases as the size of database increases. This phenomenon is more significant for the tools
using non-exhaustive search (i.e. pLink, ProteinProspector, and Kojak).

3.2 Running Speed

ECL 2.0 has a fast speed. We calculate each tool’s average running time with respect to different
database sizes. StavroX, pLink, Kojak, and ECL 2.0 are run on a standard PC with an Intel Core
i7-2600 CPU (3.40 GHz, 8 cores) and 32 GB memory. StavroX and pLink don’t support multi-
thread computing. Kojak and ECL 2.0 support multi-thread computing. Thus, Kojak and ECL 2.0
are run with 8 cores. ProteinProspector is run on the authors’ web server. Table 1 shows the average
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Fig. 3. Bar plots showing identified true and false positive PSMs. 6 bar plots correspond to the results of searching
6 databases. Without considering decoy proteins, there are 69, 119, 219, 519, 1019, and 5019 proteins in 6 databases,
respectively. The blue bars denote true positive PSMs and the orange bars denote false positive PSMs. The numbers
on top of each bar are the corresponding FDPs. “PP” stands for ProteinProspector. StavroX cannot handle a database
with more than 119 proteins and pLink cannot handle a database with more than 1019 proteins, so the corresponding
parts are empty.

running time in hours. ECL 2.0 is much faster than pLink, StavroX, and ProteinProspector. It is
slower than Kojak. In order to show that ECL 2.0 does have a linear time complexity, we plot
the average running time with respect to different numbers of peptide chains (including decoy
sequences) in a database in Figure 4. For comparison, we also plot the average running time of
ECL 1.0 (version 1.1.0) which has a quadratic time complexity. The Figure shows the advantage of
linear complexity clearly.

Table 1. The average running time of 5 tools with respect to different database sizes. The unit is hours. StavroX
cannot handle a database larger than 119 proteins and pLink cannot handle a database larger than 1019 proteins.
“NA” stands for not applicable. “PP” stands for ProteinProspector.

Target Protein Number in the Database
69 119 219 519 1019 5000

StavroX 5.11 10.13 NA NA NA NA

pLink 30.25 6.13 10.40 19.46 33.62 NA

PP 0.74 0.78 1.52 1.07 1.32 7.77

Kojak 0.05 0.06 0.10 0.10 0.15 0.51

ECL 2.0 0.67 0.73 0.88 1.25 1.85 6.42

4 Discussions

In this paper, we demonstrated that it is feasible to exhaustively search all possible peptide-peptide
pairs for cross-linked peptides identification with a linear time and space complexity. Given a data
file with tens of thousands of MS2 spectra, it can finish the analysis using a big database in a few
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Fig. 4. A plot showing average running time with respect to different numbers of peptide chains. The orange crosses
are the observed running time of ECL 1.0 and the orange dashed line is the quadratic regression line. The blue dots
are the observed running time of ECL 2.0 and the blue dashed line is the linear regression line. It also shows the
equations and R2 values. Under the 561227 peptide chains setting, ECL 1.0 will need about 90 hours to finish the
analysis according to the estimation, while ECL 2.0 only needs about 6.4 hours. Decoy sequences are included.

hours. To our knowledge, this is the first tool that can exhaustively search about 5000 proteins in
such a short time. Such a speedup is possible due to the following factors:

1) Taking advantage of an additive score function: A final score can be split into two chain scores,
which facilitates further optimizing the algorithm.

2) Digitizing the whole mass range and assigning peptide chains to digitized intervals: With such
a digitization, only one score is kept for each interval. This reduces the time complexity greatly.
Given a peptide chain, the time complexity of finding another peptide chain having the highest
chain score is O(n log(n)) with the help of quicksort [2]. Thus, the bottleneck lies in sorting.

3) Achieving a constant time complexity in summing up chain scores by fixing the number of
digitized intervals.
By fixing the number of ranges, we eliminate the bottleneck and the total time complexity
reduces to O(n). Actually, using counting sort can achieve O(n) time complexity [2] without
fixing the number of ranges. However, its space complexity is quite high, which will be an issue
in cross-linked peptides identification.
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Appendix

How To Use ECL 2.0

ECL 2.0 can be downloaded at http://bioinformatics.ust.hk/ecl2.0.html. It is a command
line program. Users can run it under Windows and Linux. The command is

java −Xmx25g −j a r ECL2 . 0 . j a r parameter . de f data

where “parameter.def” is a parameter file containing all parameters, “data” is a mass spectra file in
mzXML format. There are five outputs: “data.intra.target.csv”, “data.intra.decoy.csv”, “data.inter.target.csv”,
“data.inter.decoy.csv”, and “ECL2.0.log”. The first file contains PSMs from target intra protein
cross-linked peptides; the second file contains PSMs from decoy intra protein cross-linked peptides;
the third file contains PSMs from target inter protein cross-linked peptides; the fourth file contains
PSMs from decoy inter protein cross-linked peptides; and the fifth file is a log. The first four files
can be opened with Excel. Columns in the first four files are arranged as follows:

1. Scan number.
2. Spectrum id.
3. Spectrum m/z value.
4. Spectrum mass.
5. Theoretical mass.
6. Retention time.
7. C13 correction number.
8. Charge.
9. Score.
10. One minus the ratio between the second ranked score and the top ranked score.
11. The derivation between the spectrum’s precursor mass and theoretical precursor mass.
12. Peptide sequence.
13. Protein identifiers.
14. The annotation of the first linked protein.
15. The annotation of the second linked protein.
16. e-value.
17. q-value (decoy files don’t have this column).

ECLViewer 2.0

In order to visualize identified MS2 spectra, we develop a software named ECLViewer 2.0. It has
a graphical user interface. Figure 5 shows one example of ECLViewer 2.0. The user specifies the
result file and the spectra file, and clicks “OK”. ECLViewer 2.0 will load two files and display the
results. After the user double-clicks a scan number in the result page, ECLViewer 2.0 will jump to
the spectrum page (Figure 6) showing annotated spectrum. The name of buttons and labels are
self-explaining.

Supplementary Experiments

Most existing tools pre-filter peptide chains before peptide-peptide pairing: pLink keeps top 500
peptide chains, ProteinProspector keeps top 1000 peptide chains, and Kojak keeps top 250 peptide
chains. Peptide chains whose ranks are lower than the threshold are filtered out and won’t be
searched. We summarize peptide chains’ ranks from the true positive PSMs identified by ECL 2.0.
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Fig. 5. The result page of ECLViewer 2.0.

Because a PSM wouldn’t be identified as long as there was one peptide chain being filtered out,
summarizing the lower ranked chain for each PSM is enough. Figure 7 shows the trend of missed
findings with different chain rank thresholds and database sizes. Those PSMs who have a peptide
chain ranked lower than the threshold are treated as missed findings. Under the top 250 setting,
there are around 30% ∼ 40% missed findings, which is consistent with what we claimed in our
former paper [48]. It is easy to see that the pre-filtering strategy misses a significant amount of
findings, especially when the database is large.
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Fig. 6. The spectrum page of ECLViewer 2.0. It can be activated by double-clicking a scan number in the result page.
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Fig. 7. The trend of missed finding with different chain rank threshold criteria and database sizes. Three chain rank
thresholds are used: top 250, top 500, and top 1000. 6 different database sizes are used. Without considering decoy
proteins, there are 69, 119, 219, 519, 1019, and 5019 proteins in 6 database, respectively. Those PSMs who have a
peptide chain ranked lower than the threshold are treated as missed findings.
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