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Abstract 

 

Annotating genes with information describing their role in the cell is a fundamental goal 

in biology, and essential for interpreting data-rich assays such as microarray analysis and 

RNA-Seq.  Gene annotation takes many forms, from Gene Ontology (GO) terms, to 

tissues or cell types of significant expression, to putative regulatory factors and DNA 

sequences.  Almost invariably in gene databases, annotations are connected to genes by a 

Boolean relationship, e.g., a GO term either is or isn’t associated with a particular gene.  

While useful for many purposes, Boolean-type annotations fail to capture the varying 

degrees by which some annotations describe their associated genes and give no indication 

of the relevance of annotations to cellular logistical activities such as gene expression.  

We hypothesized that weighted annotations could prove useful for understanding gene 

function and for interpreting gene expression data, and developed a method to generate 

these from Boolean annotations and a large compendium of gene expression data.  The 

method uses an independent component analysis-based approach to find gene modules in 

the compendium, and then assigns gene-specific weights to annotations proportional to 

the degree to which they are shared among members of the module, with the reasoning 

that the more an annotation is shared by genes in a module, the more likely it is to be 

relevant to their function and, therefore, the higher it should be weighted.  In this paper, 

we show that analysis of expression data with module-weighted annotations appears to be 

more resistant to the confounding effect of gene-gene correlations than non-weighted 

annotation enrichment analysis, and show several examples in which module-weighted 

annotations provide biological insights not revealed by Boolean annotations.  We also 

show that application of the method to a simple form of genetic regulatory annotation, 
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namely, the presence or absence of putative regulatory words (oligonucleotides) in gene 

promoters, leads to module-weighted words that closely match known regulatory 

sequences, and that these can be used to quickly determine key regulatory sequences in 

differential expression data. 

 

 

Introduction 

 

Genome annotation is a central task in modern biology, and a great deal of effort has 

been dedicated to the construction of controlled vocabularies to describe cellular 

organization and function, and to the association of terms in these controlled vocabularies 

to specific genes.  Because annotating genes empirically is costly and time consuming, 

computational methods have been developed to infer gene annotations from existing 

annotations and additional data, such as gene sequences, interaction network 

connectivity, and gene-expression profiles1-5.  To date, the aim of such methods has been 

to decide whether a gene should or should not be annotated with a particular term.  While 

some of these methods provide a confidence score for their predictions, such a score does 

not necessarily reflect the relevance of the annotation to the gene’s role in the cell.  For 

example, an enzyme could confidently be predicted to have a particular catalytic activity 

through sequence analysis, but this activity could be vestigial and unrelated to the 

enzyme’s current role.  Similarly, in vitro transcription factor binding assays, such as 

those generated by the ENCODE and modENCODE projects6,7, can be used to annotate 

genes with lists of transcription factors that bind proximally, but the relative importance 

of each factor to the regulation of each gene would not be clear from such data alone. 

We hypothesized that relevance scores for gene annotations could be useful both for 

understanding the functions of individual genes, and for interpreting data from genome-

scale assays.  One way to generate such scores would be to determine how often the cell 

behaves as if a particular annotation is an organizing principle of its activity.  We 

conjectured that a large, high-quality set of gene expression modules could be used to 

make this determination and developed a method to generate weighted annotations using 

a compendium of gene expression data and a set of Boolean annotations. 
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Our method consists of three main steps (Fig. 1).  In the first, we predict gene 

transcription modules (sets of co-regulated genes) using independent component analysis 

(ICA) of a large compendium of expression data.  ICA has been applied to gene module 

prediction before8-12, but we have refined the process in a way that improves the results 

substantially according to several different measures.  These predicted gene modules 

serve as an intermediate data structure in our algorithm for module-weighted annotations, 

but they are revealing in their own right, and provide new insights into properties of gene 

expression, some of which we present here. 

 

In the second step, we calculate the enrichment or depletion of each annotation in each 

gene module using hypergeometric statistics, and construct a matrix with this data using 

the negative log of enrichment p-values (or the positive log of depletion p-values, if they 

are smaller).  Finally, we determine the matrix product of the gene module definition 

matrix from step 1 and the annotation enrichment matrix resulting from step 2.  This 

yields a matrix relating each annotation to each gene, i.e., module-weighted gene 

annotations. 

 

We check the consistency of module-weighted annotations with existing knowledge by 

inspecting strongly positive and strongly negative genes for several different annotations, 

and inspecting which annotations are most strongly weighted for several well-

characterized genes.  We then test the utility of module-weighted annotations for gene set 

enrichment analysis (GSEA) by assessing their performance on a large set of gene 

expression experiments.  We show that using module-weighted annotations for GSEA 

appears less prone to the confounding effect of gene-gene correlations than traditional 

GSEA. 

 

Finally, we generate module-weighted annotations for a simple form of genetic 

regulatory annotation: the presence or absence of putative regulatory words 

(oligonucleotides) in gene promoters.  We show that module-weighted words can reveal 

important regulatory sequences in gene expression data by using them to analyze data 
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from several experiments, including C. elegans isp-1 (respiratory chain) and hif-1 

(hypoxia-inducible transcription factor) mutant microarrays.  Mutation of the isp-1 gene 

extends lifespan in a hif-1-dependent fashion13-15, but the significant gene sets from 

microarray data for these two mutants have little in common.  In contrast, our method 

reveals extensive gene co-regulation; and in addition, several words are predicted to exert 

strong effects in both data sets, and these words match the canonical HIF-1 binding site. 

 

 

Results 

 

Optimization of genetic regulatory module prediction 

 

Our algorithm relies on accurate predictions of genetic regulatory modules.  A large body 

of gene expression data is publicly available16,17 and has enabled computational 

prediction of gene modules (co-regulated genes) by several groups8,18-30.  Preliminary 

experimentation with published methods led us to choose ICA for performing module 

prediction, as modules predicted with ICA yielded stronger oligonucleotide enrichment in 

promoter regions than did modules predicted with the other methods we tested (Fig. 2e 

and additional data not shown; see Lee & Batzoglou12 for additional comparisons of ICA 

to other methods). 

 

Briefly, ICA is a blind source separation method that attempts to “unmix” a signal 

comprising additive subcomponents by separating it into statistically independent source 

signals31,32.  In the common notation, a data matrix, X, comprising multiple observations 

of a multidimensional variable, x, is decomposed into two new matrices, a mixing matrix, 

A, and a source matrix, S: 

 

 X = AS (1) 

 

The A matrix contains the weight of each independent component in each observation, 

and the S matrix contains the weight of each element of x in each independent 
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component.  In the context of gene expression analysis, the elements of x correspond to 

genes, the observations correspond to genome-wide gene expression measurements, such 

as microarrays, and the independent components are interpreted as gene modules 

(essentially, genes whose expression levels change similarly across multiple arrays).  The 

values in the S matrix correspond to the relative levels of inclusion of each gene in each 

gene module10,33. 

 

Our preliminary investigation indicated that the performance of ICA was sensitive both to 

data preprocessing and to the number of components extracted.  For example, using 

simulated data we found that module prediction accuracy was highest when the number 

of extracted components matched the true number of modules (Fig. 2a).  Therefore, we 

first sought to optimize gene module prediction through ICA, evaluating results using 

biological information, including Gene Ontology (GO) term enrichment34, REACTOME 

pathway enrichment35, and tissue-specific expression enrichment in predicted gene 

modules.  We applied our optimization strategy to a compendium of 1386 C. elegans 

Affymetrix arrays36, which we obtained from the Gene Expression Omnibus (GEO) 

database17.  Our preliminary results indicated that applying dimension reduction 

procedures on the data matrix prior to performing ICA reduced the number of 

biologically significant components in the end result (data not shown), so we chose to 

optimize ICA of the full data matrix of 1386 arrays.  We found that the highest quality 

modules were produced when we omitted between-experiment quantile normalization 

from the preprocessing procedure (see Methods) and when the number of extracted 

components (i.e., gene expression modules, or sets of co-regulated genes) ranged from 

191 to 226 (Fig. 2b-d). 

 

All of our module quality measures required translation of the independent components 

generated by ICA into discrete sets of genes, a process we refer to as partitioning.  

Typically, each component (gene module) is partitioned into three sets of genes: one set 

consisting of genes excluded from the module, and two other sets consisting of genes 

regulated in opposite directions.  We refer to these latter two sets as “hemi-modules”, one 

set consisting of genes with highly positive weights and another consisting of genes with 
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highly negative weights (assigned arbitrarily) in the independent component.  Others 

have used a fixed threshold approach to partitioning8,12,37, for example, defining genes 

with weights exceeding +/- 3 standard deviations from the component mean to be “in” 

each hemi-module, and this is the approach we applied in figures 2a-c.  However, we 

found that individual modules showed maximum annotation enrichment at different 

thresholds, suggesting that a ‘one-size-fits-all’ approach to partitioning is sub-optimal.  

An alternative approach to partitioning that we attempted (described in Frigyesi et al.38) 

failed to converge in many cases.  Therefore, to increase partitioning accuracy, we trained 

an artificial neural network (ANN) to predict thresholds for partitioning of each 

component from the skewness and kurtosis of its weight distribution (see Supplemental 

Methods).  Using this artificial neural network for partitioning in our optimization 

process produced similar results qualitatively (Fig. S1a-c), but resulted in a greater 

number of significant annotations across the range of parameters tested than did 

threshold-based partitioning (p < 2.2E-16, Fig. S1d). Therefore, we used ANN 

partitioning in the subsequent steps of our algorithm. 

 

The mean optimum number of extracted components, determined using the quality 

measures we applied (dashed vertical lines in Fig. 1b-d and S1a-c), was similar for both 

threshold and ANN partitioning (209, and 209.33, respectively); therefore, we chose 209 

as the final number of components to extract from the C. elegans Affymetrix microarray 

compendium. We refer to our process of extracting the optimal number of gene modules 

from a non-dimension-reduced gene-expression compendium using ICA as DEXICA, for 

deep extraction independent component analysis. 

 

 

Gene module validation 

 

To test the prediction that the independent components generated by DEXICA 

correspond to genetic regulatory modules, we checked each module for enrichment of 

regulatory sequences in the promoter regions and 3’ untranslated regions (3’-UTRs) of 

module genes.  To do this, we first generated a list of potential regulatory oligonucleotide 
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sequences (called ‘words’) by applying the Mobydick algorithm39 to the set of all 

predicted C. elegans promoter regions, which we defined as the region extending from 

the transcription start site to 2000 base pairs upstream.  (Many C. elegans regulatory 

sequences are located in this interval; however, we note that this method will exclude 

potential promoter sequences located exclusively upstream or downstream of this region.)  

We generated a second oligonucleotide list using the set of all predicted C. elegans 3’-

UTRs (see Supplementary Methods).  We then calculated the statistical significance of 

the over- or under-representation of genes bearing each word in each gene module (see 

Methods), using the hypergeometric test and the Simes method40 for multiple hypothesis 

testing (alpha level = 0.05), to determine the number of significant modules.  Across 

multiple runs of DEXICA, the mean number of gene modules containing significant 

promoter words and 3’-UTR words was 106.3 and 40.6, respectively, which was 

significantly greater than that produced by other module prediction methods we tested (p 

< 2.2E-16, Fig. 2e).  

 

Because the ICA algorithm that we employed during module prediction, fastICA, 

converges to a final solution from a random starting point41, small differences typically 

exist in the output of different runs of the algorithm; these differences can be seen in the 

vertical spread of data points in figures 2a-d, and in the error bars of figure 2e.  While 

others have reconciled such differences through a clustering approach applied to the 

output of numerous runs of the algorithm (so called “iterated ICA”)8,38, when applied to 

our C. elegans Affymetrix compendium, we found that many of the final components 

generated by this method were highly correlated to one another, indicating non-

independence and potential redundancy among the components (data not shown).  We 

therefore sought to choose a single, high quality, fastICA run output to use as predicted 

gene modules.  Because we considered word enrichment the most trustworthy measure of 

module quality, and because we observed a significant correlation (R = 0.27, p = 6.5E-3) 

between the total number of significant promoter words and the total number of 

significant 3’-UTR words in the results of different ICA runs with the same parameters 

(Fig. S2), as our final module set, we chose the run from a set of 100 with the best 
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average rank in terms of significant promoter words and significant 3’-UTR words.  This 

set ranked first in significant promoter words and third in significant 3’-UTR words. 

 

 

Global properties of gene expression revealed by predicted gene modules 

 

Gene modules are sets of genes that are co-expressed.  Unexpectedly, during our analysis 

of 3’-UTR word enrichment within gene modules, we observed that some modules 

appeared to be enriched for genes with long 3’-UTRs.  To determine if this trend was 

statistically significant, we calculated the mean 3’-UTR length of each hemi-module and 

determined a p-value for length bias using Student’s t-test (Fig. 3a).  Of the 418 hemi-

modules, 65 contained a significant (q < 0.1) bias toward long 3’-UTR genes and 58 

contained a bias toward short 3’-UTR genes.  

 

To see if other gene-structure properties were enriched in specific gene modules, we 

tested each hemi-module for over- and under-enrichment of genes appearing in operons 

and for genes with multiple splice forms.  Twenty-one hemi-modules were significantly 

enriched and 205 hemi-modules were significantly under-enriched for operon genes, and 

81 hemi-modules were enriched and 80 hemi-modules were under-enriched for genes 

with multiple splice variants (Fig. 3b-c).  Control tests performed on the same module set 

but with randomly scrambled gene IDs produced no significant modules for any of the 

gene properties we tested (Fig. S3).  Taken together, these results suggest that genetic 

regulatory modules tend to comprise genes with gross similarities in gene structure.  This 

association, in turn, raises the possibility that these shared structural features (long 3’-

UTRs, etc.) house important biological information, either for gene regulation or gene 

function.  Consistent with this idea, genes within operons are enriched in the set of C. 

elegans genes switched on during recovery from growth-arrested states42, and 3’-UTR 

length has been shown to be anti-correlated with mRNA stability, as longer 3’-UTRs are 

more subject to micro-RNA mediated repression than are shorter 3’-UTRs43. 
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Generation of module-weighted annotations 

 

Our calculation of module-weighted annotations takes advantage of the fact that, in 

modules generated by ICA, each gene has a weight in each module.  Given a score or 

weight for each annotation in each module, this allows genes to be associated with 

annotations via a matrix product calculation.  In our method, we create a matrix, Xa, 

comprising enrichment scores for each annotation / hemi-module combination (see 

Methods).  Values in this matrix are derived from the log of enrichment p-values; highly 

positive values correspond to strongly enriched annotations in a hemi-module, highly 

negative values correspond to strongly under-enriched annotations.  We transform the 

gene module matrix, S, into a hemi-module matrix, H, by concatenating it with a negative 

copy of itself row-wise: 

 

 H =
S

−1∗S

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (2) 

 

The product of this matrix with the Xa matrix produces matrix Xw, which relates genes to 

annotations: 

 

 XaH = Xw (3) 

 

As a final step, we normalize the values in this matrix column-wise, i.e, separately for 

each annotation, by subtracting the mean and dividing by the standard deviation. 

 

Examination of module-weighted annotations 

As an initial test of our method, we calculated module-weighted annotations for GO 

terms.  We restricted the GO term set to those with at least 15 annotated genes in order to 

focus the analysis on robust signals; this set comprised 1651 GO terms.  We first 

examined whether module-weighted annotations recapitulated Boolean annotations by 

testing whether genes associated with each term tend to have larger module-weighted 
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annotations than other genes (two-sample KS test, alpha level = 0.05); this was true in 

98.6% (1628/1651) of cases. 

 

We then tested which GO terms contained the most strongly-weighted genes when 

normalization was omitted from their calculation, with the expectation that these should 

correspond to processes that are tightly regulated at the level of gene transcription.  The 

GO terms with the most highly weighted genes were mainly associated with ribosome 

and/or nucleosome structure and function, and the most highly weighted genes for these 

terms were known ribosomal or nucleosome genes (Table 1). 

 

We next examined which GO terms did not have any strongly weighted genes.  Many of 

these terms were associated with signal transduction and kinase activity (Table 1).  To 

test whether these observations were statistically significant, we ranked each GO term by 

the weight of its most strongly associated gene.  We then constructed a list comprising all 

words used in all GO terms, excluding words shorter than three letters and uninformative 

words (e.g., “the” and “for”.)  Finally, we tested each word for bias toward appearing 

near the top or bottom of the ranked GO term list.  In agreement with our initial 

observations, the most significantly top-biased words pertained to macromolecular 

complexes, such as “nucleosome”, “cilium”, and “ribosomal”, and the most significant 

bottom-biased words pertained to cell signaling, such as “signal”, “kinase”, and 

“receptor”  Many of the GO terms containing cell signaling words were generic in nature, 

e.g., protein kinase regulator activity, thus, our results may partially be explained by a 

lack of co-regulation among constituents of different signaling pathways.  However, 

some specific cell signaling terms, e.g., Notch signaling pathway also appeared near the 

bottom of the ranked GO term list, suggesting that the genes annotated with such terms 

are either not strongly co-regulated at the gene expression level or that the biological 

conditions represented by the compendium did not perturb their expression enough to 

form modules with our method. 

 

Application of module-weighted annotations to gene set enrichment analysis 
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To test our hypothesis that module-weighted annotations could aid the interpretation of 

gene expression data, we devised an analysis method that makes use of weighted-

annotations (see Methods) and compared its performance to traditional gene set 

enrichment analysis (GSEA)44.  Our performance comparison is based on the assumption 

that pairs of highly similar experiments should show a strong correlation in the 

significance level of annotations (e.g., GO terms), and that highly dissimilar experiments 

should show no such correlation. 

 

From a large set of gene expression fold changes, we selected the 100 most similar 

experiments (Spearman correlation, ρ, of gene fold changes near +/- 1) and the 100 least 

similar experiments (ρ near 0).  We found that highly similar experiments showed a 

stronger correlation in the significance level (absolute value of z-scores) of annotations 

when using weighted-annotation analysis than when using GSEA (p = 9.5E-6).  

Likewise, we found that highly dissimilar experiments showed a weaker correlation in 

the significance level of annotations using our method (p < 2.2E-16, Fig. 4a).  Indeed, the 

mean correlation between absolute values of z-scores for highly dissimilar experiments 

was close to zero for our method (mean ρ = 0.019), but significantly higher than zero for 

GSEA (mean ρ = 0.196).  These results suggest that module-weighted annotations may 

provide resilience to the confounding effect of highly coordinated expression among 

genes annotated with certain GO terms, a known issue with GSEA (see Discussion), and 

that analysis of gene expression data using module-weighted annotations may provide 

more reliable biological insights than traditional gene set enrichment analysis. 

 

Module-weighted regulatory sequences 

 

While any Boolean gene annotation may be converted into a module-weighted annotation 

with our method, it occurred to us that module-weighted regulatory sequences (i.e., a 

numeric indication of the degree to which a particular regulatory sequence appears to 

have an influence on a gene’s expression, given a set of gene modules), might be 

particularly useful for gene-expression analysis.  To test this, we generated weighted 
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annotations for each of the 5230 words in the promoter word dictionary (described 

above). 

 

To validate predicted regulatory word weights, we searched the literature, the JASPAR 

database of transcription factor binding profiles45, and the GEO database for C. elegans 

transcription factors with both an experimentally-characterized DNA-binding profile and, 

separately, a microarray experiment that measured gene expression in a loss-of-function 

mutant of the transcription factor gene.  This search yielded 6 transcription factors: daf-

12 (abnormal dauer formation), daf-16/FoxO (stress response and longevity), hif-1 

(hypoxia-inducible transcription factor)46, hlh-30 (helix loop helix), lin-14 (abnormal cell 

lineage), and nhr-23 (nuclear hormone receptor).  We then calculated two z-scores for 

each word in each loss-of-function microarray assay using the method described above: 

one score for the up-regulated genes, and another for the down-regulated genes (see 

Methods).  Analyzing positively- and negatively-changing genes separately avoids a 

possible “cancelling out” effect that could arise when a word is enriched in both the 

positively and the negatively changing genes in a set of gene fold-changes.  We then 

compared the top-scoring words to the DNA-binding profiles of the respective 

transcription factors.  If the predicted promoter-word weights are accurate, then words 

that resemble the binding profile should score highly in this analysis. 

 

For hif-1 and nhr-23, the most significantly enriched words in the positively and 

negatively changing genes, respectively, matched the canonical binding sites (Table 2).  

A word matching the hlh-30 binding site scored 6th overall among the up-regulated genes, 

and for daf-12, four of the top 20 words for the up-regulated genes contained GAACT or 

AACTT.  These partially match the reverse compliment of a reported daf-12 binding 

half-site, AGTTCA47.  In the daf-16 data set, several words matching the so-called “daf-

16 associated element” (DAE) scored highly.  However, none of the four words matching 

the canonical daf-16 binding site, T(G/A)TTTAC, and its reverse compliment were 

among the words comprising our promoter-word dictionary, precluding these from being 

represented in the analysis.  The canonical binding site for the final transcription factor, 

lin-14, is GAAC, but like the canonical daf-16 binding site, neither this word nor its 
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reverse compliment was present in the promoter word dictionary, precluding it from 

representation.  Even if GAAC had been present in the dictionary, however, it likely 

would not have reached statistical significance, as a word comprising only four bases 

would be expected to occur in most promoters by random chance (see Discussion).  

Taken together, these results suggest that module weighted regulatory sequences can be 

used to determine important regulatory sites in a gene expression experiment, and further 

validate our method for calculating weighted annotations. 

 

Module-weighted regulatory sequence analysis suggests hif-1 plays a key role in the 

effect of isp-1 mutation 

 

To further test whether module-weighted regulatory sequences could provide biological 

insights into gene expression data, we used them to analyze a published microarray 

dataset for C. elegans carrying mutations in isp-1 (iron-sulfur protein, respiratory 

complex III)48.  Reduction-of-function isp-1 mutations extend lifespan in a hif-1-

dependent fashion13-15, but, unexpectedly, we found that the overlap among the 

significant genes of microarray measurements comparing each mutant to wild type was 

not statistically significant (Χ2 test p-value = 0.17; Fig. S4).  However, when we 

projected the full set of gene expression changes in hif-1 and isp-1 mutants into gene 

module space, we found that these projections were strongly anti-correlated (Pearson 

correlation between SVE = -0.730, p = 4.7E-36).  (The hif-1 and isp-1 gene expression 

data was not used in our module construction, as it was not on the Affimetrix platform.) 

 

To determine how often two sets of gene fold changes generated by different experiments 

could be expected to show this degree of correlation when projected into gene module 

space, we determined projection correlations for all possible pairs of the 716 Affymetrix 

contrasts (described above), excluding pairs in which both contrasts originated from the 

same experiment (i.e., from the same GEO series).  This produced 188,805 contrast pairs, 

13,376 (7.08%) of which showed a statistically significant correlation (Holm corrected p-

value < 0.05).  The strength of the hif-1 and isp-1 correlation would rank 1570th, i.e., 

within the top 1%, had those experiments been part of the (Affymetrix only) contrast set.  
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The full set of contrast comparisons are provided as Supplemental Data, as contrasts that 

are similar in gene module space but generated by different experiments could prove 

useful to others for hypothesis generation (e.g., had we observed the similarity between 

the hif-1 and isp-1 projections, we might have hypothesized a role for hif-1 in isp-1 

mutants before such a role was suspected.)  

 

We next calculated promoter word z-scores for the isp-1 microarray data set using our 

method and compared the results to those for hif-1.  We observed a very strong 

correlation between the promoter word z-scores for isp-1 mutants and those for hif-1 

mutants (Fig. 4b, R = -0.581, p < 2.2E-16).  The correlation was negative, consistent with 

the interpretation that the life extension observed when isp-1 activity is reduced requires 

activation of gene expression by HIF-1.  The strong promoter word z-score correlation 

between these datasets, and the coincidence of their projections in our modules despite a 

lack of similarity among their most differentially expressed genes, suggests that the role 

of HIF-1 in regulating the lifespan of isp-1 mutants may be to instigate small but 

coordinated expression changes in many genes, most of which fail significance tests for 

differential expression in one or both datasets.  In general, it would be interesting to learn 

to what extent this situation, which would not be detected by many genetic or 

bioinformatic methods, has arisen during the evolution of gene circuits.  

 

 

Discussion 

 

Scientists that study biology at the sub-cellular level face the challenge of understanding 

a world that operates on a different time and size scale than the one we perceive in our 

everyday experience.  It is a world that has mainly been observed indirectly and in 

isolated fragments, and the descriptions that have been made of it likely fail to capture 

parts of its essence.  For this and other reasons, some advocate the development of 

mathematically driven descriptions of genes and gene products based on data rich assays, 

such as computationally predicted gene modules.  These can aid the interpretability of 

gene expression assays by reducing the dimensionality of a data set from thousands of 
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significant genes to perhaps tens of significant modules.  Of course, this leaves the 

researcher with the challenge of interpreting gene module activities, e.g. by checking for 

enriched annotations among significant modules’ genes.  

 

Alternatively, as we have shown here, gene module predictions can be combined with 

prior knowledge (Boolean annotations) to generate module-weighted annotations.  

Analyses performed with module-weighted annotations leverage the power of gene 

modules but provide the researcher with results of a more familiar form, e.g., significant 

GO categories.  Such analyses may prove more informative than those based on Boolean 

annotations in many cases.  In our comparison of module-weighted annotation analysis to 

GSEA, experiments that were highly similar at the gene level bore greater similarity in 

annotation significance levels with our method than with GSEA, and highly dissimilar 

experiments bore less.  These results suggest that module-weighted annotation analysis 

may be less prone to the confounding effect of gene-gene correlations and serve to 

motivate its further development, work that is currently ongoing by our lab.  

 

Whereas ICA has been applied to the prediction of gene modules before, we could find 

no examples in the literature of optimizing the number of extracted components in the 

manner that we describe.  Combined with the improved ability to partition independent 

components provided by our artificial neural network approach, we expect that our 

results will spur exploration into additional applications of ICA to the analysis of 

biological data.  In addition, we expect the regulatory word analysis we describe to 

stimulate many specific, testable hypotheses about the roles of specific transcription 

factors in biological processes.  For example, had we not known previously that HIF-1 

regulated life extension in isp-1 mutants, we would have generated this hypothesis upon 

observing the strong similarity between promoter word scores in the isp-1 and hif-1 

microarray datasets.  Thus this method serves as a discovery tool that can link together 

seemingly disparate factors (such as hif-1 and isp-1), or even prompt new searches for 

functional significance when gene modules that cannot described satisfactorily by 

existing annotation terms. 
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Accurate estimates of module-weighted annotations depend on accurate estimates of gene 

modules.  While we have taken steps to maximize module prediction accuracy for the 

microarray compendium we assembled, many additional gene modules may exist in C. 

elegans that were not perturbed sufficiently in the samples comprising the compendium 

to be detected.  These gene modules would remain hidden, and would therefore fail to 

exert an effect on annotation weights.  As new areas of research are explored and new 

experiments are published, however, new gene modules may be discovered and module-

weighted annotations can be recalculated to improve estimated weights.  We envision a 

system in which this would occur automatically as new experimental data is deposited 

into the GEO database. 

 

Four of the six transcription factor perturbation microarray experiments we analyzed 

produced high scoring promoter words that closely matched the known DNA binding 

sites of the corresponding transcription factors.  For the two that did not, daf-16 and lin-

14, words that exactly matched the factors’ canonical binding sites were not present in 

the promoter word dictionary generated by the Mobydick algorithm, and results for these 

factors could be poor for this reason.  Another possible explanation, however, stems from 

our method for calculating word enrichment among module promoters.  We calculated 

the p-value for module-wise enrichment based on the presence or absence of each word 

in each gene’s promoter.  Thus, words that are present many times in a gene’s promoter 

do not contribute anything more to the p-value calculation than words that are present 

only once.  The canonical DAF-16 binding site occurs in approximately 50% of all 2k-bp 

gene promoters, but in the 12 genes with the largest expression changes in daf-2 mutants, 

in which DAF-16 becomes activated, Zhang et al.49, found that the mean number of 

occurrences of the DAF-16 binding site is 5.1.  Thus, a single copy of the DAF-16 

binding site may be insufficient to confer regulation by this factor.  A modification of our 

method that uses gene-wise promoter word enrichment rather than presence vs. absence 

may prove to be more accurate for predicting active regulatory sequences for 

transcription factors with highly abundant binding sites, such as DAF-16; this is a 

question we plan to address in future work.  Interestingly, the second highest scoring 

word for the genes down-regulated upon daf-16 perturbation was GGAAG, and this word 
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occurs twice more as a substring among the top 20 scoring words.  This sequence is a 

partial match to an alternative daf-16 binding site reported in hookworm50, 

G(A/G)(C/G)A(A/T)G, suggesting that this site may be functional in C. elegans as well.  

 

In addition to its utility in analyzing gene expression data, the module-weighted 

regulatory sequence matrix could be used to identify transcription factor target genes, 

providing that words could successfully be matched to transcription factors.  

Alternatively, ICA of this matrix could be used to find words that “travel together” in 

terms of their predicted influence on genes.  Such independent components, comprising 

weighted words rather than weighted genes, would presumably represent a set of possible 

binding sites for a factor, similar to a sequence logo or position-specific weight matrix.  

Preliminary work on generating word independent components showed that palindrome 

pairs often scored highly together, lending credence to this approach.  Given the dearth of 

well-characterized transcription factor binding sites in C. elegans, matching word-

independent components to transcription factors still presents a challenge.  We expect the 

wealth of transcription factor binding data currently being generated by the 

modENCODE consortium and others, however, to be extremely useful toward this end. 

 

 

Methods 

 

Compendium construction 

 

To build our compendium of 1386 C. elegans Affymetrix arrays, we first downloaded all 

CEL files with the appropriate platform ID (GPL200) from the GEO database available 

on March 1, 2014, excluding those for which the organism was not C. elegans and the 

sample type was not RNA.  We excluded arrays from experiments for which fewer than 8 

hybridizations were performed in order to mitigate the effect that under-sampled 

conditions might have on predicted modules.  We then performed a quality control step 

using the quality assessment functions provided in the simpleAffy (v2.40.0) R package 
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(http://bioinformatics.picr.man.ac.uk/simpleaffy/), discarding arrays that did not meet the 

quality thresholds recommended in the simpleAffy documentation. 

 

We generated expression values for probesets separately for each experiment (determined 

by GEO series IDs) using the RMA preprocessing procedure provided in the affy 

(v1.40.0) R package 51, then used the bias (v0.0.5) R package52 to remove intensity-

dependent biases in expression levels.  We then concatenated the expression matrices for 

each experiment into a single matrix.  Next, we either performed between-experiment 

quantile normalization53 on the entire matrix using the limma (v3.18.13) R package54, or 

omitted this step, depending on preprocessing method to be tested.  Finally, we scaled 

and centered the arrays and centered the genes such that the mean of each row and 

column were zero and the standard deviation of each array was 1.  

 

 

Conducting ICA 

 

To conduct ICA of the gene expression matrix, we used the fastICA (v1.2-0) R package 

(http://CRAN.R-project.org/package=fastICA) with default parameters except for the 

“method” parameter, which we set to “C” to increase computational speed, and the 

“row.norm” parameter, which we set to ”TRUE” in order to balance the total 

compendium variance between genes with subtle changes in expression values and those 

with large changes in expression values.  We used the same parameters to conduct ICA of 

the word / module p-value matrix. 

 

 

Partitioning of independent components 

 

To convert independent components to discrete sets of genes, we employed two methods.  

In the first, for each component, we assigned all genes with a weight <= -3 to the 

negative hemi-module, and all genes with a weight >= 3 to the positive hemi-module.  In 

the second, we created an artificial neural network using the neuralnet (v1.32) R package 
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(http://CRAN.R-project.org/package=neuralnet) to predict positive and negative 

partitioning thresholds for each independent component, based on the component’s 

skewness and kurtosis (see Supplemental Methods), then assigned genes whose weights 

exceeded these thresholds to the corresponding hemi-modules. 

 

 

Obtaining gene annotations and additional microarray data 

 

To obtain GO term and REACTOME pathway annotations for genes we used the 

biomaRt (v2.18.0) R package55,56, using the ensembl mart for data retrieval.  To obtain 

tissue annotations for C. elegans genes, we downloaded all available data from the GFP 

Worm database (http://gfpweb.aecom.yu.edu/)57, which contains annotated expression 

patterns of promoter::GFP fusion constructs; in total, this dataset provided annotations for 

1821 genes across 89 tissue types (n.b., we considered the same tissue in different 

development stages to be distinct tissue types).  To obtain expression data from a 

different platform for use in optimization of gene module prediction, we downloaded the 

fold change matrices for all GEO series conducted on the Washington University C. 

elegans 22k 60-mer array (GEO platform ID: GPL4038), a two-color spotted array 

platform, and concatenated these column-wise into a single matrix.  To obtain microarray 

data for nhr-23(RNAi), we downloaded gene fold changes for the GEO series GSE32031, 

which contains three control samples and three nhr-23(RNAi) samples58; gene fold 

changes were calculated using the GEO2R web service 

(http://www.ncbi.nlm.nih.gov/geo/geo2r/).  To obtain fold changes for isp-1 mutants, we 

used data previously published by our group in which isp-1(qm150) mutants were 

compared to wild type controls48.  To obtain fold changes for hif-1 mutants, we used the 

maanova (v1.33.2) R package (http://research.jax.org/faculty/churchill) and data 

previously published by Shen, et al.46, to calculate the induced gene fold changes upon 

mutation of hif-1. 

 

 

Optimizing gene module prediction 
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To optimize gene module prediction, we performed ICA with different parameters, 

varying the number of extracted components from 5 to 500 by increments of 5 and 

varying the compendium between one generated with between-experiment quantile 

normalization and one generated without this step.  For each parameter combination, we 

repeated ICA 5 times, for a total of 1000 ICA runs. 

 

We tested the biological validity of the independent components generated by each ICA 

run by determining the number of annotations that were enriched in at least one hemi-

module.  To make this determination, we first calculated a p-value for the enrichment of 

genes associated with each annotation term in each hemi-module using the 

hypergeometric test.  We then applied the Simes method40 for multiple hypothesis testing 

(alpha = 0.05) to the set of p-values for each annotation term; failure of this test indicates 

that at least one of the p-values is truly significant.  To verify the accuracy of our module 

quality statistics, we repeated all tests using module definition matrices in which gene 

IDs had been randomly shuffled. 

 

To test the ability of a set of independent components to represent data from a different 

microarray platform, we first projected the data from the second platform onto the 

independent components (see below).  This operation produces a mixing matrix, which 

may be interpreted as describing the weight of each independent component in each of 

the projected microarrays.  We then attempted to recover the original data by determining 

the dot product of the module definition matrix and the mixing matrix.  We compared this 

matrix with the original matrix and calculated the root mean squared deviation (RMSD) 

between the two.  We normalized this value by dividing by the range of values between 

the two matrices, resulting in NRMSD. 

 

 

Statistical testing of module 3’-UTR length bias 
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We observed that C. elegans 3’-UTR lengths are approximately log-normally distributed 

(Figure S5).  Therefore, we chose to use the log of each 3’-UTR length in our 

calculations to allow the use of parametric statistical tests, such as Student’s t-test.  For 

those genes with multiple annotated 3’-UTRs, we determined the log of the individual 3’-

UTR lengths and used the mean of these numbers for the gene’s 3’-UTR length. 

 

In our statistical test for 3’-UTR length biases in predicted modules, we first calculated 

the weighted mean C. elegans 3’-UTR length.  We weighted each gene’s contribution to 

this mean by the frequency with which it appears in our predicted modules in order to 

adjust for different propensities for module inclusion by different genes.  We then used 

one-sample t-tests to calculate p-values for whether the mean 3’-UTR length of each 

hemi-module differs significantly from the weighted mean C. elegans 3’-UTR length.  

We used the Benjamini-Hochberg procedure on these p-values to control the false 

discovery rate at a level of 0.1.  

 

 

Generation of Xa matrix (annotation / hemi-module enrichment score matrix) 

 

To generate the Xa matrix, we first created gene sets from the module definition matrix, 

Sg, using ANN-based partitioning.  This produced two gene sets (which we refer to as 

hemi-modules) per gene module, for a total of 418.  We then calculated a hypergeometric 

probability for each word in each hemi-module, using the frequency of genes bearing a 

particular word in their promoter in the hemi-module, the frequency of such genes in the 

compendium, the number of genes in the hemi-module, and the number of genes not in 

the hemi-module as the q, m, k, and n input parameters, respectively, to the phyper() 

function of the stats (v3.0.3) R package (http://www.R-project.org/).  

 

We used these p-values to populate a matrix with a column for each hemi-module and a 

row for each word in our promoter dictionary.  For under-represented words, we entered 

the log(p-value) in the matrix, and for over-represented words we entered the –log(p-

value). 
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Weighted annotation enrichment analysis 

 

To test whether a set of gene fold-changes were significantly enriched for specific 

annotations, given a module-weighted annotation matrix, Xw, we calculated the dot 

product of the data vector, x, comprising the set of gene fold-changes, and the Xw matrix: 

 

 x⋅ Xw = a (4) 

 

The resulting vector, a, provides an indication of the degree to which genes with strong 

weights for each annotation also have strong fold-changes.  To generate p-values from 

these, we permuted the fold-change vector, x, 1000 times to create a background 

distribution for each annotation, which we then used to determine z-scores. 

 

Data projection and calculation of SVE 

 

To project a data vector, x, such as a set of gene expression fold changes, onto a set of 

gene modules (or a weighted annotation matrix), we used the scalar projection method, in 

which a mixing vector, a, is calculated from the dot product of the data vector and the 

transpose of the unit vectors comprising the module definitions, ˆ S T, as shown in equation 

5: 

 

   (5) 

 

The resulting mixing vector, a, provides an indication of the weight of each module 

definition vector in the projected data, x.  Projection of a data matrix, X, which generates 

a mixing matrix, A, was carried out using the same procedure. 

 

To calculate signed variance explained (SVE), we calculated the relative variance 

explained (VE) for each module from a as follows: 

a = x ˆ S T
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 VE =
a2

a2∑
 (6) 

 

 

We then multiplied these values, which are strictly positive, by -1 in each case where a < 

0 to obtain SVE. 
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Supplemental methods 

 

Generation of simulated data 

 

To generate a simulated microarray compendium containing a proscribed number, n, of 

true gene modules, we performed ICA on a test compendium and extracted 2n 

independent components.  We then randomly selected n rows of the resulting S matrix 

and multiplied these with the corresponding columns of the A matrix.  This generated a 

matrix with the same dimensions as the test compendium, but with only n latent gene 

modules.  We then added random Gaussian noise to each data point in this matrix.  

Increasing the level of noise decreased the accuracy of modules extracted from the 

matrix, but did not alter the observed property that accuracy reached a maximum when 

the number of extracted components matched the number of latent modules (data not 

shown). 

 

 

Construction of Mobydick dictionaries 

 

To construct promoter and 3’-UTR dictionaries, we ran the Mobydick39 program once on 

the complete set of C. elegans promoters, using DNA sequence from the transcription 

start site to 2000 b.p. upstream for each gene, and again on the complete set of 3’-UTRs 

with lengths of at least 25 n.t.  Sequences were obtained using the biomaRt (ver 2.14.0) R 

package55,56.  Application of Mobydick to promoter sequences produced a dictionary of 

5230 words, and application to 3’-UTR sequences produced a dictionary of 968 words. 

 

 

Calculation of significance of 3’-UTR word enrichment 

 

Because 3’-UTRs differ in length, and because gene modules show a tendency toward 

inclusion of genes with similar length 3’-UTRs, calculation of the enrichment of 3’-UTR 

words in module genes required a length-normalization step.  To achieve this, we applied 
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the method described van Helden, et al.59  Briefly, we determined the per nucleotide 

frequency of each word in the entire set of 3’-UTRs, then used the binomial distribution 

to determine whether each word occurs more often than expected by random chance in a 

sequence, given the number of occurrences of the word in the sequence and the sequence 

length.  We then applied the Holm-Bonferroni correction to the resulting p-values and 

marked all words with a corrected p-value < 0.5 as present in the 3’-UTR. 

 

 

Generation of Affymetrix contrasts 

 

To generate the 716 Affymetrix contrasts, we examined all C. elegans Affymetrix 

experiments (organized as GEO series) available for download in the GEO database on 

January 23, 2015.  For each experiment, we generated contrasts (two sets of microarrays 

to compare to each other) based on the following rules: 1) we compared genetic mutants 

to wild type controls, or to the genotype most resembling wild type if true wild type 

animals were not used in the experiment, 2) we compared animals subjected to a 

treatment, such as an environmental stress, to animals with the same genotype but 

subjected to control conditions, 3) we compared animals harvested at different time 

points to animals with the same genotype but harvested at the earliest time point 

represented in the experiment.  When necessary, we divided large experiments into 

smaller subsets in order to simplify contrast generation and facilitate the application of 

the above rules.  We generated fold-changes from contrasts using the RMA procedure 

provided in the affy (v1.40.0) R package. 

 

 

Generation of artificial neural network for independent component partitioning 

 

To create an artificial neural network for use in partitioning independent components, we 

first generated simulated data to use as test, training, and validation sets.  We generated 

this data by first randomly permuting the expression values of 100 arrays comprising our 
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C. elegans microarray compendium column-wise to create a background devoid of non-

random signal, but with a similar gene expression value distribution to real data. 

 

Into this random background we inserted simulated gene modules by first picking a gene 

to use as a module seed pattern, then changing the expression values of other genes such 

that they positively or negatively correlated with the expression values of this gene across 

all or a subset of arrays.  We varied the number of genes comprising the simulated 

module, the strength of adherence of each gene to the seed pattern, the fraction of genes 

within the module with positive and negative correlation to the seed pattern, and the 

number of arrays in which this correlation existed.  In all, we generated over 10,000 

random modules and inserted them into separate sets of random background arrays, so 

that each array set would contain a single non-random module. 

 

We then attempted to recover each simulated module using ICA.  We extracted a single 

component from each simulated array set and deemed the extraction successful if 3 of the 

top 5 most strongly weighted genes in this component were in the simulated module.  For 

successful extractions, we calculated the optimal partitioning thresholds for the positive 

and negative hemi-modules, as well as the skewness and kurtosis of the module definition 

vector using the moments (v0.13) R package (http://CRAN.R-

project.org/package=moments). 

 

Using this data, we trained an artificial network to predict the optimal partitioning 

thresholds for an independent component from the skewness and kurtosis of its gene 

weights using the neuralnet (v1.32) R package (http://CRAN.R-

project.org/package=neuralnet).  We generated another simulated module set in the same 

manner as the first to use as a test set, and varied the architecture of the artificial neural 

network until the prediction performance reached a maximum value.  This occurred when 

the artificial neural network contained two hidden layers, each with 11 nodes.  We 

confirmed that the artificial neural network was not over-fit to the test set by measuring 

its performance in a third set of simulated data, the validation set.  Performance on this 

set was similar to that on the test set.  The structure of this artificial neural network is 
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shown in Figure S6; an R data file containing the artificial neural network is available for 

download on our website (http://kenyonlab.ucsf.edu/data/ann.11.11.Rdata). 
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Go Term Group GO ID Rank GO Term Top Genes
GO:0005840 1 ribosome

GO:0003735 2 structural constituent of 
ribosome

GO:0030529 3 ribonucleoprotein complex
GO:0006412 4 translation

GO:0043228 10 non-membrane-bounded 
organelle

GO:0043232 11 intracellular non-membrane-
bounded organelle

GO:0032991 20 macromolecular complex
GO:0020037 5 heme binding
GO:0046906 6 tetrapyrrole binding
GO:0005506 7 iron ion binding
GO:0004497 8 monooxygenase activity
GO:0009055 9 electron carrier activity

GO:0016705 15

oxidoreductase activity, 
acting on paired donors, with 
incorporation or reduction of 
molecular oxygen

GO:0006334 12 nucleosome assembly
GO:0034728 13 nucleosome organization
GO:0031497 14 chromatin assembly
GO:0000786 16 nucleosome
GO:0032993 17 protein-DNA complex

GO:0006333 18 chromatin assembly or 
disassembly

GO:0065004 21 protein-DNA complex 
assembly

GO:0071824 22 protein-DNA complex subunit 
organization

GO:0006323 23 DNA packaging

Lipid glycosylation GO:0030259 19 lipid glycosylation
C33C12.8, cyp-
35A5, cyp-35A1, 
dhs-23, clec-210

Cuticle GO:0042302 24 structural constituent of 
cuticle

col-2, col-84, col-
158, col-44, 
R07E5.4

Oxidoreductase 
activity GO:0016491 25 oxidoreductase activity

B0272.4, Y75B8A.4, 
acox-1, F58A6.1, 
dhs-18

… … … … …

Presynaptic 
membrane GO:0042734 1647 presynaptic membrane

K02E11.7, C45G9.6, 
clec-233, ttr-10, cup-
4

GO:0046579 1648 positive regulation of Ras 
protein signal transduction

GO:0051057 1649
positive regulation of small 
GTPase mediated signal 
transduction

GO:0009931 1650
calcium-dependent protein 
serine/threonine kinase 
activity

GO:0010857 1651 calcium-dependent protein 
kinase activity

rpl-43, rps-15, rps-
14, rpl-22, rpl-32

R05D8.9, E02C12.6, 
T16G1.6, cyp-35A1, 
C33C12.8

his-4, his-8, his-9, 
his-45, his-62

R04B5.6, cyp-33D3, 
C34D10.1, stdh-2, 
F19F10.1

tag-83, T21H8.5, 
cca-1, ZC101.1, ztf-
16

Ribosome

Heme binding

Nucleosome

Signal transduction

Calcium-dependent 
kinase
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Factor Binding site Top words Projection set Z-score Z-score rank
daf-16 T(G/A)TTTAC TTCTTATCA Down-regulated -3.95 1

CTTATCA* GGAAG Down-regulated -3.69 2
TTTTCTG Down-regulated 3.47 3

hif-1 ACGTG ACGTGAAC Up-regulated 4.39 1
CGTGAAC Up-regulated 4.38 2
ACGTG Up-regulated 3.71 3

nhr-23 AGGTCA AGGTCA Down-regulated -5.29 1
TGACCTA Down-regulated -4.72 2
CCTCCCCC Down-regulated -4.39 3

hlh-30 TCACGTGA(C/T) CTTACTATT Up-regulated -4.30 1
CGTAATCC Up-regulated 4.14 2
CTTTTTTCT Down-regulated 4.07 3
CACGTG Up-regulated -3.09 20

lin-14 GAAC CCTACCTACCTA Down-regulated 4.35 1
GCGCGTCAAATA Up-regulated -3.95 2
GCCGCGCACCCC Down-regulated -3.78 3
GGTTCTGG Down-regulated -2.52 109

daf-12 AGTTCA CCCCAC Down-regulated -4.41 1
GCTC Up-regulated 4.28 2
CCCCGCC Down-regulated -4.00 3
AACTTTT Up-regulated 3.51 11

* - Though not the canonical binding site for daf-16, CTTATCA has been associated with daf-16 

activity and the results of one study suggest it may bind daf-16 in vivo.49
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