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Abstract

Network neuroscience has become an established paradigm to tackle questions
related to the functional and structural connectome of the brain. Recently, there
has been a growing interest to examine the temporal dynamics of the brain’s
network activity. While different approaches to capture fluctuations in brain
connectivity have been proposed, there have been few attempts to quantify these
fluctuations using temporal network theory. Temporal network theory is an
extension of network theory that has been successfully applied to the modeling of
dynamic processes in economics, social sciences and engineering. The objective
of this paper is twofold: (i) to present a detailed description of the central tenets
and outline measures from temporal network theory; (ii) apply these measures
to a resting-state fMRI dataset to illustrate their utility. Further, we discuss
the interpretation of temporal network theory in the context of the dynamic
functional brain connectome. All the temporal network measures and plotting
functions described in this paper are freely available as a python package Teneto.

Introduction

It is well-known that the brain’s large-scale activity is organized into networks.
The underlying organization of brain’s infrastructure into networks, at different
spatial levels, has been dubbed the brain’s functional and structural connectome
(1, 2). Functional connectivity, derived by correlating the brain’s activity over a
period of time, has been successfully applied in both fMRI (3, 4, 5, 6) and MEG
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(7, 8, 9), yielding knowledge about functional network properties (10, 11, 12, 13)
which has been applied to clinical populations (14, 15).

In parallel to research on the brain’s connectome, there has been a focus on
studying the dynamics of brain activity. When the brain is modeled as a dynamic
system, a diverse range of properties can be explored, prominent examples of
this are metastability (16, 17, 18, 19, 20) and oscillations (21, 22, 23). Brain
oscillations, inherently dynamic, have become a vital ingredient in proposed
mechanisms ranging from psychological processes such as memory (24, 25, 26),
attention (27, 28), to basic neural communication of a top-down and bottom-up
type of information transfer (29, 30, 31, 32, 33, 34, 35, 36).

Recently, approaches to study brain connectomics and the dynamics of neuronal
communication have started to merge. A significant amount of work has recently
been carried out that aims to quantify dynamic fluctuations of network activity
in the brain using fMRI (37, 38, 39, 40, 41, 42) as well as MEG (7, 43, 9,
44, 35). This research area to unify brain connectommics with the dynamic
properties of neuronal communication has been called the “dynome” (45) and
the “chronnectome” (46). As the brain can quickly fluctuate between different
tasks, the overarching aim of this area of research is to understand the dynamic
interplay of the brain’s networks. The intent of this research is that it will yield
insight about the complex and dynamic cognitive human abilities.

Although temporal network theory has been successfully applied in others fields,
(e.g. social sciences), its implementation in network neuroscience is limited.
In this paper, we first provide an introduction to temporal network theory by
extending the definitions and logic of static network theory. Thereafter, we define
temporal network measures. Finally, we apply these measures to a resting-state
fMRI dataset acquired during eyes open and eyes closed conditions, revealing
differences in dynamic brain connectivity between conditions.

From static networks to temporal networks

We begin the introduction to temporal network theory by expanding upon the
definitions of network theory. In network theory, a graph (G) is defined as a set
of nodes and edges:

G = (V, E) (1)

V is a set containing N number of nodes. E is a set of tuples that represents
edges or connections between each pair of nodes (i, j) : i, j ∈ V. The graph may
have binary edges (i.e. an edge is either present or absent) or it may be weighted,
often normalized between 0 and 1, to represent the magnitude of connectivity.
When each edge has a weight, the definition of E is extended to a 3-tuple (i, j, w)
where w denotes the weight of the edge between i and j.

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2016. ; https://doi.org/10.1101/096461doi: bioRxiv preprint 

https://doi.org/10.1101/096461
http://creativecommons.org/licenses/by-nc/4.0/


E is often represented as a matrix of the tuples, which is called a connectivity
matrix, A (sometimes the term “adjacency matrix” is used). An element of the
connectivity matrix Ai,j represents the degree of connectivity for a given edge.
When G is binary, Ai,j = {0, 1} and in the weighted version Ai,j = w. In the
case of Ai,j = Aj,i, for all i and j, the matrix is considered undirected and, when
this is not the case, directed.

One appeal of network theory is the range of topics it can encompass. A set of
nodes can be a group of people, a collection of cities, or an ensemble of brain
regions. Each element in the nodal set can represent vastly different things
in the world (e.g. a person: Ashely; a city: Gothenburg; or a brain region:
the left thalamus). Likewise, edges can represent a range of different types of
connections between their respective nodes (e.g. friendship, transportation or
neural communication). Regardless of what the network is modeling, many
different properties regarding the patterns of connectivity between nodes can
be quantified, examples being centrality measures, hub detection, small world
properties, clustering and efficiency (see 47, 2, 48 for detailed discussions).

It is important to keep in mind that a graph is only a representation of some
state of the world being modeled. The correspondence between the graph model
and the state of the world may decrease due to aggregations, simplifications and
generalizations. Adding more information to the way nodes are connected can
entail that G provides a better representation, thus increasing the likelihood
that subsequently derived properties of the graph correspond with the state
of the world being modeled. One simplification made in eq. 1 is that two
nodes can be connected by one edge only. Such a simplification may not be
appropriate for all questions. For example, if we wanted to model multiple
transportation links between several cities (e.g. rail, road, and air), we will need
multiple types of edges if these different transportation links are of importance.
In some circumstances, the type of link is irrelevant. For example, when studying
the spread of a disease, the only relevant information needed might be that
people can move between cities. However, if we are managing shipping routes
where different transportation routes correspond to different prices or shipping
time, then this might be important information. Similarly, networks (e.g. social
networks) develop and change over time. In social networks, friendships are
started and can end.

To capture such additional information in the graph, edges need to be expressed
along additional non-nodal dimensions. We modify eq. 1 to:

G = (V, E ,D) (2)

where D is a set of the additional non-nodal dimension. In the case of multiple
additional dimensions, D is a class of disjoint sets where each dimension is a set.
Eq. 2 is sometimes referred to as a multigraph. For example, D could be a set
containing three transportation types {“rail”, “road”, “air”} or a temporal index
{“2014”,“2015”,“2016”}.
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In a static graph, the edges E are elements that contains pairs (2-tuples) and
thus represent connections between two nodes. In a multigraph, E consists
of (|D| + 2)-tuples for binary graphs, where |D| expresses the number of sets
in D. Here, the addition of two is because of the original two node indexes,
which defines the edge in eq. 1. If time is the only dimension in D, then an
element in E is a triplet (i, j, t) : i, j ∈ V, t ∈ D. When G is weighted, E contains
(2 × |D|) + 2)-tuples as w becomes the size of D, representing one weight per
edge.

While some of the measures presented here are valid for all types of multigraphs,
time is a special case since it comprises of an ordered set. There is no loss of
information if {“rail”, “road”, “air”} becomes {“road”,“air”,“rail”}. However,
when D contains temporal information, the order is crucial. Thus, a temporal
network is when a multigraph has an ordered set in D that represents time.

From the description above, it is evident that multiple sets can be included
in a multigraph. For example, consider a set of three cities. Let D be
({“rail”,“road”,“air”},{“2014”,“2015”,“2016”}). Here, each edge is expressed in
a multigraph by a 4-tuple which indexes the two cities, transportation type,
and year. Analogously, it is conceivable that a detailed network description of
the human connectome may include information regarding an edge’s presence
in time, frequency and task context. Thus, a multigraph representation of the
connectome may, for example, include information on edges that are conditional
to (i) a delay of 100ms after stimulus onset (time), (ii) presence of gamma oscil-
lations (frequency), and (iii) the presence of an n-back exercise (task context).
In such complex multigraphs, the temporal network measures presented in this
paper can be used to examine relationships across time, but it will require fixing
or aggregating over the other dimensions. However, more complex measures that
consider all non-nodal dimensions have been proposed elsewhere (e.g. 49).

For the remaining parts of this paper we will only consider the case when
D contains an ordered set of temporal indexes and when G is binary and
undirected. In this case, each edge is indexed by i,j and t. To facilitate
readability, connectivity matrices are written as Ati,j , i.e. with the temporal
index of D in the superscript.

We can illustrate the concept of temporal networks by a simple example that
models the evolution of friendship between three individuals (Ashley, Blake and
Casey). A friendship between two of them is represented by an edge (Figure
1A ). We then add an additional dimension, time, to the graph which includes
the following temporal indexes: D ={2014,2015,2016}. Let us now presume
that in 2014, only Ashley and Blake knew each other. In 2015, Ashley became
friends with Casey. In 2016, Blake and Casey also became friends. The temporal
evolution of friendships among a small social network can be projected onto a
slice graph representation (Figure 1B). Here, it becomes apparent that Casey is
the person in this small social network that shows the largest change in friendship
over time, a property which cannot be depicted in a static graph.
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Figure 1: A slice graph example of friendship in a small social network evolving
over three years. Each person (node) is a row with a circle at each year (the
non-nodal dimension). Lines display represent friendship (edges) between the
nodes.
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The small social network in Figure 1B shows snapshots of connectivity through
time. At each time point, there is a connectivity matrix which is sometimes called
a graphlet (50, 40, 41). A graphlet is a complete two dimensional connectivity
matrix, akin to static networks, but each graphlet is only a part of the entire
temporal network. It useful to describe what type of graphlet that is being used.
For example we call a graphlet expressing time for a time-graphlet or t-graphlet
(41). Likewise, a graphlet expressing frequency information has been called a
frequency graphlet or f-graphlet (40).

Instead of representing the data with multiple graphlets, E can be used to derive
the contact sequence containing the nodes and temporal index (51). Unlike the
graphlet representations, which must be discrete, contact sequences can also
be used on continuous data and, when connections are sparse, a more memory
efficient way to store the data.

Measures for temporal networks

Once the t-graphlets have been derived, various measures can be implemented
in order to quantify the degree and characteristics of the temporal flow of
information through the network. We begin by introducing two concepts which
are used in several of the temporal network measures that will be defined later.
The focus is on measures that derive temporal properties at a local level (i.e. per
node or edge) or a global level (see Discussion for other approaches). We have
limited our scope to describe only the case of binary, undirected and discrete t-
graphlets, although many measures can be extended to continuous time, directed
edges, and non-binary data.

Concept: Shortest temporal path

In static networks, the shortest path is the minimum number of edges (or sum
of edge weights) that it takes for a node to reach another node. In temporal
networks, a similar measure can be derived. Within temporal networks, we can
quantify the time taken for one node to reach another node. This is sometimes
called the “shortest temporal distance” or “waiting time”.

Consider the temporal network shown in Figure 2A. Starting at time point 1,
the shortest temporal path for node 1 to reach node 5 is 5 time units (Figure 2B,
red line). Here, only one edge was traveled per time point. However, deriving
the shortest temporal path becomes a more complex task when considering that
multiple edges can be traveled per time point. For example, node 5 at time 2
can reach node 3 in one time step, if multiple edges are allowed to be traveled
(Figure 2C, red line). If multiple edges cannot be traveled, then the shortest
path for node 5 to reach node 2, starting at time point 2, is 5 time units (Figure
2C, blue line).

6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2016. ; https://doi.org/10.1101/096461doi: bioRxiv preprint 

https://doi.org/10.1101/096461
http://creativecommons.org/licenses/by-nc/4.0/


When calculating the shortest temporal path, a parameter must be set that
restrains how many edges per time point that can be traveled. This parameter
will depend on the temporal resolution of the data and is best chosen given
previously established knowledge of the dynamics of the data. For fMRI, where
the temporal resolution is in seconds, it makes sense to assume that several edges
can be traveled per unit of time. Contrarily, in MEG where the resolution are in
the range of milliseconds, it is more reasonable to place a limit on the number
of edges that can be traveled per time unit.

Regarding the shortest temporal path, it is useful to keep in mind that the path
is rarely symmetric, not even so when the t-graphlets themselves are symmetric.
This is illustrated by considering the network shown in Figure 2A for which it
takes 5 units of time for node 1 to reach node 5 when starting at t = 1. However,
for the reversed path, it only takes 3 units of time for node 5 to reach node 1
(allowing for multiple edges to be traveled per time point).

Concept: Inter-contact time

The inter-contact time between two nodes is defined as the temporal difference
for two consecutive non-zero edges between those nodes. This definition differs
from the shortest temporal paths in so far as it only considers direct connections
between two nodes. Considering Figure 2A, the inter-contact times between
nodes 4 and 5 become a list [2,2] as there are edges present at time points
2, 4 and 6. Each edge will have a list of inter-contact times. The number of
inter-contact times in each list will be one minus the amount non-zero edges
between the nodes. Unlike the shortest temporal paths, graphs that contain
inter-contact times will always be symmetric.

Nodal measure: Temporal centrality

Akin to degree centrality in the static case, where the sum of edges for a node
is calculated, a node’s influence in a temporal network can be calculated in a
similar way. The difference from its static counterpart is that we additionally
sum the number of edges across time. Formally, temporal degree centrality, DT ,
for a node i is computed as

DT
i =

N∑
j=1

T∑
t=1

Ati,j (3)

where T is the number of time points, N is the number of nodes and Ati,j is a
graphlet.

While providing an estimate of how active or central a node is in a temporal
network, temporal degree centrality does not quantify the temporal order of the
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Figure 2: Illustration of the concept of shortest temporal path. (A) The basic
layout of a temporal network viewed in a slice graph representation. (B) the red
line indicates the shortest temporal path possible for node 1 to reach node 5.
(C) shows the difference in shortest paths that arise when allowing for a single
(blue line) or multiple (red line) edges to be traveled at a single time point.
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edges. This is illustrated in Figure 3, where node 3 and node 2 have identical
temporal degree centrality despite having very different temporal ordering of
their edges.

Nodal measure: temporal closeness centrality

A centrality measure that considers the temporal order is temporal closeness
centrality (52). This is an extension of closeness centrality which is the inverse
sum of the shortest temporal. Temporal closeness centrality is calculated by the
average of the shortest temporal paths between two nodes dτ as

CTi = 1
N − 1

N∑
j=1

1
dτi,j

(4)

where dτi,j is the average shortest path between nodes i and j. Like its static
counterpart, if a node has shorter temporal paths compared to other nodes, it
will have a larger temporal closeness centrality.

Consider the example given in Figure 3 that shows a temporal sequence of
connectivity among three nodes over 20 time points. Note that the temporal
degree centrality is identical for both node 2 and node 3, while degree centrality
for node 1 is twice as large. Node 2 has the largest temporal closeness centrality
since the time between edges for node 2 are longer than for node 3, which has
the lowest value of temporal closeness centrality.

Edge measure: Bursts

Bursts have been identified using temporal network theory as an important
property for many processes in nature (53, 54, 55, 56, 57). A hallmark of a
bursty edge is the presence of multiple edges with short inter-contact times,
followed by longer and varying inter-contact times. In statistical terms such a
process is characterized with a heavy tailed distribution of inter-contact time
probabilities. Numerous patterns of social communication and behaviour have
been successfully modeled as bursty in temporal network theory, including email
communication (58, 53), mobile phone communication (59), spreading of sexually
transmitted diseases (60), soliciting online prostitution (61), and epidemics (62).
With regard to network neuroscience, we have recently shown that bursts of
brain connectivity can be detected in resting-state fMRI data (41). Furthermore,
bursty temporal patterns have also been identified for the amplitude of the EEG
alpha signal (63, 64, 65).

There are several strategies to quantify bursts. A first indication of whether a
time series of brain connectivity between two nodes is bursty or not is simply
to plot the distribution of inter-contact times. Thus, the complete distribution
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Figure 3: A slice graph representation of a simple example of a temporal network
that illustrates the conceptual difference between temporal degree centrality and
temporal closeness centrality.
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of τ for a given edge contains information of the temporal evolution of brain
connectivity. However, there are other methods available to quantify bursts.
One example is the burstiness coefficient (B) first presented in ref. (66) and
formulated for discrete graphs in ref. (51):

Bij = σ(τij)− µ(τi,j)
σ(τij) + µ(τij)

(5)

where τij is a vector of inter-contact times between nodes i and j through time.
When B > 0, it is an indication that the temporal connectivity is bursty. This
occurs when the standard deviation σ(τ) is greater than the mean µ(τ). In eq.
5, bursts are calculated per edge which can be problematic when having limited
data. Functional imaging sessions must be long enough in order to be able
to accurately establish whether a given temporal distribution is bursty or not
(too few inter-contact times will entail a too poor estimation of σ to accurately
estimate B). Typically, for resting state fMRI datasets acquired during rather
short time spans (5-6 minutes) with low temporal resolution (typically 2-3
seconds), it might be difficult to quantify B in a single subject. A potential
remedy in some situations is to compute B after concatenating inter-contact
times across subjects.

Eq. 5 calculates the number of bursts per edge. This can easily be extended
to a nodal measure by summing over the bursty coefficients across all edges for
a given node. Alternatively, a nodal form of B can be calculated by using all
the inter-contact times for all j, instead of averaging over j in Bij . Finally, if a
process is known to be bursty, instead of quantifying B, it is possible to count
the number of bursts present in a time series.

Global measure: Fluctuability

While centrality measures provide information about the degree of temporal
connectivity and bursts describe the distribution of the temporal patterns of
connectivity at a nodal level, one might additionally want to retrieve information
about the global state of a temporal network. To this end, fluctuability aims to
quantify the temporal variability of connectivity. We define fluctuability F as
the ratio of the number of present edges in A over the grand sum of At

F =
∑
i

∑
j U(Ai,j)∑

i

∑
j

∑
tA

t
i,j

(6)

where U is a function that delivers a binary output as follows: U(Ai,j) is set to 1
if at least one of an edge occurs between nodes i and j across time t = 1, 2, ..., T .
If not, U(Ai,j) is set to zero. This can be expressed mathematically as:
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U(Aij) =
{

1 if
∑T
t A

t
ij > 0

0 if
∑T
t A

t
ij = 0

(7)

where T is the total number of time points and A has at least one non-zero edge.
From the definition given in eq. 6 it follows that the maximum value of F is 1
and this value only occurs when every edge is unique and occurs only once in
time.

While the above definition of fluctuability may seem counter-intuitive, it is an
adequate measure to quantify the temporal diversity of edges. F reveals how
connectivity patterns within the network fluctuates across time. To see this,
consider the networks shown in Figures 4A and 4B, for which there are two
edges present at each time point. There are only three different unique edges
in Figure 4A, meaning that the sum of U is 3 for the network shown in Figure
4A. However, there is a greater fluctuation in edge configuration for the network
shown in Figure 4B and all six possible edges are present (entailing that the sum
of U is equal 6). Since both networks have in total 24 connections over time, it
becomes easy to see that the network shown in Figure 4B has a twice as large
value of F compared to the network shown in Figure 4A.

Notably, fluctuability is insensitive to the temporal order of connectivity. For
example, the networks depicted in Figures 4B and 4C have the same fluctuability,
despite having a considerably different temporal orders of edge connectivity.
Thus, fluctuability can be used as an indicator of the overall degree of spatial
diversity of connectivity over time.

The definition of fluctuability can be changed to work on a nodal level. To
achieve this, the summation in eq. 6 is applied over only one of the nodal
dimensions. Note that for nodes with no connections at all, the denominator
will be 0 and, to circumvent this hindrance, nodal fluctuability FNi is defined as:

FNi =


∑

j
U(Ai,j)∑

j

∑
t
At

i,j

if U(Ai,j) > 0

0 if U(Ai,j) = 0
(8)

Global measure: Volatility

One possible global measure considering the temporal order is to quantify how
much, on average, connectivity between consecutive t-graphlets changes. This
indicates how volatile the temporal network is over time. Thus, volatility (V )
can be defined as:

V = 1
T − 1

T−1∑
t=1

D(At, At+1) (9)
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Figure 4: An illustration of the fluctuability and volatility measures. The
temporal networks shown in panels A, B and C all have the same number of
nodes and edges but they differ in fluctuability and volatility. (A) has low
fluctuability (F = 0.125) and volatility (V = 0.73). (B) The network with the
highest volatility of all three (V=2.55) networks and equal fluctuability (F=0.25)
compared to the network in panel C. (C) A network with lower volatility than B
(V = 1.27) but equal fluctuability (F=0.25).
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where D is a distance function and T is the total number of time points. The
distance function quantifies the difference between a graphlet at t with the
graphlet at t+ 1. In all the following examples in this paper for volatility use
Hamming distance as it is appropriate for binary data.

Whereas there was no difference in fluctuability between the networks shown in
Figures 4B and 4C, there was a difference in volatility, as the network in Figure
4B has more abrupt changes in connectivity compared to the network shown in
Figure 4C.

Extensions of the volatility measure are possible. Similar to fluctuability, volatil-
ity can be defined at a local level. A per edge version of volatility can be
formulated as:

V Li,j = 1
T − 1

T−1∑
t=1

D(Ati,j , At+1
i,j ) (10)

Additionally, taking the mean over j in V Li,j would give an estimate of volatility
centrality.

Global measure: Reachability Latency

Measures of reachability focus on estimating the time taken to “reach” nodes in
a temporal network. In ref. 67, both reachability ratio and reachability time are
used. The reachability ratio is the percentage of edges that have a temporal path
connecting them. The reachability time is the average length of all temporal
paths. However, when applying reachability to the brain, the two aforementioned
measures are not ideal given the non-controversial assumption that any region
in the brain, given sufficient time, can reach all other regions.

With this assumption in mind, we define a measure of reachability, reachability
latency that quantifies the average time it takes for a temporal network to reach
an a priori defined reachability ratio. This is defined as:

Rr = 1
TN

∑
t

∑
i

dti,k (11)

where dti is an ordered vector of length N of the shortest temporal paths for
node i at time point t. The value k represents the brNeth element in the vector,
which is the rounded product of the fraction of nodes that can be reached, r,
with N being the total number of nodes in the network.

In the case of r = 1, (i.e. 100% of nodes are reached), eq. 11 can be rewritten as:

R1 = 1
TN

∑
t

∑
i

maxjd
t
i,j (12)
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Eq. 12 has been referred to as the temporal diameter of the network (68). If eq.
12 is modified and calculated per node instead of averaging over nodes, it would
be a temporal extension of node eccentricity.

Unless all nodes are reached at the last time point in the sequence of recorded
data, there will be a percentage of time points from which all nodes can not be
reached. This effectively reduces their value of R as dti,j cannot be calculated
by R is still normalized by T . If this penalization is considered too unfair, it is
possible to normalize R by replacing T with T∗, which is the number of time
points where dTi,j has a real value.

Global measure: Temporal Efficiency

A similar concept is the idea of temporal efficiency. In the static case, efficiency
is computed as the inverse of the average shortest path of all nodes. Temporal
efficiency is first calculated at each time point as the inverse average shortest
path length for all nodes. Subsequently, the inverse of average shortest path
lengths are averaged across time points to obtain an estimate of global temporal
efficiency, which is defined as

E = 1
T (N2 −N)

∑
i,j,t

1
dti,j

, i 6= j (13)

Although reachability and efficiency estimate similar temporal properties, since
both are based on the shortest temporal paths, the global temporal efficiency
may result in different results than the reachability latency. This is because
efficiency is proportional to the average shortest temporal path and reachability
to the longest shortest temporal path to reach r percent of the network. Similar
to the case of static graphs, temporal efficiency can also be calculated on a nodal
as well as a global level.

Summary of temporal network measures

In Table 1 we provide a brief summary of the temporal network measures outlined
here, accompanied with a short description. We also signify which measures that
are sensitive to temporal order.

Statistical considerations of temporal network measures

When implementing temporal graph measures, it is important to perform ade-
quate statistical tests in order to infer differences between subject groups, task
conditions, or chance. For group comparisons, non-parametric permutation
methods are advantageous where the group assignment of the calculated mea-
sure can be shuffled between the groups and a null-distribution can be created.
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Alternatively, to justify that a measure is significantly present above chance
levels, construction of null graphs is needed. There exist multiple ways to create
temporal null graphs and they each have their own benefits and drawbacks.
One method is to permute the temporal order of entire time series, but this
will destroy any auto-correlation present in the data. Another alternative is to
permute the phase of the time series prior to thresholding the t-graphlets. A
third option would be to permute blocks of time series data. We refer the reader
to ref. (51) for a full account of approaches on how to perform statistical tests
on measures derived from temporal network theory.

Measure Description

Order de-
pendent

Variable
Temporal
centrality

Number of overall overall
connections in time

N DT

Closeness
centrality

The time between connections Y CT

Burstiness the distribution of subsequent
connections

Y Bi,j

Fluctuability Ratio of unique edges vs all edges. N F

Volatility The rate of change of the
graphlets per time-point.

Y V

Reachability
latency

Time taken for all nodes to be
able to reach each other

Y Rr

Temporal
efficiency

Inverse average shortest temporal
path.

Y E

Table 1: A summary of the temporal network measures outlined in this article.

Applying temporal network measures onto fMRI data.

In the second part of the paper we now turn our attention to the application and
interpretation of temporal network measures when applied to neuroimaging data.
This is done by applying the measures outlined above onto an fMRI dataset.

fMRI data

Two resting-state fMRI sessions (3 Tesla, TR = 2000 ms, TE = 30 ms) from 48
healthy subjects were used in the analysis (19-31 years, 24 female). The fMRI
data was downloaded from an online repository: the Beijing eyes open/eyes
closed dataset available at (http://www.nitrc.org, 69). Each functional volume
comprised 33 axial slices (thickness / gap= 3.5 / 0.7 mm, in-plane resolution = 64
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× 64, field of view = 200 × 200 mm). The dataset contained three resting-state
sessions per subject and each session lasted 480 seconds (200 image volumes,
two eyes closed sessions and one eyes open session). We used data only from
the 2nd or 3rd session, which were the eyes open (EO) and second eye closed
session (EC), where the order was counterbalanced across subjects. Two subjects
were excluded due to incomplete data. Further details regarding the scanning
procedure are given in 69.

All resting state fMRI data was pre-processed using Matlab (Version 2014b, Math-
works, Inc.), CONN (70) and SPM8 (71) Matlab toolboxes. Functional imaging
data was realigned and normalized to the EPI MNI template as implemented in
SPM. Spatial smoothing was applied using a Gaussian filter kernel (FWHM = 8
mm). Additional image artifact regressors attributed to head movement (72, 73)
were derived by using the ART toolbox for scrubbing (http://www.nitrc.org). Sig-
nal contributions from white brain matter, cerebrospinal fluid and head-movement
(6 parameters), and the ART micro-movement regressors for scrubbing, were
regressed out from the data using the CompCor algorithm (74, the first 5 PCA
components were removed for both white matter and CSF). After regression, the
data was band-passed between 0.008-0.1 Hz, as well as linearly detrended and
despiked. Time series of fMRI brain activity were extracted from 264 regions of
interest (spherical ROIs with a 5mm radius) using a parcellation scheme of the
cortex and subcortical structures described in 11. These 264 regions of interest
are further divided into 10 brain networks as described in 75.

Creating time-graphlets (t-graphlets)

While there are many proposed methods for dynamic functional connectivity (76,
37, 69, 77, 39, 41), we chose a weighted correlation strategy (described below) as
it does not require fitting any parameters or clustering.

Our logic is to calculate the dynamic functional brain connectivity estimates
based on a weighted Pearson correlation. To calculate the conventional Pearson
correlation coefficient, all points are weighted equally. In the weighted version
points contribute differently to the coefficient depending on what weight they
have been assigned. This weight is then used to calculate the weighted mean
and weighted covariance to estimate the correlation coefficient. Using a unique
weighting vector per time point we were able to get unique connectivity estimates
for each time-point.

The weighted Pearson correlation between the signals x and y is defined as

r(x, y;w) = Σx,y;w

Σx,x;wΣy,y;w
(14)

where Σ is the weighted covariance matrix and w is a vector of weights that is
equal in length to x and y. The weighted covariance matrix is defined as
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Σx,y;w =
∑n
i wi(x− µx;w)(y − µy;w)∑n

i wi
(15)

where n is the length of the time series. Note that Σ is the covariance matrix and∑n
i is a sum over time points. µx;w and µy;w are the weighted means, defined as

µx;w =
∑n
i wixi∑n
i wi

, µy;w =
∑n
i wiyi∑n
i wi

(16)

Eqs. 14-16 define the weighted Pearson coefficient with the exception of the
weight vector w. If every element in w is identical, we can easily observe that the
unweighted (conventional) Pearson coefficient will be calculated. Here, we instead
wished to calculate a unique w for each time point, providing a connectivity
estimate based on the weighted mean and weighted covariance.

Different weighting schemes could be applied. In fact, many of the different
dynamic connectivity methods proposed in the literature are merely different
weighting schemes (e.g. a non-tapered sliding window approach is just a binary
weight vector). Broadly speaking, a weighting scheme between two ROIs can
consider these two time series in isolation (local weighting) or, alternatively,
consider every ROI’s time series (global weighting).

We decided upon the global weighting scheme, where we calculate the multivariate
distance between a time-point and all other nodes. This entails that the weights
for the covariance estimates at t are larger for other time points that display
a similar global spatial pattern across all nodes to the nodes at t. A new
weight vector is calculated for each time-point. With a unique weight vector per
time-point, there is a unique weighted Pearson correlation per time-point. This
reflects the weighted covariance where time-points with similar global spatial
brain activation are weighted higher. This produces, for each edge, a connectivity
time series with fluctuating covariance.

More formally, the weights for estimating the connectivity at time t are derived
by taking the distance between the activation of the ROIs at t and each other
time point (indexed by v):

wtv = 1
D(yt, yv)

(17)

where D is a distance function and y is the multivariate time series of the ROIs.
The weight vector of t is created by applying eq. 17 for all v ∈ T, v 6= t. This
implies that at the time point of interest, t, we calculate a vector of weights
(indexed by v) that reflects how much the global spatial pattern of brain activity
(i.e. all ROIs) differ in brain activity from t. For each weight vector wt, the
values were scaled to range between 0 and 1. Finally, wtt (undefined in eq. 17)
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is then set to 1. For the distance function, we used Euclidean distance (i.e.
D(a, b) =

√
(
∑n
i (ai − bi)2)).

After the derivation of the connectivity time series, a Fisher transform and a
Box Cox transform were applied. For the Box Cox transform the λ parameter
was fit by taking maximum likelihood after a grid-search procedure through -5
and 5 in 0.1 increments for each edge. Prior to the Box Cox transformation, the
smallest value was scaled to 1 to make sure the Box Cox transform performed
similarly throughout the time series (78). Each connectivity time series was
then standardized by subtracting the mean and dividing by the standard devia-
tion. Binary t-graphlets were created by setting edges exceeding two standard
deviations to 1, otherwise 0.

Our thresholding approach to create binary connectivity matrices is suboptimal
and could be improved upon in future work (see Discussion). The need to
formulate more robust thresholding practices has been an ongoing area of
research in static network theory in the neurosciences (79). Similar work needs
to be carried out for temporal networks as a limitation of the current approach
is a heightened risk of false positive connections.

An example of a binary slice graph representation of dynamic fMRI brain
connectivity is shown in Figure 5 where the connectivity within the visual sub-
network was computed using the weighted Pearson correlation method in a single
subject (31 nodes belonging to the visual brain network).

Figure 5: An example of the slice graph representation of temporal brain
connectivity between all nodes in the visual sub-network (31 nodes, first 100
time points) computed by the use of the weighted Pearson correlation coefficient
method on resting-state fMRI data (eyes open). Naturally, the visual slice graph
representation becomes less interpretable as it scales up by adding more nodes.
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Tools for temporal network theory

We have implemented all temporal network measures described in the
present work in a Python package of temporal network tools called Teneto
(http://www.github.com/wiheto/teneto) for python 3.x, although the package
itself is still under development. The package currently contains code for all the
measures mentioned above and plotting functions for slice plots. Data formats
for both the t-graphlet and contact sequence data representation are available.

Statistics

All between group comparisons in the next section use the between group permu-
tation method outlined previously. Null distributions were created with 100000
permutations, shuffling which group each subject’s EO/EC results belonged
to and all comparisons were two tailed. For between subject comparisons a
Spearman rank correlations were used.

Applying temporal degree centrality and temporal closeness central-
ity

With temporal centrality measures we can formulate research questions along
the following lines: (i) which nodes have the most connections through time
(temporal degree centrality), or (ii) which nodes have short temporal paths to all
other nodes (temporal closeness centrality). For the shortest paths calculations,
we allowed all possible steps at a single time point to be used in this example.

The node centrality, averaged over subjects, was calculated for both centrality
measures. The centrality estimates for nodes were compared across imaging
sessions to evaluate whether there was a similar temporal pattern across subjects.
The temporal degree centrality was correlated significantly for the EO and EC
conditions (Figure 6A, ρ=0.35, p<0.0001). A similar, but slightly weaker trend
was observed for temporal closeness centrality (Figure 6B, ρ=0.62, p<0.0001).
This entails that nodes appear to have similar centrality properties for the EO
and EC resting state conditions.

Although both centrality measures showed between session correlations, there
was no consistent relationship between the two measures. The temporal degree
centrality was correlated against the temporal closeness centrality. No significant
relation was observed in the EO session (Figure 6C, ρ=0.09, p=0.15), and a
negative relation for the EC session (Figure 6D, ρ=0.45, p<0.0001). This results
suggest that the two different temporal centrality measures identify different
nodes in the brain as being central.
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Figure 6: Applying temporal degree centrality and temporal closeness centrality
for the EO and EC conditions. Each dot represents centrality for a node. (A)
Temporal degree centrality for the EO condition versus the EC condition. (B)
Same as A, but for temporal closeness centrality. (C) Temporal degree centrality
versus temporal closeness centrality in the EO condition. (D) same as C, but for
EC. *** signifies p<0.001
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Applying burstiness

By applying the burstiness measure (B) to a fMRI dataset we can ask questions
related to the temporal distribution of connections in brain connectivity. To
illustrate that there is indeed a bursty pattern of brain connectivity, we first plot
the distribution of all inter-contact times taken from all subjects and edges for
the EO session and observe a heavy tailed distribution (Figure 7A).

We then considered the question regarding the most robust way to calculate B,
given that our example fMRI dataset has a rather low temporal resolution and
only span a limited time period. It is possible that there may not be enough edges
present in each subject for a stable estimate of B in a single subject. To test this
concern, we evaluated whether there was a difference in B for a single subject
versus the case of concatenating the inter-contact times over multiple subjects.
This was done for a single edge that connects right posterior cingulate cortex
and right medial prefrontal cortex in the EO session. As shown in Figure 7B,
there is a considerable variance in the individual subject estimates of burstiness.
But if we cumulatively add subjects, the estimate of burstiness stabilizes after
approximately 12 subjects. This illustrates the importance of having enough
data to calculate reliable B estimates. Henceforth, all B estimates have been
calculated by pooling inter-contact times over subjects.

We then wished to contrast EO versus EC in terms of burstiness. Both conditions
showed a bursty distributions across all edges (see Figure 7C) and slightly more
so for the eyes closed compared to the eyes open condition. Both within-
and between-network connectivity showed a bursty distribution of connectivity
patterns in both conditions (Figures 7DE).

Given that both EO and EC showed bursty correlations, we tested whether values
of B correlated between conditions (Figure 7F). We found a weak, but significant,
correlation between conditions (ρ = 0.066, p<0.0001). This weak correlation
(i.e. less than one percent of the between-condition variance is accounted for)
suggests that burstiness may relate to task related edges but more research is
needed on this topic.

Applying fluctuability

Using the fluctuability measure, researchers may ask questions regarding how
many unique edges exist in a temporal network model of the dynamic func-
tional brain connectome, indicating whether more resources (i.e. diversity of
connections) are required during a given task.

The fluctuability measure was applied and contrasted between the EO and
EC conditions (Figure 8A) and between-subjects (Figure 8B). We observed
no significant between-subject correlation in F (ρ= 0.18, p=0.23) but found a
difference for the average value of F between conditions (p=0.0020), with the
EO condition having a higher degree of fluctuability. Thus, the EO condition
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Figure 7: Quantifying bursty connectivity. (A) Distribution of all inter-contact
probabilities, combining all edges and subjects in the eyes open condition. (B)
The bursty coefficient (B) for one edge for the eyes open condition. Each
dot represents B calculated per subject while the solid line shows the bursty
coefficient when cumulatively adding subjects. Values of -1 indicate that all
inter-contact times are identical (i.e. one burst, tonic connectivity or oscillations
in connectivity). (C) Distribution of B for the different conditions (blue: EO,
red: EC). (D) Same as C but showing EO within-network connectivity (red) and
between-network connectivity (blue). (E) Same as D but for the EC condition.
(F) Bursty coefficient for each edge across the two sessions, displayed as a
heatmap. *** signifies p<0.001
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may require a more varying temporal configuration of connections compared to
the EC condition.

Figure 8: Applying fluctuability and volatility measures for the EC and EO
conditions. (A) Between-subject correlation for fluctuability. (B) Violin plot
showing fluctuability between the EO and EC conditions. Each light gray dot
designates a subject and a line binds together data obtained from the same
subjects during EO and EC conditions, respectively. For clarity, each line
connecting subjects terminates at centers of the violin plots. The mean value of
fluctuability for each condition is shown with a white dot. (C) Same as A but
for volatility. (D) Same as B but for volatility. ** signifies p<0.01.

Applying volatility

With volatility, we can ask whether the connectivity changes more quicker or
slower through time. Some tasks might require the subject to switch between
different cognitive faculties or brain states while other tasks may require the
brain to be more stable and switch states less.

As with fluctuability, we computed volatility for both between-subjects (Figure
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8C) and between-conditions (Figure 8D). We observed a significant correlation
for between-subject volatility over the two conditions (ρ = 0.46, p=0.0012, Figure
8C) was obtained. Additionally, no significant difference in volatility between
EO and EC was observed (p=0.051, Figure 8D).

Applying reachability latency

The measure of reachability latency addresses the following question regarding
the overall connectivity pattern along the temporal axis: how long does it take
to travel to every single node in the temporal network? For example, reachability
latency may be useful for evaluating the dynamics when functional or structural
connectomes differ substantially. We computed the reachability latency by
setting r=1 (i.e. all nodes must be reached).

The results are shown in Figure 9 and a significant difference in average reacha-
bility latency between conditions was found (Figure 9A, EO: 21.07 EC: 22.96,
p=0.0005). Given that there was an overall increase in reachability latency
during EC compared to EO, we decided to, post hoc, unpack this finding and
check whether the discovered global difference in reachability could be localized
to brain networks that should differ between the EC and EO conditions. So,
rather than calculating reachability latency for the entire brain, we averaged
the measure of reachability latency (to reach all nodes) for 10 preassigned brain
networks (technically modules in network theory terminology). In this post
hoc analysis, we see that the brain networks with the highest differences in
reachability latency were the visual, dorsal attention, and the fronto-parietal
brain networks (Figure 8B). Thus, the results suggests a longer reachability
latency for these networks, i.e. it takes more time to reach all nodes in the visual
and attention networks in the EC condition compared to EO, seems biologically
reasonable.

Despite this between-condition differences in reachability, we observed that there
was also a significant between-subject relationship (ρ=0.36, p=0.015, Figure
8C). Taken together with the previous finding, our results show that measures
of reachability latency reflects both between-conditions and between-subjects
differences.

Applying temporal efficiency

Finally, we computed the global temporal efficiency for both EO and EC condi-
tions. While reachability latency employs the shortest temporal path to calculate
how long it takes to reach a certain percentage of nodes, temporal efficiency
relates to the average inverse of all shortest temporal paths.

We found that temporal efficiency is significantly larger during EO than EC
(p=0.0011, Figure 10A). This finding suggests that, on average, the temporal
paths are shorter in the EO condition compared to the EC condition. We
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Figure 9: Applying reachability latency. (A) Violin plots of reachability latency
for EO and EC conditions. Light gray dots correspond to a single subject and
lines connect a subjects respective values between conditions. For clarity, each
line connecting subjects terminates at centers of the violin plots. White dots mark
the mean reachability latency. (B) Post hoc decomposition of the reachability
latency difference (EC-EO) across sub-networks. (C) Between subject correlation
of reachability for EO and EC. * signifies p<0.05; *** signifies p<0.001.

observed a strong negative correlation between them during both conditions (EO:
ρ=-0.88, p<0.0001; EC: ρ=-0.88, p<0.0001, see Figures 10BC). This suggests
that there is a relationship between the longest shortest temporal path (part of
reachability) and the average shortest temporal path (part of efficiency) in this
dataset.

Discussion

Our overarching aim in this work was to provide an overview of the key concepts
of temporal networks for which we have introduced and defined temporal network
measures that can be used in studies of dynamic functional brain connectivity.
Additionally, we have shown the applicability of temporal metrics in network
neuroscience and provided results that pertain to their characteristics by applying
them onto a resting-state fMRI dataset.

Summary of applying temporal network measures to fMRI data

Both temporal degree centrality and closeness centrality were correlated across
conditions whereas no correlation between the two centrality measures was
observed. This result suggests that the two centrality measures quantify different
dynamic properties of the brain.
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Figure 10: Applying global temporal efficiency and its relation with reachability
latency. (A) Violin plots of global temporal efficiency for the EO and EC
conditions. Light gray dots correspond to a single subject and lines connect a
subjects respective values between conditions. For clarity, each line connecting
subjects terminates at centers of the violin plots. White dot indicate mean global
temporal efficiency. (B) Scatter plot showing each subject’s reachability latency
versus temporal efficiency for the EO condition. (C) Same as B but for the EC
condition. ** signifies p<0.01; *** signifies p<0.001

At a global network level, we examined the temporal uniqueness of edges (fluc-
tuability) as well as the rate of change of connectivity (volatility). We could
identify a significant condition-dependent difference in fluctuability, but no dif-
ference was observed for volatility between conditions. Conversely, a significant
between-subjects correlation was found for temporal network volatility, but the
between-subjects correlation in fluctuability not significant. These results suggest
that the observed differences in volatility, i.e. differences in brain connectivity
at two different points in time, were to a relatively larger extent driven by
inter-subject differences in connectivity dynamics than by differences related to
the tasks (EO/EC) per se.

Our results regarding reachability latency during EO and EC conditions indicates
task driven changes in latency, especially since the connectivity of visual and
attention brain networks are known to reconfigure between EO and EC conditions
(80). Thus, the observed difference in reachability latency might be a reflection
of a putative network reconfiguration. Further, reachability also showed a
between-subject correlation across conditions.

The distribution of inter-contact time points of connectivity between brain nodes
is bursty is in agreement with our previous findings (41). Notably, our previous
findings were obtained at a high temporal resolution (TR = 0.72 seconds) and it
is therefore reassuring that we are able to detect similar properties of burstiness
in brain connectivity also at a lower temporal resolution (TR = 2 seconds). Of
note, the between-network versus within-network connectivity here differed from
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that obtained in a previous study which found between-network connectivity
to be significantly more bursty than within-network connectivity (41). This
difference is probably due to the different kind of thresholding being applied.
Here a variance based thresholding was applied instead of the magnitude based in
the previous study. We have discussed previously that these different strategies
will prioritize different edges (81, 78).

Other approaches to temporal network theory

The list of measures for temporal networks described here is far from exhaustive.
While we have primarily focused on temporal properties that can be defined on a
nodal and/or global level, detecting changes in network modularity over time is
an active part of network theory research (82, 83). This has recently been applied
to the brain connectome (84, 85) and applied in the context of learning (86,
87). In a similar vein, the presence of hyperedges have explored and identified
groups of edges that have similar temporal evolution (88, 89). Similarly, studies
investigating how different tasks evoke different network configurations (90, 75,
91) is also an active research area. Another recent exciting development is to
consider a control theory based approach to network neuroscience (92), which
can be applied to networks embedded in time (93).

Yet another avenue of temporal network research is to adopt static network
measures to each t-graphlet and then derive time series of fluctuating static
measures (94, 95). It is also possible is to quantify properties of dynamic
fluctuations in brain connectivity through time and then correlate them with the
underlying static network. Using such a strategy, between-subjects differences
for the dynamic and the static networks can be revealed (e.g. 96).

Finally, there are considerably more measures within the temporal network
literature that can be put to use within the field of network neuroscience. For
example, the list of centrality measures provided here is not complete. For
example, a temporal extension of the betweenness centrality, which is often
used for static networks, can be adopted to the temporal domain (97). Another
example is the computation of spectral centrality in the temporal domain (see
68 for further details).

When is temporal network theory useful?

As stated in the introduction, graphs are an abstract representation corresponding
to the some state in the world. The properties quantified on these representations
try to reflect the properties corresponding to the world. Not every representation
of brain function will require time, which makes temporal network measures
unsuitable. Under what conditions will temporal network theory be of use? If the
brain is viewed as a system that is processing information within different brain
networks and this information is communicated between these brain networks,
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then we believe that temporal network theory can be advantageous to quantify
these interactions.

There are a couple of additional considerations when applying temporal network
theory. Interpreting what a measure means can only be done in relation to the
temporal resolution of the data. For example, volatility when applied to a dataset
obtained with a temporal resolution of years will obviously entail a different
interpretation compared to a dataset acquired with a temporal resolution of
milliseconds.

Finally, consideration is also needed about which temporal network measure(s)
that should be applied to a research question. Although temporal network
theory provides a wide array of measures to the users disposal, we advise
against applying the entire battery of measures to a given dataset. Given a
hypothesis about some state of the world (S), this should first be translated into a
hypothesis about which network measure will quantify the network representation
of S. A more exploratory analysis showing significant (and multiple comparison
corrected) correlations in five out of ten measures, when these measures where
not first formulated in relation to S, become hard-to-impossible to translate into
something meaningful.

Limitations and extensions for temporal network measures

Our scope was limited to temporal measures that operate on binary time series
of brain connectivity (i.e. binary t-graphlets). Most of the measures discussed
here can be extended and defined for series of weighted connectivity matrices.
However, certain temporal measures are not straightforward to convert to the
weighted case. Pertinent examples are burstiness and reachability for which no
simple strategy on how to apply them in case of a weighted connectivity context
is apparent.

Regardless of the method used to derive the brain connectivity time series,
it is important that adequate pre-processing steps are performed on the data
to avoid potential bias in the analysis. Our proposal of deriving t-graphlets
with weighted Pearson correlation coefficients to compute time series of brain
connectivity constitute no exception to this concern. In a connectivity analysis
that is based on sequences of binary t-graphlets, an absence or presence of
an edge might potentially be influenced by the user’s selection of thresholding.
Hence, the strategy regarding how to optimally threshold the t-graphles into
binary graphlets is of vital importance. We believe that it is important to
keep in mind that comparisons of variance as well as the mean of connectivity
time series might be biased by the underlying mean-variance relationship (81,
78). This further emphasizes the need for adequate thresholding strategies for
connectivity time series. Moreover, subject head motion, known to be a large
problem for fMRI connectivity studies, (72, 73, 98), can also lead to spurious
dynamic properties (99) and should be controlled for.
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Outlook

By providing a survey of the theory of temporal networks and by showing their
applicability and usefulness in network neuroscience, we hope that we have
stirred the readers interest in using models based on temporal networks when
studying the dynamics of functional brain connectivity. To this end, we have
implemented all temporal network measures described in the present paper in a
software package that is freely available (Teneto, written in Python and can be
downloaded at github.com/wiheto/teneto). The plan for the Teneto package is
to include additional temporal network measures, plotting routines, wrappers
for other programming languages, and dynamic connectivity estimation.
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