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Abstract	25 
Fluctuating population dynamics and shifting ranges, behavior, and phenology 26 

make monitoring of mosquito populations essential in controlling emerging 27 

pathogens. Despite ~1000 US mosquito control agencies, there is no centralized 28 

collation of their data. We provide a roadmap for the creation of a National Vector 29 

Surveillance System, for mosquito control agencies to routinely report standardized 30 

data. We characterized the extent of current monitoring, and collated mosquito 31 

abundance between 2009-2016. Despite a minority of agencies publically reporting 32 

data, our data set consists of records on >12 million mosquitoes. We demonstrate the 33 
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utility of a National Vector Surveillance System by providing novel insight into 34 

nationwide mosquito ecology and show that Digital Epidemiology could provide 35 

indirect mosquito monitoring, with Google queries for “mosquito” covarying with 36 

mosquito abundance. We demonstrate a National Vector Surveillance System would 37 

provide a cost effective means to combat vector borne disease emergence and can be 38 

integrated with wide-scale Digital Epidemiology.	39 

Introduction	40 

The emergence of arboviruses (“arthropod-borne viruses”) —dengue virus 41 

(DENV), West Nile Virus (WNV), chikungunya virus (CHIKV), and Zika virus 42 

(ZIKV)—is a global problem1.  There are multiple hypotheses regarding the epidemic 43 

emergence of arboviruses. For example, increasing globalization and climate change 44 

could be driving geographic expansion of vectors and increased transmission from 45 

vectors to humans2,3. The occurrence of an arbovirus epidemic requires the presence 46 

of vectors in sufficient abundance to sustain transmission. Mosquito monitoring has, 47 

therefore, long been recognized as an important component of disease surveillance 48 

and control efforts4.  49 

 Large scale surveillance efforts have provided insight into the distribution of 50 

disease vectors worldwide, including Aedes, Anopheles, and Culex mosquitoes which 51 

are primary vectors for DENV, malaria, and WNV, respectively5–7. Maps of vector 52 

geographic distribution (i.e., presence/absence) are often used to assess disease 53 

risk2,5,8. Most recently, vector mapping has been used in the US to infer risk of ZIKV 54 

transmission9. It was predicted that the risk of ZIKV transmission in the US is 55 

relatively localized to southern states. As predicted9,10, ZIKV transmission established 56 

in Florida, specifically, Miami-Dade County. As of October 12, 2016 there have been 57 
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128 reports of locally-acquired ZIKV cases11. Given the public health threat of 58 

emerging (e.g., ZIKV, CHIKV) and endemic (e.g., WNV) arboviruses in the US, 59 

there is great incentive to invest in studies of vector distribution and abundance. 60 

 In the US, mosquito control and surveillance efforts are ongoing at state- and 61 

local-levels12. Public health and environmental agencies are tasked with (1) 62 

systematic monitoring of vector abundance and mosquito infection status (i.e., using 63 

adult mosquito trapping and mosquito larval pool testing for viral presence), and (2) 64 

reducing disease transmission risk by controlling vector population size using 65 

larvicide, larval-site management, and/or insecticidal fogging13. Many agencies have 66 

active surveillance programs that entail daily, weekly, and/or monthly trapping and 67 

counting of mosquitoes, with taxonomic identification of the genus or species level in 68 

many instances. Some vector surveillance programs were started in the 1940s at US 69 

military installations to combat malaria transmission, and have since continued4,14,15, 70 

resulting in the generation of long-term ecological data. Time series data of vector 71 

abundance that result from such long-term monitoring are invaluable for the study of 72 

vector population dynamics and quantifying the risk vectors pose to human health.  73 

 There are ~1000 mosquito control agencies in the US, with a mosquito control 74 

agency broadly defined as the local government authority responsible for the 75 

surveillance and control of mosquitoes. Surprisingly, the exact number of agencies is 76 

unknown, (personal communication, Joseph M Conlon, Technical Advisor, American 77 

Mosquito Control Association). Mosquito control responsibilities may lie with the 78 

local health department, or separate entities such as mosquito abatement districts. The 79 

trapping and identification of mosquitoes requires considerable economic investment 80 

in the form of personnel, equipment, and infrastructure. Despite these efforts, there is 81 

no centralized reporting or repository in the US to facilitate the integration of such 82 
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publicly funded data. At present, in the US, the majority of mosquito surveillance data 83 

remain isolated at local and/or state agencies and are inaccessible to the wider 84 

mosquito surveillance and research communities3,16.  85 

 In the US, mosquito-borne diseases are nationally notifiable with state-level 86 

reporting to the CDC National Notifiable Disease Surveillance System17. We propose 87 

a parallel system be created for mosquito population surveillance that is: standardized, 88 

centralized, and regular. More specifically, data of a pre-specified type (standardized) 89 

should be reported to a centralized system (e.g., such as one hosted by the CDC, 90 

PAHO, or WHO), and reporting should be done at regular intervals (weekly or 91 

monthly). Having such a surveillance system in place would not only facilitate the 92 

creation of Big Data on mosquito populations, but would also serve as a repository for 93 

the wealth of surveillance data that exist to date. The creation and deployment of a 94 

National Vector Surveillance System would be a relatively simple and low cost means 95 

of establishing the risk of current and future arbovirus threats, and inform future 96 

ecological and epidemiological studies. As proof of principle, here we summarize the 97 

breath of mosquito surveillance efforts in the US, curate the limited data currently 98 

accessible from mosquito control boards, and analyze these data to provide a glimpse 99 

into vector population ecology, highlighting the potential power of a National Vector 100 

Surveillance System data repository.   101 

Results	102 

Mosquito	Abundance	Data	103 

 We compiled a list and identified a web presence for 997 US mosquito control 104 

agencies in 48 US states (Figure 1a, Supplemental File 6). We found 91 agencies 105 
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(9%) in 22 states provided historical data for at least one year in 2009-2015. Further, 106 

54 agencies (5%) in 18 states provided live data (i.e., 2016 data reported at least 107 

monthly), which are indications of present and ongoing efforts to generate and make 108 

abundance data publicly available online. 50 agencies (5%) provide both live and 109 

historical data. While long, multi-year observations in the data were scarce, a total of 110 

95 agencies provide live and/or historical data (Supplemental File 6). 111 

We collated data from a subset of these agencies (76 of 91 agencies) where 112 

data was presented in a mineable format such as online tables, graphs, and GIS maps 113 

where population abundance could be followed over time. All data were limited to 114 

what was publicly available online. The full data set can be found in Supplemental 115 

File 1. Our final data set contains 144,234 records covering mosquito trapping data 116 

from 2009-2015 (as well as a further 5235 records from 2016). We standardized dates 117 

and taxonomic identifiers. The data covers 551 location identifiers, some trap level, 118 

some a geographic feature (e.g., a particular park name), and some a whole 119 

jurisdiction or multi-agency region (e.g., ‘Northwestern Rural’). Our final data set 120 

represented over 12 million individual mosquitoes counted (some data were provided 121 

as averages, this is a minimum estimate of total mosquitoes trapped). From 2009-122 

2015, approximately 80% of the mosquitoes have genus level identification, and 123 

~11% have species level identification.  124 

 Temporal resolution of the data was variable, with some data reported as 125 

weekly, some monthly, and some a combination of the two.  We consistently found a 126 

lack of continuous sampling throughout the year, as surveillance efforts were targeted 127 

to seasonal windows that varied between agencies. This frequently resulted in the 128 

onset and/or offsets of the mosquito season being unobserved. 129 
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 Taxonomic identification and reporting varied between agencies. While we 130 

were able to standardize subtle differences in taxonomic reporting (e.g., Aedes vs. 131 

Ochlerotatus or Aedes vs. Ae. there are some differences in reporting, however, that 132 

could not be standardized. For example, in some districts, taxonomic descriptors such 133 

as ‘summer floodwater’, ‘other’, ‘non-culex’, and ‘nuisance species’, were used to 134 

identify at least some mosquitoes.  However, we note that 56 agencies report species 135 

level identification of at least some of the mosquitoes they collected. This reflects 136 

local knowledge of the important vector and nuisance mosquito species in a given 137 

control agency’s jurisdiction. 138 

Surveillance	System	139 

Reviewing the data across the many agencies provided insights into how a 140 

nation-wide surveillance program could be designed. First, states could coordinate 141 

with control agencies to place sentinel sites for trapping with particular emphasis on 142 

ecological conditions in terms of urban/rural or climate zones within a state. New 143 

Jersey, for example, divides their state into ten ecologically relevant zones18. The 144 

traps in a given location should be of fixed type and attractant, and these traps should 145 

ideally be checked at least weekly and reported weekly during the mosquito season. 146 

We propose continuous trapping throughout the year be performed. This could be as 147 

simple as adding monthly trapping in the winter to characterize the onset of mosquito 148 

season more precisely. Given climate projections of earlier springs in the northern 149 

hemisphere2,3, there is a need to test for phenology shifts in disease vectors.  150 

The data, units, traps, and metadata associated with the records varied widely 151 

between agencies in our study.  We do not suggest significant changes in operational 152 

protocols, but it is important that agencies report full metadata, including trapping 153 

strategy so their data can be interpreted.  The most useable data will include trap 154 
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location name and/or GPS location, attractants used, the date the trap was counted, 155 

and the duration of time the trap was set/reset. Finally, it is critically important that 156 

the unit used for reporting mosquito count is standardized. Control boards should 157 

submit trap-level data, and not aggregations over areas, and it must be made clear if 158 

the data reported is male and female mosquitoes, or only female mosquitoes.  159 

We found that some agencies attempted to identify each mosquito collected to 160 

the species level. This effort is certain to yield valuable insights, but it is not feasible 161 

for nation-wide standardized surveillance. Most districts, however, did identify 162 

mosquitoes to the genus level.  Due to their status as viral vectors of ZIKV, CHIKV, 163 

and DENV, counts of Ae. aegypti and Ae. albopictus should always be reported. 164 

Importantly, their absence should also be recorded. A similar system would be 165 

desirable, but likely not feasible on a national scale, for members of the 166 

morphologically similar invasive Culex pipiens/quinquefasciatus group which vector 167 

West Nile and St. Louis Encephalitis viruses 168 

Reporting of collected data would be submitted electronically, in a 169 

standardized spreadsheet or online web form. We provide a mock-up reporting form 170 

(Figure 1b) to illustrate the format of clean, unambiguous data that is ideal for 171 

analyzing across agencies and states. Whenever possible and feasible, corresponding 172 

historical data should also be represented in the database/national surveillance system.  173 

Mosquito	Seasonality	174 

Due to the large amount of variation in the unstandardized data reported from 175 

mosquito control agencies, we did not analyze the full data set. Instead, we searched 176 

the compiled data for time series that would allow us to highlight the types of 177 

analyses that could be done if there were a standardized national surveillance system. 178 

Specifically, a national surveillance system would allow researchers to study (1) 179 
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geographic variation in mosquito populations, (2) interspecific/inter-genus variation 180 

in phenology, and (3) interannual variation in mosquito abundance. 181 

For any given taxonomic group, seasonal phenology may vary geographically 182 

due to variation in environmental conditions. We searched the compiled data for a 183 

taxonomic group for which we had 3+ years of data from multiple states. Data from 184 

Culex pipiens in Minnesota, Iowa, and California fit these criteria and were of 185 

particular interest because C. pipiens is the vector of West Nile Virus. We found that 186 

the C. pipiens season was restricted to a narrow time frame (late summer) in 187 

Minnesota (Figure 2a, d), the most northern of the three states. In Iowa and California, 188 

the C. pipiens season extended later into the fall (Figure 2b-c, e-f), which might be 189 

due to more mild autumnal weather in Iowa and California, relative to Minnesota. 190 

Interestingly, in California the C. pipiens season began in the early spring. This could 191 

be due to springtime environmental conditions being favorable throughout the state. 192 

California, however, spans a large latitudinal range, and the springtime presence of C. 193 

pipiens may be localized within the state, but by aggregating data from two districts in 194 

California, we may have masked geographic variation within the state.  195 

The benefit of genus or species level identification within a state is that it will 196 

allow mosquito control agencies to identify differences in phenology among different 197 

genus/species. The Culex genus was of interest because of the public health risk posed 198 

by C. pipiens’ transmission of WNV. We therefore searched the compiled data for a 199 

state with species identification of Culex mosquitoes. Minnesota reported data for C. 200 

pipiens, C. restuans, and C. tarsalis. We found that the seasonal timing of peak 201 

abundance varied for these species, with C. tarsalis having the earliest peak, C. 202 

restuans intermediate, and C. pipiens the latest (203 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 27, 2016. ; https://doi.org/10.1101/096875doi: bioRxiv preprint 

https://doi.org/10.1101/096875


Mosquito Seasonality & Vector Surveillance  

 9 

204 
Figure 3). The seasonal staggering between taxonomic groups is important from a 205 

public health perspective, because, if this pattern is consistent year-upon-year and 206 

applies across states, then C. tarselis could be used as an early warning of the C. 207 

pipiens season.  208 

Continuous (throughout the year), long term times series of mosquito 209 

abundance, such as would be generated by a National Vector Surveillance System, 210 

will allow the research community to not only characterize mosquito seasonality, but 211 

also study variation in mosquito abundance at larger temporal scales. California 212 

provided continuous data for C. pipiens for 2011-2013. This time series, although it 213 

only represents three years, revealed that C. pipiens abundance can vary greatly 214 

between years. This demonstrates that mosquito abundance can be characterized on 215 

two temporal scales (i) seasonal, characterized by the mosquito season vs. the off-216 
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season, and (ii) interannual, characterized by high abundance years vs. low years 217 

(Figure 4a). High abundance years might be tied to climate conditions or other 218 

environmental variables. When continuous long-term time series are available, they 219 

can be combined with data on environmental or other ecological variables, and 220 

population dynamic models, to test for mechanistic drivers of variation in abundance. 221 

A mechanistic understanding of vector population dynamics could allow for the 222 

forecasting of high abundance years and allow for interventions to mitigate vector 223 

borne diseases. Importantly, the data from California highlight that vector abundance 224 

does not necessarily translate to higher disease risk. Although the abundance of 225 

female C. pipiens was higher in 2011 than 2012 or 2013, there were fewer human 226 

WNV cases in California in 2011 than in 2012 or 2013. There were 158, 479, 379 227 

human cases in 2011, 2012, and 2013, respectively19. To study disease risk, mosquito 228 

population dynamics would need to be factored into disease transmission models20.  229 

Google	Queries	as	a	Proxy	for	Mosquito	Abundance	230 
For the states for which we had both mosquito trap data and Google Trends 231 

data during the same time period, we found that the abundance of Google queries 232 

covaried with direct measures of mosquito abundance. Google queries for “mosquito” 233 

in New York showed the same seasonal cycle (i.e., high mosquito abundance in the 234 

summer) as that observed in trap data (Figure 4b). Not only did the Google query data 235 

capture seasonal variation in mosquito abundance, but in Illinois, a state with low 236 

Culex abundance in 2011 and 2012, followed by high abundance in 2013, 2014, and 237 

2015, Google queries captured both the seasonal variation in abundance and the 238 

variation in abundance in high years vs. low years (Figure 4c). These data suggest 239 

digital epidemiology can be used to supplement on-the-ground mosquito surveillance, 240 

help inform early warning systems, and afford more surveillance coverage of the 241 
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population. We submit, however, that more mosquito trap data are needed in order to 242 

perform a formal statistical evaluation of the digital epidemiology for mosquito 243 

surveillance.  244 

As the Google query data covaried with mosquito trap data in the US, we 245 

therefore used Google query data of the language-specific search term “mosquito” as 246 

an indirect measure of mosquito abundance in 17 countries, representing 39 locations 247 

with sufficient data for testing seasonality (Figure 5). There were multiple Google 248 

trends time series for some countries with high search volume. Of the 39 locations, 249 

wavelet analysis detected significant seasonality in 38 of them, with 2 countries 250 

(Thailand and Taiwan) having a biannual signature. For those locations with 251 

significant seasonality, GAMM model predictions demonstrated that the seasonal 252 

variation in mosquito abundance was geographically structured.  253 

Discussion	254 

CDC guidelines call for standardized and repeated collection of mosquito 255 

vectors13 – a point recently reaffirmed by others21,22.  We argue that nation-wide 256 

aggregation and sharing of standardized data would allow the research community to 257 

better understand the ecology of vectors, and this in turn would inform disease control 258 

efforts.  Clearly many states and agencies recognize the need to generate and 259 

disseminate mosquito abundance data, as some states already operate 260 

repositories18,23,24.  We identified 49 agencies that provided abundance data on their 261 

websites, independent of a state repository, indicating these agencies recognize the 262 

importance of open data. 263 

By collating publicly available data from 76 mosquito control agencies in the 264 

US, we provide an extensive set of high temporal resolution mosquito abundance 265 
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data, comprised of >144,000 records. Importantly, these data represent only a small 266 

fraction of the data that exist. The majority of mosquito abundance data are not 267 

readily available to the scientific community. We demonstrate that mosquito 268 

abundance data, collated from multiple data-silos, can give insight into the 269 

spatiotemporal ecology of disease vectors. As we discovered, there is currently a great 270 

deal of variation in how mosquito trap data are collected and reported. The lack of 271 

data standardization presents hurdles to data integration. The mosquito control 272 

community, however, could come together to decide upon the most efficient and 273 

effective way to collect and report data in a standardized manner that would facilitate 274 

real-time data release and data integration. Given the need to respond to emerging 275 

mosquito-borne diseases in the Americas, the integration of mosquito abundance data 276 

should be made a priority. 277 

  Enormous human effort and public expense has gone into the collection and 278 

identification of the more than 12 million mosquitoes in our data set. Since the 279 

generation of such data is publicly funded, future and past data should be made 280 

publicly available in the spirit of The White House’s Open Government Initiative25,26. 281 

A central repository is the most efficient way to promote data reuse and accessibility 282 

of publicly funded data16 across agencies/states - or even international and language 283 

boundaries. Examples of similar interjurisdictional databases for the reporting and 284 

dissemination of disease incidence include ArboNET27 (US arbovirus incidence), the 285 

CDC National Notifiable Disease Surveillance System17, and the PAHO database28 286 

(dengue surveillance in the Americas).  287 

 A significant hurdle to data integration is that the units of reporting varied 288 

among agencies. As to be expected, agencies deploy a variety of traps, with a variety 289 

of attractants. Comparing absolute mosquito trap numbers between localities is 290 
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unlikely to be useful to researchers or control professionals – it is the relative change 291 

in abundance that is of interest, regardless of units.  However, successful 292 

interpretation of species composition is dependent on knowing trapping methodology 293 

– as traps have species bias29.  294 

 A significant shortfall we identified is the lack of historical reporting of the 295 

important invasive disease vectors, Ae. aegypti and Ae. albopictus. Only Iowa and 296 

New Jersey report live Ae. albopictus abundance data, and no state reported live Ae. 297 

aegypti abundance data. Further, it is often unclear if “0” or no data represents true 298 

zeros (surveillance was performed, with zero members of the genus/species trapped) 299 

versus a lack of specific surveillance for these critical species. Reliable 300 

presence/absence data are necessary for distribution maps and modeling efforts3,21,22.  301 

 We only used data generated by US mosquito control agencies. Substantial 302 

data, primarily historical species surveillance from US military installations going 303 

back to 1947, are held by VectorMap15. Further, NSF funded NEON projects sites are 304 

coming online30. These twenty nationwide sites will record highly standardized, year-305 

round mosquito surveillance, identifications, and virus-status30. Our proposed 306 

surveillance system, along with other research based data sets and international 307 

governmental and non-governmental data sources are promising data sources for 308 

integration. 309 

 Considering the caveats of our collated data, and the fact that it represents only 310 

a small fraction of the mosquito abundance data that exists, we were nevertheless able 311 

to uncover spatiotemporal patterns of mosquito populations that are relevant to public 312 

health. This is enticing evidence that the data generated by centralized, regular, 313 

standardized surveillance would be a powerful method for anticipating and 314 

responding to arboviral threats. High temporal resolution time series data 315 
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(weekly/monthly) are powerful tools. As we have highlighted with our analyses, such 316 

time series would allow for the characterization of spatial and temporal mosquito 317 

population ecology. Characterizing mosquito population cycles and understanding the 318 

mechanisms generating seasonal and interannual variation would enable us to: 319 

 (1) Infer when to anticipate epidemics/outbreaks; 320 

(2) Quantify geographic variation in risk (how bad can epidemics become), especially 321 

at geographic margins of vectors;  322 

(3) Monitor virus persistence in source and sink populations and determine if vectors 323 

overwinter in sufficient numbers to sustain transmission;  324 

(4) Identify windows of opportunity for spraying, larval site management, ramping up 325 

surveillance for pathogen (testing for virus), public outreach campaigns;  326 

(5) Study vector-borne disease transmission dynamics; and  327 

(6) Coordinate responses across states/counties, with the goal of controlling epidemics 328 

and creating early warning systems. 329 

Having rich data sets of mosquito abundance over time will allow for analyses 330 

that have not yet been feasible, and the combination of data from multiple sources 331 

would allow for analyses that can only be done in aggregate31. Modelers, for example, 332 

require high quality data for model training and validation3,22. Data for aggregation, 333 

need not only be mosquito abundance data, but truly new and powerful analyses 334 

would be possible if abundance time series are combined with other sources of Big 335 

Data. These include arbovirus disease incidence data, mosquito pool testing for virus 336 

(ArboNET27); land use data (National Land Cover Database32); meteorological data 337 

(Land Data Assimilation Systems, LDAS33), and climate change predictions (NCAR-338 

CCSM 4.034). The data could be used to motivate action when neighboring 339 

communities have vectors of concern22, and tools could be developed to assist local 340 
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control agencies, such as the automated generation of up-to-date disease risk maps, 341 

and other publicly disseminated reports. Finally, the data could be integrated into 342 

biodiversity databases such as the Global Biodiversity Information Facility 343 

(GBIF)31,35.  344 

 The problems and opportunities we addressed here are not unique to the 345 

United States. Emerging arboviruses are a global problem. Here we used the United 346 

States as an operational example, but the data curation and application applies 347 

worldwide. Furthermore, this is the appropriate time for the US and other countries to 348 

initiate country-wide mosquito surveillance efforts due to the recent emergence of 349 

ZIKV and CHIKV, and the continued threat that DENV poses in >100 countries 350 

across six continents, causing 96 million cases per year36. The United States is 351 

currently allocating resources for emerging vector-borne diseases and the Americas 352 

are battling the ongoing Zika outbreak. We propose standardized reporting by existing  353 

mosquito surveillance programs would be a low cost but powerful means of 354 

empowering control efforts for vector borne diseases.  355 

Methods		356 

Mosquito	Abundance	Data	357 

We systematically searched online to identify mosquito control agencies 358 

within the US. Specifically, we used Google searches, the American Mosquito 359 

Control Association website37, state government websites (e.g., Florida Department of 360 

Agriculture & Consumer Services38), and state mosquito control association web 361 

pages (e.g., Texas, Michigan, and California39–41) to find the names/locations of 362 

mosquito control agencies. We then supplemented our list of mosquito control 363 
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agencies by cross-referencing it with lists of mosquito control agencies generated by 364 

other researchers. For each agency identified (Supplemental File 6), we searched for a 365 

web presence, either an agency website or agency representation in a state-wide 366 

mosquito abundance repository (e.g., such as those that exist for Iowa, New Jersey, 367 

and South Dakota18,23,24). The mosquito control agency websites/repositories were 368 

searched for the presence of mosquito abundance surveillance data at a temporal 369 

resolution of daily, weekly, and/or monthly from 2009 to mid-2016. We used data 370 

from fixed traps. Data from temporary traps were excluded because they cannot be 371 

adequately used to reconstruct time series of abundance. We collated data from 76 of 372 

the 91 agencies presented in a mineable format such as online tables, graphs, and GIS 373 

maps where population abundance could be followed over time. All data were limited 374 

to what was publically available online.  375 

Mosquito	Abundance	Data	Analysis	376 

In order to obtain state-level time series of mosquito abundance, the mosquito 377 

trap data were aggregated within each state. We worked with states with data that 378 

spanned multiple years: California, Colorado, Florida, Illinois, Iowa, Massachusetts, 379 

Michigan, Minnesota, New Jersey, New York, and Ohio. The data were subset by 380 

state, taxonomic group (i.e., genus, with the exception of Culex which was analyzed 381 

to the species-level), temporal resolution (i.e., weekly or monthly data), and unit of 382 

measure. The data were then aggregated within each subset by either summing or 383 

averaging—depending on which was appropriate for each data type—across traps 384 

collected at the same time. Data aggregation resulted in time series of mosquito 385 

abundance for each combination of state and taxonomic group represented in our data. 386 

The taxonomic groups represented in the aggregated data included Culex, Culiseta, 387 

Aedes, Anopheles, Mansonia, Psorophora, Coquillettidia, Uranotaenia, and 388 
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Orthopodomyia. All aggregated data can be found in the Supplemental File 2. We 389 

analyzed the time series for seasonal fluctuations in mosquito abundance and 390 

characterized differences in seasonal phenology across states and taxonomic groups.  391 

The unit of measure for reporting mosquito abundance differed among 392 

mosquito control boards. Some mosquito control boards reported total mosquitoes 393 

trapped, while others reported females per trap night, or mean females per trap. When 394 

comparing seasonality across time series, we standardized the data so each time series 395 

took values from 0-1. For time series observation, yi,j, observation i in year j, the 396 

following was used to standardized the data si,j = (yi,j – min(yj))/(max(yj)-min(yj)).  397 

Digital	Epidemiology		398 

Google Trends42 were downloaded for queries of “mosquito” in the US, as 399 

well as language-specific queries of “mosquito” in other countries (Supplemental 400 

Files 3-5 contain the data and search term used for each country). Google Trends data 401 

were downloaded for countries in each hemisphere, for all years for which data were 402 

available, typically 2004-2015/2016, depending on the date of download. Google 403 

Trends data represent the relative abundance of Google queries reported as values 404 

from 0-100. In order to test for seasonality in Google queries of mosquito, we ran a 405 

wavelet analysis on each time series, using the R package biwavelet43. Google Trends 406 

time series with a significant 1-year period (significant when tested against time series 407 

with the same lag-1 autocorrelation) were log10 transformed and detrended to make 408 

them more sinusoidal and remove long term trends (which we assumed were due to 409 

changes in internet query habits or Google algorithms, rather than changes in 410 

mosquito ecology). Time series were standardized to values between 0-1 and a 411 

GAMM model was fit to each standardized time series with the explanatory variable 412 
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being the time of the year. Predictions from the fitted GAMM models were used to 413 

characterize mosquito seasonality on a global scale.  414 
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Figures436 

	437 

Figure 1: (a) Location of the 997 US mosquito control agencies with an identified web presence and the 91 438 

agencies from which historical data, from any year between 2009 – 2015, were publicly available online. 439 

South Dakota, Iowa, and New Jersey had aggregated data available online. (b) Example report form that 440 

could be used to standardize reporting of mosquito trap data to a national surveillance system.  441 
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 442 

 443 

Figure 2:  Culex pipiens seasonality. (a-c) Black points show the raw data from each trap within the state 444 

and correspond to the left y-axis. Blue time series are aggregated data across traps within the state, 445 

corresponding to the right y-axis. (d-f) Standardized data corresponding to the time series in a-c. The 446 

standardized time series were plotted individually for each year to show how mosquito abundance varied by 447 

time-of-year and among states. 448 
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449 
Figure 3: Variation in seasonal phenology among species. (a) C. restuans and C. pipiens abundance as 450 

reported in Minnesota. (b) C. tarsalis and C. pipiens abundance as reported in Minnesota. (c-d) 451 

Standardized data corresponding to the time series in a-b. The standardized time series are plotted 452 

individually for each year to show how mosquito abundance varied by month and among species.  453 

  454 
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 455 
Figure 4: (a) Time series of female C. pipiens abundance in California. Top line above the time series 456 

indicates the high abundance year vs. the low abundance years. Bottom line above the time series indicates 457 

the mosquito season vs. the off season. (b-c) Mosquitoes trapped in New York state and Illinois (black time 458 

series corresponding to the left y-axis), along with Google queries for the search term “mosquito” in each 459 

state during the same time period (yellow time series corresponding to the right y-axis). (d) Google queries 460 

for “mosquito” from 2010-2015 used for a wavelet analysis with power spectrum shown in (e) where the red 461 

area indicates significant 1-year periodicity of the time series. (f) Yellow points indicate the Google queries 462 

from New York, detrended and log10 transformed. Red curve indicates the predicted seasonal abundance as 463 

predicted by a GAMM model with time-of-year as the independent variable. 464 

  465 
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 466 
Figure 5:  Mosquito seasonality around the world. The seasonal structure of mosquito abundance as 467 

measured indirectly via Google Trends using the language-specific search term “mosquito”. Each row of the 468 

heatmap shows mosquito seasonality as predicted by the GAMM model for the location listed on the y-axis. 469 

The x-axis is the time-of-year. Dark blue represents the mosquito off-season and the bright green indicates 470 

the mosquito season.  471 
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Supplementary	Material	472 

Supplemental File 1: CSV file containing compiled mosquito population data from 2009-2016. See Mosquito 473 

Abundance Data in the Methods section for more details. 474 

Supplemental File 2: CSV file containing time series of mosquito abundance created by aggregating data 475 

across traps within each state. The data are from California, Colorado, Florida, Illinois, Massachusetts, 476 

Minnesota, New Jersey, Iowa, Michigan, New York, and Ohio.    477 

Supplemental File 3: CSV file containing monthly Google Trends data from multiple countries.  478 

 479 

Supplemental File 4: CSV file containing weekly Google Trends data from multiple countries.  480 

 481 

Supplemental File 5: CSV file containing Google Trends data from US with multiple years of mosquito trap 482 

data in Supplemental File 1.  483 

 484 
Supplemental File 6: CSV file containing identified mosquito control agencies. The name and state of each 485 

mosquito control agency is provided. We provide a representative postcode and GPS coordinate in the 486 

geographic vicinity of each agency. Each agency is assigned a unique ID (AgencyID) that corresponds with 487 

population data recorded in Supplemental File 1. 488 

References	489 
 490 
1.		 Fauci	A,	Morens	D.	Serving	two	masters.	N	Engl	J	Med.	2016;374(7):601-491 

604.	doi:10.1056/NEJMp1002530.	492 
2.		 Proestos	Y,	Christophides	GK,	Ergüler	K,	Tanarhte	M,	Waldock	J,	Lelieveld	493 

J.	Present	and	future	projections	of	habitat	suitability	of	the	Asian	tiger	494 
mosquito,	a	vector	of	viral	pathogens,	from	global	climate	simulation.	495 
Philos	Trans	R	Soc	Lond	B	Biol	Sci.	2015;370(1665):20130554-.	496 
doi:10.1098/rstb.2013.0554.	497 

3.		 Campbell	LP,	Luther	C,	Moo-Llanes	D,	Ramsey	JM,	Danis-Lozano	R,	498 
Peterson	AT.	Climate	change	influences	on	global	distributions	of	dengue	499 
and	chikungunya	virus	vectors.	Philos	Trans	R	Soc	B.	2015;370:20140135-.	500 
doi:10.1098/rstb.2014.0135.	501 

4.		 Carpenter	SJ.	Insect	control	at	army	training	camps.	J	Econ	Entomol.	502 
1944;37(4):470-474.	http://jee.oxfordjournals.org/content/37/4/470.	503 
Accessed	October	19,	2016.	504 

5.		 Hay	SI,	Sinka	ME,	Okara	RM,	et	al.	Developing	global	maps	of	the	dominant	505 
Anopheles	vectors	of	human	malaria.	PLoS	Med.	2010;7(2):e1000209.	506 
doi:10.1371/journal.pmed.1000209.	507 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 27, 2016. ; https://doi.org/10.1101/096875doi: bioRxiv preprint 

https://doi.org/10.1101/096875


Mosquito Seasonality & Vector Surveillance  

 25 

6.		 Vazeille	M,	Mousson	L,	Rakatoarivony	I,	et	al.	Population	genetic	structure	508 
and	competence	as	a	vector	for	dengue	type	2	virus	of	Aedes	aegypti	and	509 
Aedes	albopictus	from	Madagascar.	Am	J	Trop	Med	Hyg.	2001;65(5):491-510 
497.	http://www.ncbi.nlm.nih.gov/pubmed/11716103.	Accessed	October	511 
19,	2016.	512 

7.		 Turell	MJ,	Dohm	DJ,	Sardelis	MR,	O’guinn	ML,	Andreadis	TG,	Blow	JA.	An	513 
update	on	the	potential	of	North	American	mosquitoes	(Diptera:	Culicidae)	514 
to	transmit	west	Nile	virus.	J	Med	Entomol.	2005;42(1):57-62.	515 

8.		 Kraemer	MUG,	Sinka	ME,	Duda	KA,	et	al.	The	global	distribution	of	the	516 
arbovirus	vectors	Aedes	aegypti	and	Ae.	Albopictus.	Elife.	2015;4:e08347.	517 
doi:10.7554/eLife.08347.	518 

9.		 Bogoch	II,	Brady	OJ,	Kraemer	MUG,	et	al.	Anticipating	the	international	519 
spread	of	Zika	virus	from	Brazil.	Lancet.	2016;387:335-336.	520 
doi:10.1016/S0140-6736(16)00080-5.	521 

10.		 Messina	JP,	Kraemer	MU,	Brady	OJ,	et	al.	Mapping	global	environmental	522 
suitability	for	Zika	virus.	Elife.	2016;5:42-47.	doi:10.7554/eLife.15272.	523 

11.		 Centers	for	Disease	Control	and	Prevention.	Maps	of	Zika	in	the	United	524 
States	|	Zika	virus.	http://www.cdc.gov/zika/intheus/maps-zika-us.html.	525 
Published	2016.	Accessed	October	19,	2016.	526 

12.		 Council	of	state	and	territorial	epidemiologists.	Assessment	of	Capacity	in	527 
2012	for	the	Surveillance,	Prevention	and	Control	of	West	Nile	Virus	and	528 
Other	Mosquito-Borne	Virus	Infections	in	State	and	Large	City/county	529 
Health	Departments	and	How	It	Compares	to	2004.;	2014.	530 

13.		 Centers	for	Disease	Control	and	Prevention.	West	Nile	Virus	in	the	United	531 
States:	Guidelines	for	Surveillance,	Prevention,	and	Control.;	2013.	532 

14.		 Foley	DH,	Maloney	FAJ,	Harrison	FJ,	Wilkerson	RC,	Rueda	LM.	Online	533 
spatial	database	of	US	Army	Public	Health	Command	Region-West	29	534 
mosquito	surveillance	records:	1947-2009.	United	States	Army	Med	Dep	J.	535 
2011;July-Sep:29-36.	http://vectormap.si.edu/downloads/AMEDDJ.pdf.	536 
Accessed	October	19,	2016.	537 

15.		 The	Walter	Reed	Biosystematics	Unit.	VectorMap.	538 
http://vectormap.si.edu/.	Published	2016.	Accessed	October	20,	2016.	539 

16.		 Sikes	DS,	Copas	K,	Hirsch	T,	Longino	JT,	Schigel	D.	On	natural	history	540 
collections,	digitized	and	not:	A	response	to	Ferro	and	Flick.	Zookeys.	541 
2016;618:145-158.	doi:10.3897/zookeys.618.9986.	542 

17.		 Centers	for	Disease	Control	and	Prevention.	National	Notifiable	Diseases	543 
Surveillance	System			(NNDSS).	https://wwwn.cdc.gov/nndss/.	Published	544 
2016.	Accessed	October	19,	2016.	545 

18.		 Rutgers	Center	for	Vector	Biology.	New	Jersey	Statewide	Adult	Mosquito	546 
Surveillance	Reports.	http://vectorbio.rutgers.edu/reports/mosquito/.	547 
Published	2016.	Accessed	October	20,	2016.	548 

19.		 The	California	Department	of	Public	Health.	West	Nile	Virus	Website.	549 
http://westnile.ca.gov/.	Published	2016.	Accessed	December	6,	2016.	550 

20.		 Martinez	ME.	Preventing	zika	virus	infection	during	pregnancy	using	a	551 
seasonal	window	of	opportunity	for	conception.	Read	AF,	ed.	PLOS	Biol.	552 
2016;14(7):e1002520.	doi:10.1371/journal.pbio.1002520.	553 

21.		 Hahn	MB,	Eisen	RJ,	Eisen	L,	et	al.	Reported	Distribution	of	Aedes	554 
(Stegomyia)	aegypti	and	Aedes	(Stegomyia)	albopictus	in	the	United	555 
States,	1995-2016	(Diptera:	Culicidae).	J	Med	Entomol.	2016;ePub	ahead:1-556 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 27, 2016. ; https://doi.org/10.1101/096875doi: bioRxiv preprint 

https://doi.org/10.1101/096875


Mosquito Seasonality & Vector Surveillance  

 26 

7.	doi:10.1093/jme/tjw072.	557 
22.		 Monaghan	AJ,	Morin	CW,	Steinhoff	DF,	et	al.	On	the	seasonal	occurrence	558 

and	abundance	of	the	Zika	virus	vector	mosquito	Aedes	Aegypti	in	the	559 
contiguous	United	States.	PLoS	Curr	Outbreaks.	2016;1.	560 
doi:10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.Au561 
thors.	562 

23.		 Iowa	State	University	Entomology	Department.	Iowa	Mosquito	563 
Surveillance.	http://mosquito.ent.iastate.edu/.	Published	2016.	564 

24.		 South	Dakota	State	University.	South	Dakota	Mosquito	Information	565 
Systems.	http://mosquito.sdstate.edu/.	Accessed	October	20,	2016.	566 

25.		 Costello	MJ,	Michener	WK,	Gahegan	M,	Zhang	ZQ,	Bourne	PE.	Biodiversity	567 
data	should	be	published,	cited,	and	peer	reviewed.	Trends	Ecol	Evol.	568 
2013;28(8):454-461.	doi:10.1016/j.tree.2013.05.002.	569 

26.		 The	White	House.	Open	Government	Initiative.	570 
https://www.whitehouse.gov/open.	571 

27.		 CDC	ArboNET.	Diseasemaps.	http://diseasemaps.usgs.gov/mapviewer/.	572 
Published	2016.	Accessed	October	20,	2016.	573 

28.		 PAHO,	WHO.	Dengue	|	PAHO/WHO	Data,	Maps	and	Statistics.	574 
http://www.paho.org/hq/index.php?option=com_topics&view=readall&ci575 
d=3273&Itemid=40734&lang=en.	Published	2016.	Accessed	November	1,	576 
2016.	577 

29.		 Acuff	VR.	Trap	biases	influencing	mosquito	collecting.	Mosq	News.	578 
1976;36(2):173-176.	579 

30.		 National	Science	Foundation.	NEON:	National	Ecological	Observatory	580 
Network.	http://www.neonscience.org/.	581 

31.		 Costello	MJ,	Wieczorek	J.	Best	practice	for	biodiversity	data	management	582 
and	publication.	Biol	Conserv.	2014;173:68-73.	583 
doi:10.1016/j.biocon.2013.10.018.	584 

32.		 Homer	C,	Dewitz	J,	Yang	L,	et	al.	Completion	of	the	2011	National	Land	585 
Cover	Database	for	the	conterminous	United	States	–	Representing	a	586 
decade	of	land	cover	change	information.	Photogramm	Eng	Remote	Sens.	587 
2015:345-354.	588 

33.		 NASA	Goddard.	Land	Data	Assimilation	Systems	(LDAS).	589 
34.		 National	Center	for	Atmospheric	Research.	Community	Climate	System	590 

Model	(CCSM).	http://www.cesm.ucar.edu/models/ccsm4.0/.	Accessed	591 
October	20,	2016.	592 

35.		 Global	Biodiversity	Information	Facility.	GBIF.	http://www.gbif.org/.	593 
Accessed	October	20,	2016.	594 

36.		 Guzman	MG,	Harris	E.	Dengue.	Lancet.	2015;385:453-465.	595 
doi:10.1016/S0140-6736(14)60572-9.	596 

37.		 American	Mosquito	Control	Association.	Links.	597 
http://www.mosquito.org/links.	Published	2016.	Accessed	October	20,	598 
2016.	599 

38.		 Florida	Department	of	Agriculture	&	Consumer	Services.	Mosquito	600 
Directory.	http://www.freshfromflorida.com/Divisions-601 
Offices/Agricultural-Environmental-Services/Consumer-602 
Resources/Mosquito-Control/Mosquito-Directory.	Published	2016.	603 
Accessed	October	20,	2016.	604 

39.		 Texas	Mosquito	Control	Association.	Organized	Mosquito	Control	Districts	605 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 27, 2016. ; https://doi.org/10.1101/096875doi: bioRxiv preprint 

https://doi.org/10.1101/096875


Mosquito Seasonality & Vector Surveillance  

 27 

in	Texas.	http://www.texasmosquito.org/Districts.html.	Published	2016.	606 
Accessed	October	20,	2016.	607 

40.		 Mosquito	and	vector	control	association	of	California.	Member	Agencies	-	608 
MVCAC.	http://www.mvcac.org/resources/member-agencies/.	Published	609 
2016.	Accessed	October	20,	2016.	610 

41.		 Michigan	Mosquito	Control	Association.	Information	Links.	611 
http://www.mimosq.org/links/links.htm.	Accessed	October	20,	2016.	612 

42.		 Google.	Google	Trends.	https://www.google.com/trends/.	Published	2016.	613 
Accessed	October	20,	2016.	614 

43.		 Gouhier	TC,	Grinsted	A,	Simko	V.	Package	“biwavelet.”	2016.	615 
https://github.com/tgouhier/biwavelet.	Accessed	October	27,	2016.	616 

 617 
 618 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 27, 2016. ; https://doi.org/10.1101/096875doi: bioRxiv preprint 

https://doi.org/10.1101/096875

