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ABSTRACT 1 

The ancestral tracks in admixed genomes are of valuable information for population 2 

history inference. A few methods have been developed to infer admixture history 3 

based on ancestral tracks. Nonetheless, these methods suffered the same flaw that 4 

only population admixture history under some specific models can be inferred. In 5 

addition, the inference of history might be biased or even unreliable if the specific 6 

model is deviated from the real situation. To address this problem, we firstly proposed 7 

a general discrete admixture model to describe the admixture history with multiple 8 

ancestral populations and multiple-wave admixtures. We next deduced the length 9 

distribution of ancestral tracks under the general discrete admixture model. We further 10 

developed a new method, MultiWaver, to explore the multiple-wave admixture 11 

histories. Our method could automatically determine an optimal admixture model 12 

based on the length distribution of ancestral tracks, and estimate the corresponding 13 

parameters under this optimal model. Specifically, we used a likelihood ratio test 14 

(LRT) to determine the number of admixture waves, and implemented an 15 

expectation–maximization (EM) algorithm to estimate parameters. We used 16 

simulation studies to validate the reliability and effectiveness of our method. Finally, 17 

good performance was observed when our method was applied to real datasets of 18 

African Americans, Mexicans, Uyghurs, and Hazaras. 19 
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INTRODUCTION 1 

Admixture among previously isolated populations has been a common phenomenon 2 

throughout the evolution of modern humans1-3. The history of population admixture 3 

has a strong influence on the landscape of genetic variation in individuals from 4 

admixed populations. Therefore, the population history of admixed populations can be 5 

reconstructed by utilizing genetic variation information4-16. 6 

A few methods have been developed to infer admixture history based on ancestral 7 

tracks information10-16. Pool and Nielsen firstly used the length of ancestral tracks to 8 

infer population history10. They introduced a theoretical framework describing the 9 

length distribution of ancestral tracts and proposed a likelihood inference method to 10 

estimate parameters related to historical change in migration rates. Additionally, 11 

Pugach et al. performed wavelet transforms on the ancestral tracks in an admixed 12 

population to obtain the dominant frequency of ancestral tracks to estimate the 13 

admixture time11,16. Jin et al. further explored admixture dynamics by comparing the 14 

empirical and simulated distribution of ancestral tracks under 3 typical two-way 15 

admixtures models, i.e., the hybrid isolation (HI) model, gradual admixture (GA) 16 

model, and continuous gene flow (CGF) model12. They later deduced the theoretical 17 

distributions of ancestral tracks under HI and GA models14. Gravel extended these 18 

studies to multiple ancestral populations and discrete migrations, and provided a 19 

numerical estimation of tract length distribution13. 20 

However, there was a significant shortcoming for all these methods. Before 21 

estimating the parameters of admixture history, a prior admixture model was required. 22 
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The method by Pool and Nielsen considered a model that a target population received 1 

migrants from a source population10. Pugach et al.’s method was under an HI model, 2 

and Jin et al.’s methods were under HI, GA, and CGF models11,12,14. While Gravel 3 

considered models of multiple ancestral populations and discrete migrations, a prior 4 

admixture model was also required when dealing with the problem of admixture 5 

history inference13. However, in data analysis, we always have little information of 6 

admixture history, and the admixture model is often uncertain for some complex 7 

admixed populations4,17-19. Therefore, when the prior model deviates from the real 8 

history, these methods might be unreliable. 9 

In our previous work15, we proposed some general principles in parameter 10 

estimation and model selection with the length distribution of ancestral tracks under a 11 

general model. However, with the increase of the number of parameters, it is complex 12 

and time-consuming to find the optimal solution, and too many parameters can lead to 13 

over-fitting. Thus, we only developed a method to infer admixture history under 3 14 

typical two-way admixtures models. 15 

In this work, we introduced a new method to select the optimal admixture model 16 

and estimate the corresponding parameters under a general model. Firstly, we 17 

proposed a general discrete admixture model with an arbitrary number of ancestral 18 

populations and arbitrary number of admixture events. This was similar to the general 19 

model in our previous work15. Then, we deduced the theoretical distribution of 20 

ancestral tracks with some reasonable approximations under the general discrete 21 

admixture model. We selected an optimal admixture model based on the length 22 
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distribution of ancestral tracks. Specifically, we used a likelihood ratio test (LRT)20,21 1 

to determine the number of admixture waves, and employed an exhaustion method to 2 

determine the order of admixtures. We then applied an expectation–maximization 3 

(EM) algorithm22 to estimate parameters under the optimal model. In our method, no 4 

prior knowledge about the admixture history was required, and the admixture model 5 

and its corresponding parameters could both be inferred by ancestral tracks. Finally, 6 

we conducted simulation studies to demonstrate the effectiveness of our method, and 7 

then applied our method to African Americans and Mexicans from the HapMap 8 

project phase III dataset23, and Uyghurs and Hazaras from the Human Genome 9 

Diversity Project (HGDP) dataset1. 10 

METHODS AND MATERIALS 11 

General Discrete Admixture Model 12 

In our previous study15, we modeled admixture history generation by generation and 13 

proposed a general admixture model. The model was determined by a � � � 14 

admixture proportion matrix � � ����	
������,����� , where � is the number of 15 

ancestral populations, � is the time the admixed population arose, and ���	
 is the 16 

ancestry contribution of �	
  ancestral population at time 	 . If the admixed 17 

population did not receive any gene flows of �	
 ancestral population at time 	, we 18 

set ���	
 as 0. This general model covers all scenarios of an admixed population 19 

with an arbitrary number of ancestral populations and arbitrary number of admixture 20 

events. However, the parameters for this general model are redundant, and will lead to 21 

over-fitting for most cases. For example, if we consider an HI model of 2 ancestral 22 
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populations and the admixed population arose � generations ago, the number of 1 

parameters is 2�. However, 2�� � 1
 parameters should be equal to 0, since ancestral 2 

populations contribute nothing after the first admixture. Thus, in fact, only 2 3 

parameters must be estimated. Thus, to reduce redundancy and maintain the 4 

universality of our model, we proposed a general discrete admixture model that only 5 

records the information of actual admixture events (see Fig. 1). 6 

We considered an admixed population with � ancestral populations and �-wave 7 

discrete admixtures. Here, the time of the admixture in generations increase over time, 8 

with � being the present time. For the first wave admixture (� � 1), there are 2 9 

ancestral populations. We denote one ancestral population as population �� and the 10 

other as population ��. When � � 2, we denote ��  as the ancestral population of 11 

�	
 admixture. Then, we denote a vector � � ���, �� , … , �	
 as the admixture order 12 

of ancestral populations. Let ��  be the admixture proportion of the �	
 admixture 13 

and 	�  be the admixture time of the �	
  admixture. We note that 0 � �� �14 

1  for 1 � � � �, and 	� � 	
 � �  � 		 � 		�� �: �. For convenience in our later 15 

description, we denote the admixture event from population ��  as the 0	
 16 

admixture, which means the ancestral population ��  is regarded as an admixed 17 

population before the first wave admixture. Thus, we set the corresponding admixture 18 

proportion �� � 1 and admixture time 	� � 	�. With this definition, each wave (�	
 19 

wave) of admixture can be determined by 3 parameters, ��, �� , and 	�. 20 

Now, denote  � � ��: �� � ��, then,  ��!
 represents the wave ordinal of the !	
 21 

admixture from ancestral population �. Let ��  denote the number of admixture 22 
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waves from ancestral population �, and thus we have �� � | �| and ∑ ��
�
�
� � � $1 

1, where � is total number of admixture waves. The general discrete admixture 2 

model is determined by the admixture order � � ���, �� , … , �	
, the admixture 3 

proportion ��������	, and the admixture time �	������	��. If we set 4 

���
�	�
 � %1 � �� , � � 0�� , � � 10, &	
'()�*'+, 5 

we can get the admixture proportion matrix of the previous general model15. This 6 

shows that our new model is similar to the previous model. Furthermore, this new 7 

model can also cover all scenarios of an admixed population with an arbitrary number 8 

of ancestral populations and arbitrary number of admixture events. 9 

Length Distribution of Ancestral Tracks 10 

Next, we deduced the length distribution of ancestral tracks from ancestral population 11 

�. The deduction process is similar to that of our previous work15. The wave ordinals 12 

of admixture from ancestral population � are  ��1
,  ��2
, …,  ����
, respectively. 13 

Denote ,��	
 as the total ancestry proportion of the �	
 ancestral population in the 14 

admixed population at 	 generation, and then we have 15 

                                             ,��	
 � - ������
. �1 � ��
�

�
�������

�

�
�

,                                      �1
 

where ) � max2 !: 	����� � 	, 1 � ! � ��3  and 
 � max��: 	� � 	, 1 � � � �� . 16 

Define *�  as the survival proportion of the ancestral tracks from the �	
 admixture 17 

at generation �. Then, 18 

                                                     *� � �� . �1 � ��
	

�
���

.                                                     �2
 

For simplicity, we assumed that chromosome length was infinite and there was no 19 
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genetic drift. Additionally, we defined the recombination among tracks from different 1 

ancestral populations as effective recombination because we only observed these 2 

recombination events among different ancestries. The length of ancestral tracks was 3 

changed by these recombination events. For the tracks from ancestral population �, 4 

the effective recombination rate is 1 � ,��	
 at 	 generation. Let 5��!
 be the 5 

total effective recombination rate for ancestral tracks from the !	
 admixture of 6 

ancestral population �. Then, we have 7 

                                       5��!
 � - 61 � ,��	�
7	

�
�����

�	��� � 	�
.                                   �3
 

The length distribution of ancestral tracks from the !	
 admixture of ancestral 8 

population �  is an exponential distribution with a rate of 5��!
 10,13,15. A 9 

chromosome from the !	
 admixture of ancestral population � is expected to be 10 

split into 5��!
 pieces per unit length (unit in Morgan). Thus, for the admixed 11 

population at � generation, the number of ancestral tracks from the !	
 admixture 12 

of ancestral population � is proportional to *�����5��!
. Let 9� be the length of 13 

ancestral tracks from ancestral population �  at generation � , and :��;
 is the 14 

probability density of 9�. Then, 15 

:��;
 � - < =ancestral tracks are from the !	
 admixtureof  ancestral population �  J 5��!
exp ��5��!
;
	�

�
�

 

            � - *�����5��!
∑ *�����5��!
	�
�
�

5��!
exp ��5��!
;
	�

�
�

.                                                        �4
 

The length distribution of ancestral tracks was a mixed exponential distribution, and 16 

consisted with the results from our previous study15. 17 

Model Selection and Parameter Estimation 18 
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If the admixture model is determined, the length distribution of ancestral tracks can be 1 

written as Formula (4), which is a mixed exponential distribution. The 2 

EM-algorithm22 can be used to estimate the parameters in this distribution. However, 3 

the admixture model is often unclear in real situations, which means the number of 4 

admixture waves (��) and the order of admixtures (�) are unknown. Thus, we must 5 

first determine �� and �. Here, we used LRT20 to select the optimal ��. After that, 6 

we used the exhaustion method to validate the accuracy of �. For any order of 7 

admixtures, we estimated the admixture proportion ��������	 and admixture time 8 

�	������	��  using the EM-algorithm. However, these parameter estimations must 9 

satisfy the following constraint conditions: 10 

(a) 0 � �� � 1, for 1 � � � �; 11 

(b) 	� � 	
 � � � 		 � 		��. 12 

If the estimations don’t satisfy these conditions, the order is incorrect. After traversing 13 

all admixture orders, we could determine the correct ones. 14 

The detailed procedures are as follows: 15 

Step 1: Estimate the total admixture proportion ��  of ancestral population �. 16 

With the inferred ancestral tracks, divide the total length of tracks from population � 17 

by the total length of tracks in the admixed population. 18 

Step 2: Determine the number of admixture waves (�� ) for each ancestral 19 

population and estimate the parameters of the mixed exponential distribution. For 20 

ancestral population �, use LRT to select the optimal number of admixture waves and 21 

then estimate the parameters ��L��, M��
, �L�
 , M�

, … ,+ +�L�	�
, M�	�
3 of the mixed 22 
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exponential distribution using the EM-algorithm, where L�� � ������
�����

∑ ������
�����

��
��	

, 1 

M��=5��!
. Details of the EM-algorithm and LRT procedures are in Supplementary 2 

Information (Supplementary Text S1). 3 

Step 3: Select an admixture order � without replacement from set 4 

{

1

: a permutation of sequence 1,...,1,... ,..., ,..., ,..., , where (1) (2) .
k K

n n n

O k k K K O O
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Ω = ≠

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

123 14243
5 

Get  � for each � base on the selected �. 6 

Step 4: Determine �*������	  and �5��!
, 1 � ! � �� , 1 � � � ��  from the 7 

following equations: 8 

NOO
P
OOQ

5��!
 � M�� ,*�����5��!
∑ *�����5��!
	�
�
�

� L��,
- *�����
	�

�
�

� �� ,
+ 

where 1 � ! � �� , 1 � � � �. 9 

Step 5: Determine ��������	 from the following equations: 10 

*� � �� . �1 � ��
	

�
���

, 
where 0 � � � �. 11 

Step 6: Determine �	������	�� from the following equations: 12 

,��	
 � - ������
. �1 � ��
�

�
�������

�

�
�

, 
5��!
 � - 61 � ,��	�
7	

�
�����

�	��� � 	�
, 
where 1 � ! � �� , 1 � � � �. 13 
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Step 7: Judge whether ��������	 and �	������	�� satisfy the following conditions: 1 

(a) 0 � �� � 1, for 1 � � � �; 2 

(b) 	� � 	
 � � � 		 � 		��. 3 

If these conditions are satisfied, record the corresponding admixture order � , 4 

admixture proportion ��������	, and admixture time �	������	��. Then return to Step 5 

3 until all possible admixture orders are checked. 6 

Through these above procedures, we obtained all reasonable admixture orders �, 7 

the corresponding estimators of admixture proportion ��������	, and admixture time 8 

�	������	��. Based on the estimations of these parameters, we could recover the 9 

history of the admixed population. 10 

However, due to a lack of accuracy in local ancestry inference, only these relatively 11 

long tracks are reliable10,13. Therefore, we are interested in the conditional length 12 

distribution of ancestral tracks longer than a specific threshold R. As we know, the 13 

length distribution of ancestral tracks from each ancestral population is a mixed 14 

exponential distribution. When we consider only tracks larger than R, the length 15 

distribution from ancestral population � becomes 16 

:��;|; � R
 � - L��∑ L��';S ��5��!
R
	�
�
�

5��!
exp ��5��!
;
	�

�
�

, 
where L�� � ������

�����

∑ ������
�����

��
��	

. However, since this condition distribution is not a mixed 17 

exponential distribution, we cannot use the EM-algorithm to estimate the parameters. 18 

Fortunately, when we consider the random variable T� � 9� � R, we find that the 19 

distribution of T�  is a mixed exponential distribution, which can be written as 20 

follows: 21 
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:��U
 � - L��';S ��5��!
R
∑ L��';S ��5��!
R
	�
�
�

5��!
exp ��5��!
U
	�

�
�

. 
To take the threshold R into consideration, we must change the procedures of the 1 

aforementioned Step 2. We can easily obtain samples of T� from samples of 9� . 2 

Then, we can use the EM-algorithm and LRT to obtain the distribution parameters of 3 

T�. Furthermore, by the relationship between :��;
 and :��U
, we can obtain the 4 

parameters of the mixed exponential distribution of 9�. Then, the following Steps are 5 

the same as those aforementioned in Steps 3-7. These procedures were all 6 

implemented in our MultiWaver. 7 

In the software of MultiWaver, 2 estimations of admixture time for the first wave 8 

were output. One was an estimation of 	�, while the other was an estimation of 	�. In 9 

theory, 	� is equal to 	�, but in real data analysis, the estimations may be not equal 10 

because of random errors and tracks inference errors. Thus, we presented 2 11 

estimations of admixture time for the first admixture wave in our results. 12 

SIMULATION 13 

Performance Evaluation of MultiWaver 14 

We conducted simulations to evaluate the performance of MultiWaver. The simulation 15 

data were generated by forward-time simulator AdmixSim24. General settings of our 16 

simulation were the same as those in our previous study15. 17 

Here, we divided multiple-wave admixture models into 2 different types of models. 18 

We denoted the model as a simple model if each ancestral population could contribute 19 

only once to the admixed population. The others were denoted as a complex model. In 20 

the complex model, at least 1 ancestral population donates more than once admixture. 21 
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It is important to note that when we infer the admixture history under the complex 1 

model, it is very challenging to distinguish the different admixture waves from the 2 

same ancestral population. 3 

We focused on evaluating the performance of MultiWaver under these 2 types of 4 

models. For the simple model, we considered a scenario of 3 ancestral populations 5 

(Fig. S1 Scenario (I)), and a scenario of 5 ancestral populations (Fig. S1 Scenario (II)). 6 

For the complex model, we considered a scenario of 2 ancestral populations with 7 

2-wave admixtures (Fig. S1 Scenario (III)). We evaluated the performance of 8 

MultiWaver with different admixture times and admixture proportions. For simplicity, 9 

we supposed the admixture proportions (�� , 1 � � � �) were equal. We set 3 different 10 

values of admixture proportion, 0.1, 0.3, and 0.5, for each scenario. For Scenario (I), 11 

the admixture time was set as 2 different cases: (a) 	
 � 20, � � 40 , and (b) 12 

	
 � 40, � � 60. For Scenario (II), the admixture time was also set as 2 different 13 

cases: (a) 	
 � 20, 	� � 40, 	� � 60, � � 80 , and (b) 	
 � 40, 	� � 80, 	� �14 

120, � � 140. However, for Scenario (III), the admixture time was set as 4 different 15 

cases: (a) 	
 � 20, � � 40 , (b) 	
 � 40, � � 60 , (c) 	
 � 60, � � 80 , and (d) 16 

	
 � 80, � � 100. Each case was repeated 10 times for a total of 240 simulations 17 

across these 3 scenarios. MultiWaver was applied to the simulated data with the 18 

default settings; the results were recorded and summarized. 19 

In real situations, due to the limitations of local ancestry inference, only the 20 

ancestral tracks longer than a special threshold can be accurately inferred. Thus, to 21 

make our method more available to real situations, we chose the thresholds ranging 22 
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from 0 cM to 2 cM in steps of 0.25 cM, and then evaluated the robustness of our 1 

method under different thresholds. 2 

Application to Real Datasets 3 

Firstly, we applied our method to some real datasets of African Americans and 4 

Mexicans. These 2 populations are typical admixed populations and their histories are 5 

relatively clear. Therefore, they could be used to test the performance of our method 6 

for real data. We obtained the datasets of African Americans (ASW), Mexicans 7 

(MEX), and reference populations African (YRI) and European (CEU) from the 8 

HapMap Project Phase III dataset23. Meanwhile, Maya and Pima populations 9 

represented American Indian ancestry, which were obtained from the HGDP dataset1. 10 

According to prior knowledge, African Americans and Mexicans have more than 2 11 

ancestries14,25. However, the proportion of Native American ancestry of African 12 

Americans is less than 5%26, and thus, we only considered 2 dominant ancestries 13 

(African and European ancestry) of African Americans. For Mexicans, we considered 14 

3 ancestries: African, European, and American Indian ancestry27. 15 

Then, our method was used to reconstruct the population history of Uyghurs and 16 

Hazaras. The histories of these 2 populations are more complex. Uyghurs and Hazaras 17 

populations were obtained from the HGDP dataset. Previous studies have shown that 18 

Uyghurs and Hazaras had admixed ancestries mainly from Europe and East Asia1,5. 19 

Here, we used Han and French as the proxies of Asian ancestry and European ancestry, 20 

respectively8. These reference populations were also obtained from the HGDP dataset. 21 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2016. ; https://doi.org/10.1101/096560doi: bioRxiv preprint 

https://doi.org/10.1101/096560
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

To enhance the reliability of our analysis, HAPMIX6 was selected as the local 1 

ancestry inference method since it shows good performance in admixture break points 2 

inference28. However, HAPMIX can only be used to detect ancestral tracks for 3 

two-way admixtures, and thus it might not be proper for the Mexican population. 4 

PCAdmix29 has shown great power in inferring the local ancestry of Mexican 5 

populations27, and thus we used PCAdmix in this study. The generations pre-set in 6 

HAPMIX inference were 10 for African Americans and 80 for Uyghurs and Hazaras. 7 

The window size set in PCAdmix was default. Since phasing data was required for 8 

both HAPMIX and PCAdmix, SHAPEIT 230 was used to infer the haplotype phase. 9 

Finally, MultiWaver was used to determine the optimal model and estimate the 10 

admixture time accordingly with tracks longer than 1 cM. 11 

RESULTS 12 

MultiWaver Performed Well under Simple and Complex Models 13 

We compared the admixture histories inferred by MultiWaver with the histories set in 14 

simulations, and then evaluated the performance of our method in model selection and 15 

parameters estimation. For Scenario (I) and (II), results showed that estimations of 16 

admixture time were high consistency with the time simulated if we pre-set the 17 

admixture model as the simple model (-s option in MultiWaver) (see Fig. 2). Our 18 

method also performed well when we did not pre-set this option (-s) (see Fig. S2). 19 

Only a few models in our simulations were wrongly selected. When the model was 20 

correctly selected, the admixture time estimated was consistent with the simulated 21 

time. 22 
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For the complex model, we found that our method could select the right model with 1 

high accuracy (see Fig. 3). Model selection was incorrect for only 3 simulations. In 2 

these 3 cases, the numbers of admixture waves were wrongly estimated, which led to 3 

inaccurate estimation of admixture time. Thus, selecting a correct model is of crucial 4 

importance for admixture history inference. When the admixture model could be 5 

correctly selected, only a slight overestimation occurred for the admixture time. 6 

We also evaluated the performance of MultiWaver with different admixture 7 

proportions. We found that the overestimation of admixture time in the complex 8 

model was related to the admixture proportions (see Fig. S3). When the proportions of 9 

each admixture wave became smaller, estimation error decreased. However, for the 10 

simple model, our method performed well for all situations. 11 

In conclusion, regardless of which type of admixture model, our method performed 12 

well for model selection. Furthermore, the admixture time was estimated well for the 13 

simple model, and with only slight overestimation for the complex model. 14 

Robustness for Different Thresholds of Track Length. 15 

We tested the robustness of our method for different thresholds of track length. 16 

Results showed that our method was robust to thresholds for both the simple model 17 

and complex model (see Fig. 4). Due to the limitations of our method, the local 18 

ancestry inference was not so accurate for short ancestral tracks. Thus, in real data 19 

analysis, we had to discard tracks smaller than a threshold. However, short ancestral 20 

tracks contain ancient admixture information, and if the threshold was too large, lots 21 

of information would be lost. Therefore, we had to balance the trade-off between 22 
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information and accuracy. In our real data analysis, we set the thresholds as 1cM. 1 

Real Data Analysis 2 

We applied our method to infer the admixture histories of some real datasets. For 3 

African Americans, HAPMIX was used to infer the ancestries with Africans (YRI) 4 

and European (CEU) as the 2 ancestral populations. The admixture model was 5 

inferred as 2 ancestral populations with a 2-wave admixtures model (see Fig. 5(a)). 6 

The African population (YRI) contributed 2 wave admixtures, and the admixture time 7 

was 11 generations ago and 7 generations ago, respectively. The time of the first 8 

admixture was about the 17th century, which was consistent with the time that most 9 

African ancestors arrived in America via slave trading. This inferred time was close to 10 

previous findings12,13,15,25,26. After the slave trading, many African people settled down 11 

in America. The second admixture wave might have been caused by these people or 12 

by recent migrations from Africa to America. The admixture model inferred by our 13 

method pointed out that the admixture history of African Americans was not 1 pulse 14 

admixture, which was also reported in previous studies12,25,26. 15 

For Mexicans, we used PCAdmix to infer the local ancestries, and a 2-wave 16 

admixtures model was inferred (see Fig. 5(b)). Each ancestral population contributed 17 

once to the admixed population. The time of the first admixture wave was about 18 18 

generations ago, which was close to previous findings25,27,31-33. The time of the second 19 

admixture was 12 generations ago. This time period (12~18 generation ago) was 20 

consistent with the time of the exploration of the new world. For our analysis of 21 

African Americans and Mexicans, the admixture histories inferred by our method 22 
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were consistent with recorded histories, thus showing the power of our method in real 1 

data analysis. 2 

Finally, we applied our method to reconstruct the admixture histories of Uyghurs 3 

and Hazaras (see Fig. 5(c) and (d)). Results showed that these 2 populations shared a 4 

similar admixture model, except the admixture time of Hazaras was more ancient. The 5 

earliest admixture event of Uyghurs occurred about 144 generations ago, with 6 

subsequent admixture waves from both ancestries 20-50 generations ago. While the 7 

earliest admixture event of Hazaras occurred around 173 generations ago, with 8 

following gene flows occurred 20~70 generations ago. Compared with the results 9 

inferred by the admixture history inference method ALDER8, our method found an 10 

additional ancient admixture event in Uyghurs and Hazaras. To explain the 11 

discrepancies in theory, ALDER considers only the decay curve of weighted linkage 12 

disequilibrium (LD) between pairs of sites whose genetic distance were larger than 13 

0.5 cM8, and thus the information of ancient signals within shorter loci pairs would be 14 

lost. Meanwhile, our method saved some of these ancient signals by deducing the 15 

conditional length distribution of ancestral tracks even if we discarded ancestral tracks 16 

shorter than 1 cM. 17 

Conclusively, Uyghurs and Hazaras had a similar admixture history. The ancient 18 

admixture might have been caused by the migrations of Indo-Aryan speaking people 19 

into the Indian subcontinent (1500 BC). Uyghurs mainly settled in West China, and 20 

Hazaras mainly settled in Afghanistan and Pakistan. The residences of these 2 21 

populations were all near the Silk Road, and thus we thought the recent multiple 22 
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admixtures might have been caused by the trades or migrations along the Silk Road. 1 

In fact, the real history of Uyghurs and Hazaras might be more complex than inferred. 2 

However, our method could detect some effective admixtures and provide some 3 

useful information to understand the origin and development of these complex 4 

populations. 5 

DISCUSSION 6 

Complex admixture history inference has long been a challenging problem in 7 

population genetics. In this work, we proposed a general discrete admixture model to 8 

describe admixture history with multiple ancestral populations and multiple-wave 9 

admixtures. We deduced that the length distribution of ancestral tracks was a mixed 10 

exponential distribution. Based on this distribution, we developed a new method, 11 

MultiWaver, to infer the multiple-wave admixture histories. We used LRT to select the 12 

number of admixture waves, and implemented an exhaustion method to determine the 13 

order of admixtures. When the admixture model was determined, we applied the 14 

EM-algorithm to estimate parameters. Simulations and real data analysis showed that 15 

MultiWaver was precise and efficient in inferring admixture history. 16 

Comparing with previous methods, our method showed superiority in 2 aspects. 17 

Firstly, our method could be used to infer multiple-wave admixture history, while 18 

previous methods could only infer admixture history under some simple models. 19 

Secondly, no prior admixture model was required in our method, while previous 20 

methods needed to assume a special admixture model when trying to infer admixture 21 

history. Therefore, the inferred history might be biased or even unreliable if the 22 
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provided model deviates from real history. However, our method avoided this 1 

problem by selecting an optimal admixture model based on ancestral tracks. 2 

Our method introduced an elegant solution to the complex admixture history 3 

inference. However, some problems still exist. When inferring admixture history 4 

under the complex model, overestimation occurred for the admixture time. In our 5 

method, we assumed chromosome length was infinite and there was no genetic drift, 6 

and then we found that the length distribution was a mixed exponential distribution. 7 

However, Liang and Nielsen pointed out that the length distribution did not follow an 8 

exponential distribution when the admixture time was too small or too large34. In the 9 

complex model, the non-exponential property would be accumulated, which might be 10 

the reason behind the overestimation we observed with our method. We also found 11 

that the overestimation was related to the admixture proportion of each admixture 12 

wave. We performed simple linear regression analysis on the errors for admixture 13 

time estimations and admixture proportion (Fig. S4). 14 

In our method, it is possible that more than 1 optimal admixture model satisfied the 15 

constraint conditions and should be recorded. However, for all simulations we 16 

conducted, this phenomenon did not appear. This was reasonable because the 17 

admixture history had a one-to-one correspondence with the length distribution of 18 

ancestral tracks. If 1 situation had more than 1 optimal model, it implied the ancestral 19 

tracks were not accurately inferred. 20 

The efficiency of our method was also influenced by the validity of the local 21 

ancestry inference. We tested the performance of our method with the inferred 22 
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ancestral tracks (see Supplementary Text 2). We found that MultiWaver tended to 1 

overestimate the number of waves, and thus led to overestimating the admixture time 2 

with the ancestral tracks inferred by HAPMIX (Fig. S5 (a)). For multiple-way 3 

admixtures, the inaccuracy of ancestral tracks inferred by PCAdmix led to 4 

underestimating the time of the first admixture wave (Fig. S5 (b)). It was very 5 

difficult to obtain relatively accurate ancestral tracks with a small length for all local 6 

ancestry inference methods. To improve the effectiveness of the inference, we suggest 7 

using the ancestral tracks longer than a certain threshold C in our method. However, 8 

when the threshold became large, ancient admixture information would be lost rapidly. 9 

With the development of sequencing technology and computational methods, short 10 

ancestral tracks could be precisely detected in the near future. Then, our method 11 

would be promising in recovering even more ancient admixture history, such as the 12 

admixture between modern humans and ancient humans35,36. 13 
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Figure Legends 1 

Figure 1. The general discrete admixture model. Here, we illustrated an admixed 2 

population with � ancestral populations and �-wave discrete admixtures, which 3 

started to admix � generations ago. POP�� is the ancestral population of the �	
 4 

admixture, ��  is the admixture proportion of the �	
  admixture, and 	�  is the 5 

admixture time of the �	
 admixture. 6 

Figure 2. Admixture time estimated under simple model. Admixture time 7 

estimated under Scenario (I) for (a) �� � �
 � 0.3  and 	
 � 20, � � 40 ; (b) 8 

�� � �
 � 0.3 and 	
 � 40, � � 60. Admixture time estimated under Scenario (II) 9 

for (c) �� � �
 � �� � �� � 0.3  and 	
 � 20, 	� � 40, 	� � 60, � � 80 ; (d) 10 

�� � �
 � �� � �� � 0.3  and 	
 � 40, 	� � 80, 	� � 120, � � 140 . X-coordinate 11 

is the admixture time in generations ago, with 0 being the present time. Each case was 12 

repeated for 10 times, and T � � means the �	
 simulation. The points in the line 13 

(T � �) represent the admixture time estimated from the �	h simulation, and the 14 

color of the points indicates the ancestral population. The dashed lines represent the 15 

simulated admixture time. 16 

Figure 3. Admixture time estimated under complex model. Admixture time 17 

estimated under Scenario (III) for (a) �� � �
 � 0.3  and 	
 � 20, � � 40 ; (b) 18 

�� � �
 � 0.3 and 	
 � 40, � � 60; (c) �� � �
 � 0.3 and 	
 � 60, � � 80; and 19 

(d) �� � �
 � 0.3 and 	
 � 80, � � 100. X-coordinate is the admixture time in 20 

generations ago, with 0 being the present time. Each case was repeated for 10 times, 21 

and T � � means the �	h simulation. The points in the line (T � �) represent the 22 
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admixture time estimated from the �	
 simulation, and the color of the points 1 

indicates the ancestral population. The dashed lines represent the simulated admixture 2 

time. 3 

Figure 4. Admixture time estimated with different thresholds. (a) Admixture time 4 

estimated under Scenario (I), where �� � �
 � 0.3  and 	
 � 40, � � 60 ; (b) 5 

Admixture time estimated under Scenario (III), where �� � �
 � 0.3  and 6 

	
 � 40, � � 60. X-coordinate is the admixture time in generations ago, with 0 being 7 

the present time. Y-coordinate represents the thresholds, and the color of the points 8 

indicates the ancestral population. The dashed lines represent the simulated admixture 9 

time. 10 

Figure 5. Inferred admixture history of real datasets. Inferred admixture history of 11 

(a) African Americans, (b) Mexicans, (c) Uyghurs, And (d) Hazaras. The time of the 12 

first admixture wave was the average of estimations for time 	� and 	� . AMI: 13 

combined dataset of populations Maya and Pima which represent American Indian 14 

ancestry; Han: Han population, represent Asian ancestry; Fre: French population, 15 

represent European ancestry. 16 
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