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Abstract

With recent advancements in measurement technologies, many multi-
way and tensor datasets have started to emerge. Exploiting the natural
tensor structure in the data has been shown to be advantageous for both
explorative and predictive studies in several application areas of bioin-
formatics and computational biology. Therefore, there has subsequently
arisen a need for robust and flexible tools for effectively analyzing ten-
sor data sets. We present the R package tensorBF, which is the first R
package providing Bayesian factorization of a tensor. Our package im-
plements a generative model that automatically identifies the number of
factors needed to explain the tensor, overcoming a key limitation of tra-
ditional tensor factorizations. We also recommend best practices when
using tensor factorizations for both, explorative and predictive analy-
sis with an example application on drug response dataset. The pack-
age also implements tools related to the normalization of data, infor-
mative noise priors and visualization. The package is available in R at
https://cran.r-project.org/package=tensorBF.

1 Introduction
Tensor factorizations are rapidly gaining popularity in data analysis. An in-
creasing number of tensor applications have recently emerged in bioinformatics
to study diverse biological data sets. Recently, [1] applied tensor factorization
to uncover novel gene networks linked to genetic variation in an individuals×
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Figure 1: Illustration of tensor factorisation. The tensor Y can be factorized
into a low-dimensional component space X,W and U which represents relation-
ships across the drugs, genes and cancers. tensorBF automatically prunes out
excessive components (shaded white in component matrices).

tissues× genes tensor. Tensor factorisation has also been shown useful in pre-
dicting survival outcomes in cancers using copy number data of individuals ×
genes× condition tensor [2].

Tensor factorizations also present a novel formulation of precision medicine.
Here, a natural tensor arises when the measurements of a set of biomarkers
can be obtained after multiple interventions in a group of patients, yielding
a individuals × drugs × biomarker tensor. Considering cancer cell lines as
a proxy for individual patients, we formulate an application setting of tensor
factorization in Fig 1. The tensor data set consists of the molecular responses
(gene expression) of multiple interventions (drugs) on multiple different cancers
(cell lines), obtained from the CMap [3]. Here, the key question that tensor
factorisation can answer is, which parts of the drug-responses are specific to
a particular cancer and which are common across various cancers. Elucidating
such effects can generate hypothesis on personalised therapies, as well as increase
understanding on drug action mechanisms.

Fig 1 presents the well-known trilinear CP factorization of a tensor. The
CP (Canonical Decomposition / Parafac) factorizes a tensor into a sum of rank-
one tensors, each of which can be represented as latent variables (factors or
components) in all modes [4, 5]. For the tensor Y ∈ RN×D×L, CP identifies the

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 29, 2016. ; https://doi.org/10.1101/097048doi: bioRxiv preprint 

https://doi.org/10.1101/097048
http://creativecommons.org/licenses/by-nc/4.0/


latent variables X ∈ RN×K , W ∈ RD×K , and U ∈ RL×K as

Y ≈
K∑

k=1

Xk ◦Wk ◦Uk. (1)

While several factorization methods exist for tensors, like the Tucker model
[6], CP factorization is easier to interpret making it a promising choice for
many biological applications. Recently, Bayesian tensor factorizations have been
demonstrated to overcome some of the limitations including automatic deter-
mination of the number of components [1, 7], however, R package for Bayesian
factorization of a tensor do not exist.

We present tensorBF, an R package to analyze natural tensor structures in
the data. The package implements the Bayesian CP factorization of a tensor
to infer latent factors (components) that are not obvious from the data itself.
Additionally, it provides tools for analyzing the components and relationships
between the variables.

2 Bayesian Tensor Factorization
Our package tensorBF implements the Bayesian formulation of the tensor fac-
torization problem of Eqn (1), by assuming normal distribution with conjugate
priors. A sparsity parameter is introduced that shuts down excessive compo-
nents by setting them to zero (white in Fig 1), making it possible for the model
to learn the true number of components automatically. Besides, the package
implements feature-level sparsity for the latent variable matrices. Supplemen-
tary File 1 provides the details of the modeling assumptions and inference using
Gibbs sampling.

3 Usage

Model Inference and Initialization
The factorization of a 3-mode tensor Y can be inferred using
model <- tensorBF(Y), with the default options. Depending on the modeling
assumptions and application setting, the function can take a variety of param-
eter choices as inputs. For instance, the number of components to initialize
the model, how to normalize the data and an informative noise prior, that is,
a user’s belief on how much of the data variance should be explained with the
components. A full description of the possible options is given in the func-
tions getDefaultOpts() and tensorBF() documentation. The tensor can be
normalized over different modes and ways, using normFiberCentering() and
normSlabScaling(). If the features in a particular mode are deemed equally
important, they should be scaled. However, if the variance is a proxy for the
feature’s importance, scaling should not be done. The package manual contains
simplified examples and demo(), demonstrating the usage of the functions on

3

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 29, 2016. ; https://doi.org/10.1101/097048doi: bioRxiv preprint 

https://doi.org/10.1101/097048
http://creativecommons.org/licenses/by-nc/4.0/


simulated data. The methods computational complexity is linear in the data
dimensions and cubic only in K. The package took ∼1 hour for a single chain
on the CMap data.

Missing Values Prediction
The package can handle missing values by simply including them as NAs. The
model parameters are sampled based on the observed data only, and
predictTensorBF() predicts the missing values.

Component Selection
The tensorBF package infers the number of components automatically. In prac-
tice, this is achieved by initializing the model with a high number of components
K (default choice: 20% of the sum of lower two modes) and the method prunes
any excessive components. The noiseProp in tensorBF() defines the propor-
tion of variance that is expected to be explained with the components. In case,
the data is expected to be heavily noisy, as with many real datasets, experi-
menting different choices of noiseProp will aid in component selection.

We explain component selection practice with a real tensor dataset of Fig 1.
Fig 2 plots the methods behaviour as a function of an increasing number of
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Figure 2: Illustrating model complexity selection with tensorBF on CMAP data
set. The plot shows on the y-axis, the Pearson Correlation, Root Mean Squarred
Error (RMSE), and the no. of components pruned (in red) on the missing values
prediction task, as function of the number of components K used to initialize
the model (the x-axis).

initial K. The key observation here is that the performance improves until
K ≤ 30, after which it stabilizes to the best result. Around the same mark,
the model starts to prune all the excessive components indicating that it has
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already explained the data sufficiently. Therefore, in practice, we suggest to
initialize K to a higher enough value and let the model choose the component
number automatically. An appropriate K can be identified as one that prunes
at least several excessive components.

Analysis and Visualizations
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Figure 3: A component showing the relationship between the latent variables
X,W and U plotted using the function plotTensorBF().

The factorization explains relationships between the variables through K
components. The components can be visualized using plotTensorBF(). An
example of such visualization is shown in Fig 3. The values of the latent variable
X indicate that the response is primarily driven by the top 3 drugs in several
HSP genes W. High latent scores in U show that this response is common
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across all three cancers, and can, therefore, be interpreted as a Heat Shock
Protein response of HSP90 inhibitors in all three cancers.

4 Discussion
The tensorBF package factorizes a tensor into low-dimensional latent factors,
inferring meaningful relationships. The package provides essential tools ranging
from normalization to automatic component selection, and from setting infor-
mative noise prior to interpreting the factorization. The package is a new con-
tribution in the data analysis domain focusing on tensors with a fully Bayesian
treatment of the latent factors.

Funding: This work was financially supported by the Academy of Finland
(grant 296516).
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