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Abstract

Genetic sequences from pathogens can provide information about infectious disease dynamics that
may supplement or replace information from other epidemiological observations. Currently available
methods first estimate phylogenetic trees from sequence data, then estimate a transmission model con-
ditional on these phylogenies. Outside limited classes of models, existing methods are unable to enforce
logical consistency between the model of transmission and that underlying the phylogenetic reconstruc-
tion. Such conflicts in assumptions can lead to bias in the resulting inferences. Here, we develop a
general, statistically efficient, plug-and-play method to jointly estimate both disease transmission and
phylogeny using genetic data and, if desired, other epidemiological observations. This method explicitly
connects the model of transmission and the model of phylogeny so as to avoid the aforementioned in-
consistency. We demonstrate the feasibility of our approach through simulation and apply it to estimate
stage-specific infectiousness in a subepidemic of HIV in Detroit, Michigan. In a supplement, we prove
that our approach is a valid sequential Monte Carlo algorithm. While we focus on how these methods
may be applied to population-level models of infectious disease, their scope is more general. These
methods may be applied in other biological systems where one seeks to infer population dynamics from
genetic sequences, and they may also find application for evolutionary models with phenotypic rather
than genotypic data.


https://doi.org/10.1101/096396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096396; this version posted December 23, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1 INTRODUCTION

Phylodynamic methods extract information from pathogen genetic sequences and epidemiological data
to infer the determinants of infectious disease transmission (Grenfell et al., 2004). For successful phylody-
namic inference, mechanisms of transmission must leave their signature in genetic sequences. This occurs
when pathogen transmission and evolution occur on similar timescales (Drummond et al., 2003). By
explicitly relating models of disease dynamics to their predictions with respect to pathogen sequences,
it is possible to estimate aspects of the mechanisms of transmission (Frost et al., 2015; Poon, 2015;
Rasmussen et al., 2011; Stadler et al., 2013; Volz et al., 2013b). So far as we are aware, all existing
phylodynamic inference methods proceed in three stages. First, one estimates the pathogen phylogeny
using sequence data. Next, one fits models of disease dynamics to properties of the pathogen phylogeny,
such as coalescent times or summary statistics on the tree. Finally, one assesses the robustness of the
results to variation in the estimated phylogeny to account for phylogenetic uncertainty. Frequently,
such methods harbor logical inconsistencies between the assumptions of the model used to estimate the
phylogeny and those of the model of disease dynamics. In particular, it may happen that population
dynamics, as estimated by the transmission model, are inconsistent with those assumed when estimating
the phylogeny. In the absence of consistent methods, it may be difficult to assess the loss of accuracy
due to the use of inconsistent methods.

Phylodynamic inference for simple deterministic population models is feasible via Markov chain
Monte Carlo (Bouckaert et al., 2014). However, population models currently computationally feasible
via this approach are simple compared to typical models of epidemiological interest (Vaughan et al.,
2014). A comparable sequential Monte Carlo method applicable to deterministic population models
also been proposed (Bouchard-Cété et al., 2012). The practice of phylodynamic inference for infectious
diseases has therefore focused on methodology conditioning on a phylogeny estimated using a different,
simpler model (Frost et al., 2015; Karcher et al., 2016).

In this paper, we develop methodology for jointly inferring both phylogeny and transmission, as
well as estimating unknown model parameters. Our central contribution is an algorithm which we call
GenSMC, an abbreviation of sequential Monte Carlo with genetic sequence data. Sequential Monte
Carlo (SMC), also known as the particle filter, provides a widely used basis for inference on complex
dynamic systems (Kantas et al., 2015) with several appealing properties. Because basic SMC methods
rely only on forward-in-time simulation of stochastic processes, it can accommodate a wide variety of
models: essentially any model that can be simulated is formally admissible. Thus, the algorithm enjoys a
variant of the plug-and-play property (Breté et al., 2009; He et al., 2010). An SMC computation results
in an evaluation of the likelihood, which is a well-understood and powerful basis for both frequentist
and Bayesian inference. Finally, again because SMC requires only forward-in-time computation, it is
straightforward to construct a model of genetic sequence evolution upon the basis of a transmission
model, thus avoiding all conflict between these models.

SMC techniques have previously been used for phylodynamic inference conditional on a phylogeny
(Rasmussen et al., 2011). However, using SMC to solve the joint inference problem through forward-in-
time simulation of tree-valued processes is a high-dimensional, computationally challenging problem. We
found that several innovations were necessary to realize a SMC approach that is computationally feasible
on models and datasets of scientific interest. The key innovations that provided a path to feasibility were:
just-in-time construction of state variables, hierarchical sampling, algorithm parallelization, restriction
to a class of physical molecular clocks, and maximization of the likelihood using the iterated filtering
algorithm of Ionides et al. (2015).

In the following, we first give an overview of the class of models for which our sequential Monte
Carlo algorithms are applicable. A formal specification is given in the supplement, and the source code
for our implementation is also available. Next, we present a study on a simulated dataset as evidence
of the algorithm’s feasibility. Finally, we use our methods to estimate determinants of the epidemic
of human immunodeficiency virus (HIV) among young, black, men who have sex with men (MSM)
population in Detroit, Michigan from 2004 to 2011. This analysis uses time-of-diagnosis and consensus
protease sequences to estimate the rates of infection attributable to sources inside and outside the focal
population.
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2 NEW APPROACHES

The key novelty in our approach to phylodynamics is in formulating a flexible class of phylodynamic
models and a class of sequential Monte Carlo algorithms in such a way that the latter can be efficiently
applied to the former. We refer to our phylodynamic model class as GenPOMP models, in recognition
of the fact that they are partially observed Markov processes (POMPs). As such, a GenPOMP model
consists of an unobserved Markov process—called the latent process—and an observable process. In
the following sections, we specify the structure of each of these components. An addition, more formal,
description of the GenPOMP model is given in the supplement (Section S1). Our GenSMC algorithm for
GenPOMP models is introduced in the Materials and Methods section. GenSMC is presented at greater
length in the supplement (Section S2) and also provided with a mathematical justification (Section S3).
Our extension of GenSMC to parameter estimation, via iterated filtering, is called the GenlIF algorithm
and is discussed briefly in the Material and Methods section and at greater length in Section S2.2. For
computational implementation of the GenPOMP framework and the GenSMC and GenlF algorithms,
we wrote the open-source genPomp program discussed further in Section S2.1.

For concreteness, we focus here on an infectious disease scenario, wherein the model describes trans-
mission of infections among hosts and the sequences come from pathogens in those infections. In this
context, measurements on infected individuals are called diagnoses. In the concluding discussion section,
we briefly consider other contexts within which the models and methods we have developed may prove
useful.

2.1 The latent process

We adopt the convention of denoting random variables using uppercase symbols; we denote specific
values assumed by random variables using the corresponding lowercase symbol. We use an asterisk to
denote the data, which are treated as a specific realization of random variables in the model.

The latent Markov process, {X(¢), t € T}, defined over a time interval T = [tg, tend], explicitly
models the population dynamics and also includes any other processes needed to describe the evolution
of the pathogen. Specifically, we suppose that we can write X (t) = (7(¢), P(t), U(t)), where T(t) is
the transmission forest, P(t) is the pathogen phylogeny equipped with a relaxed molecular clock, and
U(t) represents the state of the pathogen and host populations. For example, U(t) may categorize each
individual in the host population into classes representing different stages of infection. We suppose that
{U(t),t € T} is itself a Markov process.

The transmission forest represents the history of transmission among hosts. 7 (t) is a (possibly
disconnected) directed, acyclic graph. Nodes in 7 (¢) are time-stamped and of several types. Internal
nodes represent transmission events. Terminal nodes are of three types: (a) active nodes represent
infections active at time t; (b) observed nodes correspond to diagnosis events, possibly associated with
genetic sequences; (¢) dead nodes correspond to death or emigration events. Root nodes at time tg
correspond to infections present in the initial population; root nodes at times ¢ > to correspond to
immigration events. Since all nodes are time-stamped, edges of 7 (¢) have lengths measured in units of
calendar time.

The pathogen phylogeny P(t) represents the history of divergences of pathogen lineages. Internal
nodes of P(t) represent branch-points of pathogen lineages, which, we assume, coincide with transmission
events. The terminal nodes of P(t) are in 1-1 correspondence with the terminal nodes of T (¢). The
distinction between P(t) and T (¢) allows for random variation in the rate of molecular evolution, i.e.,
relaxed molecular clocks (see below). Specifically, the edge lengths of 7 (¢) measure calendar time between
events, whereas edge lengths in P(t) can have additional random variation describing non-constant rates
of evolution.

The transmission forest 7 (¢) can grow in only five distinct ways: (1) active nodes can split in two,
when a transmission event occurs, (2) active nodes can become dead nodes, upon emigration, recovery,
or death of the corresponding host, (3) immigration events can give rise to new active nodes, each with
its own distinct root, (4) sampling events cause active nodes to spawn diagnosis nodes, and (5) active
nodes for which none of the above occur simply grow older. Likewise, the pathogen phylogeny P(t)
grows along with 7 (¢) (Fig. 1). The Markov process {U(t)} can contain additional information about
the system at time ¢, e.g., states of individual hosts. {U(¢)} can affect, but must not be affected by,
the {7(¢t)} and {P(t)} processes. That is, given any sequence of times t; < --- < t, < t, {U(t)} is
independent of {(7(t;),P(t;)), j =1,...,k} conditional on {U(t;), t; < --- <t < t}.
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We assume subsequently that P(¢) and 7 (t) agree topologically, but we note that this assumption is
not essential. In particular, the sequential Monte Carlo algorithms we apply could be straightforwardly
extended to allow the topology and timing of genetic lineage divergences to deviate from those of
transmission events and to allow multiple pathogen lineages within each host. Such extensions might be
useful, for example, in accounting for within-host pathogen diversity.

Latent state at time ¢ Latent state at time to

T(t1)

troot

Figure 1: A schematic showing the nature and evolution of the latent transmission and phylogeny processes. The transmission
forest, 7 (t), is shown in black; the pathogen phylogeny, P(t), in blue. At left, we see the latent state at time ¢1; it evolves
by time t2 to the state shown at right. At time ¢, 7 (¢1) consists of two disconnected trees, representing the transmission
histories of five active infections (o). These infections derive from two infections present at to (black dots). The branching
pattern of the pathogen phylogeny mirrors that of 7 (¢) over the interval [to, ¢1]. This diagram assumes that pathogen lineages
branch exactly at transmission events; alternative models could allow for differences in the branching pattern between T (t)
and P(t). This diagram displays a model with a relaxed molecular clock; randomness in the rate of evolution along lineages
is depicted via random edge lengths in P(¢). Over the time interval [t1,¢2], changes of each of the five permissible types are
shown. At (1), an active node splits in two when a transmission event occurs. At (2), an active node becomes a dead node (X)
when an infected host emigrates, recovers, or dies. At (3), an immigration event gives rise to a new active node with its own
root. At (@), a sequence node (o) is spawned when a sample is taken. Finally, active nodes for which none of the above occur
simply persist. The Markovian property insists that the latent state at time t2 be an extension of the latent state at time t;.
In other words, changes to the latent state over the interval [t1,t2] must not retroactively modify elements of the latent state
prior to time t;.

2.2 The observable process

We now describe the model explicitly linking the latent process to the data. Let Y be the set of all finite
collections of dated genetic sequences, with an element of Y being a collection {(gx,tx), k= 1,...,n}
where g is a sequence and tj is the associated diagnosis time. We allow g, to be an empty sequence,
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in the event that the corresponding diagnosis had no associated sequence. The observable process is a
Y-valued process, {Y(t), t € T}, where Y (¢) consists of all sequences that have accumulated up to time
t. Thus, Y (¢) is expanding, i.e., Y(t) C Y (¢') whenever ¢t < ¢/, and if Y (¢) = {(Gk,Tk), k=1,...,N},
then T), < ¢ for all k. The data are modeled as a realization of the observable process, Y (tend) = y*.

Suppose each diagnosis has has an equal and independent chance to give rise to a pathogen sequence,
and each diagnosis event in Y (¢) corresponds to a unique diagnosis node in 7 (t). Suppose also that some
time-reversible molecular substitution model is defined to describe sequence evolution on the pathogen
phylogeny P(t). These modeling assumptions implicitly define a conditional distribution for Y (¢) given
X(t).

2.3 Relaxed molecular clocks

A strict molecular clock assumes that the rate of evolution is constant through time and across lineages.
Relaxation of this assumption has been shown to improve the fit of phylogenetic models to observed
genetic sequences in many cases (Drummond et al., 2006) and for HIV in particular (Posada and Cran-
dall, 2001). A relaxed molecular clock models the rate of evolution as random. In our approach, this
corresponds to constructing each edge length of P(t) as a stochastic process on the corresponding edge
of T(t). Various forms of such processes have been assumed in the literature (Ho and Duchne, 2014;
Lepage et al., 2007), but not all of these are compatible with a mechanistic approach. In particular,
a mechanistic molecular clock must be defined at all times and must have non-negative increments.
Many relaxed clocks commonly employed in the literature do not enjoy the latter property: in effect,
such clocks allow evolutionary time to run backward. The class of suitable random processes includes
the class of nondecreasing Lévy processes, i.e., continuous-time processes with independent, stationary,
non-negative increments.

2.4 The plug and play property

The formulation of the latent and observable processes as above is flexible enough to embrace a wide
range of individual-based models. In particular, models that describe actual or hypothetical mechanisms
of transmission and disease progression are readily formulated in this framework. Moreover, with this
formulation, it becomes clear that the models described are partially observed Markov processes (Bretd
et al., 2009). This fact makes sequential Monte Carlo methods for likelihood-based inference available
for use in the present context. The supplementary material makes the formal connections between this
class of models and sequential Monte Carlo methodology.

It is worth noting that models formulated as above are compatible with inference techniques that
only require simulation from the model, not closed-form expressions for transition probabilities. Such
algorithms are said to have the plug-and-play property (Breté et al., 2009; He et al., 2010). The particle
filter and iterated filtering, which we describe in the Methods section, are two algorithms that have this
property. Because these algorithms only require the ability to simulate from the model, they allow for
consideration of a wide class of models. Greater freedom in choice of the form of the model allows one
to pose scientific questions closed to non-plug-and-play approaches. In the following, we demonstrate
this potential in a study of HIV transmission dynamics.

3 A MODEL OF HIV TRANSMISSION

Our study focuses on the expanding HIV epidemic among young, black, MSM within the Detroit
metropolitan area. Specifically, we ask two questions: (1) How much transmission originates inside
the study population relative to that originating outside? (2) Within the study population, how does
transmission vary with respect to stage of disease (e.g., early, chronic, AIDS) and diagnosis status? To
address these questions we construct a basic model of HIV transmission, similar to that of Volz et al.
(2013a). We describe our model as a special case of the general class of models described above. This
model contains assumptions that can be altered and examined within our methodological framework. In
the following, we describe both the form of the model and how we relate it to two data types: diagnosis
times and genetic sequences.
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3.1 The latent and observable processes

The latent state of the system at time ¢, (T(t), P(t), Z/{(t)), is of the form described above. To specify it
completely, it remains to describe the Markov process {{(¢)} and the transitions of {7 (¢)} and {P(t)}.
U(t) contains information about all infected individuals in the population. Following Volz et al. (2013a),
we do not explicitly track uninfected individuals and thus disallow depletion of the susceptible pool.
Specifically, U (t) = {(7;, Bi(t)) : i infected at time t}, where 7; is the time at which individual i was
infected and B;(t) € C, the class of individual ¢ at time ¢, where C = {Iy, I1, I, Jo, J1, Jo}. B;(t) = I,
indicates that individual ¢ has an infection at stage k& € {0,1,2} but has not yet been diagnosed;
B;(t) = Ji indicates that individual ¢ has been diagnosed and has an infection at stage k. We think
of k = 0 as indicating the early stage of infection; k = 1, the chronic stage; k = 2, AIDS. Individuals
move between classes according to Fig. 2. New infections can occur, as can deaths, emigrations, and
diagnosis events. Transmission events, immigration events, deaths, and diagnoses all result in events of
the corresponding type being recorded in the structure of T (¢).

New infections arise from two distinct sources: immigration and transmission within the population.
Immigrations occur at a constant rate, ¢». Each currently infected individual inside the population seeds
new infections at rate €., where ¢ € C indicates infection class. Thus, we allow transmissibility to
vary between different infection classes, but assume homogeneous transmissibility within each class. It
follows that the incidence of new infections is h(t) + 1, where h(t) = 5, Ny, (t) + e, Ny, (¢t) + e, N1, (t) +
€soNs, (t) + €5, Ny, (t) + €5, Ny, (t), and N.(¢) is the number of individuals in class ¢ at time ¢t. Defining
all nonzero transition rates between states is sufficient to specify a Markov process; a full set of model
equations for {U(t)} is presented in the supplement (Section S4).

The inclusion of individual time-of-infection, 7, within {U(¢)} allows us to model within-host pathogen
evolution. In particular, when an individual is diagnosed at time ¢, a diagnosis node is added to T (),
together with a diagnosis edge, the length of which is linearly related to how long the diagnosed indi-
vidual has been infected (Fig. 1). This edge may account for sequencing error; it can also describe the
emergence of new pathogen strains within a host having reduced between-host transmission potential
(Lythgoe and Fraser, 2012).

We assume for simplicity that the topology of P(t) matches that of 7(¢). Thus, we explicitly
disallow the possibility of incomplete lineage sorting, though, as mentioned before, this choice is not
forced by the algorithm. We assume a relaxed molecular clock: the edge lengths of P(t) are random.
Specifically, each edge of P(t) has length conditionally Gamma distributed with expectation equal, and
variance proportional, to the corresponding edge of 7(t). That is, if L is the length of an edge of
P(t) corresponding to an edge of length D in T (¢), we posit that L|D is Gamma distributed with
E[L|D =d] = d and Var[L|D = d] = od. The parameter o scales the noise on the rate of evolution.
This molecular clock relaxation maintains additivity in evolutionary edge lengths and is the same as
the white noise model of Lepage et al. (2007). Having specified P(¢), the joint distribution of observed
sequences is determined by the choice of the time-reversible molecular substitution model. Here, we
used the HKY model of molecular evolution (Hasegawa et al., 1985).

4 RESULTS

We present results from both a study on simulated data and an analysis of actual data. The primary goal
of the simulation study is to show how our methods can be used to extract information about transmission
dynamics from pathogen genetic sequence data within the framework of likelihood-based inference. This
study was carried out with 30 sequences of length 100 bases. The goals of the data analysis are to
demonstrate the numerical feasibility of our implementation as well as illustrate the role of likelihood-
based inference as part of the cycle of data-informed model development for a phylodynamic model.
The data analysis was carried out using 100 protease consensus sequences of length 297 bases. Due to
the intensive nature of the computations, further developments will be required to handle considerably
larger datasets. Some empirical results concerning how our GenSMC implementation scales with number
of sequences are given in the supplement (Section S2.3). We discuss applicability to the range of current
phylodynamic challenges in the discussion section.
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Figure 2: A flow diagram showing the possible classes for infected individuals. The columns represent stage of disease: with
subscripts 0, 1 and 2 representing early, chronic, and AIDS stages respectively. The rows represent diagnosis status, with
the top row representing undiagnosed individuals, I, and the bottom row representing diagnosed individuals, J, where
k € {0,1,2}. pi are per capita rates of diagnosis and ~. are rates of disease progression. Arrows out of classes that do not
flow into other classes represent the combined flow out of the infected population due to death and emigration.

4.1 A study on simulated data

Using the individual-based, stochastic model of HIV described above (Fig. 2), we simulated epidemics
conditional on observing 30 sequences. We set the length of the simulated sequences to be 100 bases.
We set parameters governing the rate of evolution at relatively high values to generate a high proportion
of variable sites. As computation scales with the number of variable sites, the computational effort
in this simulation study could be comparable to fitting real sequences of greater length. Parameters
values and their interpretations are specified in Tables 1 and 2. Algorithmic parameters are specified in
Section S4.2. Each simulated epidemic consisted of a transmission forest and a set of pathogen genetic
sequences. We randomly selected 5 epidemics to fit. Each dataset consists of two types of data: times
of diagnoses and pathogen genetic sequences. A representative simulated transmission forest and its
associated pathogen genetic sequences are shown in Fig. 3.

For each of the selected epidemics we ask two questions. First, when all other parameters are known,
is it possible to infer ¢;, and €, using only diagnosis times? Second, how does inference change when
we supplement the diagnosis data with pathogen genetic sequences? To perform this comparison we
estimated two likelihood surfaces for each epidemic: one using only the diagnosis likelihood, and one
using both the diagnosis likelihood and the genetic likelihood. We estimated each surface by using the
particle filter to compute a grid of likelihood estimates with respect to the two parameters of interest:
€1, the infectiousness of early-stage undiagnosed individuals, and €7, , the infectiousness of chronic-stage
undiagnosed individuals. Equilibrium base frequencies were set to the empirical values in the simulated
data. All other parameters were fixed at the known values used for simulation. We extracted grid-based
likelihood profiles for each parameter by taking maxima over the columns or rows of the grid. For each
parameter we therefore obtained two profiles: one using only the diagnosis likelihood and one using
the joint likelihood. The difference in curvature between these profiles tells how much the genetic data
improves, or weakens, inference on the parameters.

When only the diagnosis data are used, we find a tradeoff between €5, and ey, (Fig. 4). The diagnoses
provide information on upper bounds for each infectiousness parameter, but otherwise only inform their
sum. In other words, when estimated using only the diagnosis times, €7, and €7, are nonidentifiable.
Supplementing the data on diagnoses with pathogen genetic sequences resolves this uncertainty (Fig. 4).
Note that including the genetic data increases noise in the likelihood estimate. This is expected, as
computing the likelihood estimate for the genetic sequences requires a numerical approximation to
an integral over tree space. Nevertheless, the genetic data increase the curvature of the likelihood
surface. From Fig. 4, we see that this additional curvature leads to more precise identification of the
parameters despite the increased Monte Carlo noise. In principle, Monte Carlo variation can be reduced
to negligibility by increased computational effort. This may not be practical when computational expense
is high, as it is here. Therefore, it is necessary to bear in mind the tradeoff between the benefits of the
information accessed for inference versus the computational burden of extracting this information.
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Table 1: Parameters of the transmission model used in simulation of datasets.

Parameter | Interpretation Value
€rn Infectiousness of undiagnosed chronic stage individuals 0.25 yr—*
El, Infectiousness of undiagnosed AIDS individuals 0 yrt
EJo Infectiousness of diagnosed acute stage individuals 0.125 yr!
e Infectiousness of diagnosed chronic stage individuals 0.025 yr!
€T, Infectiousness of diagnosed AIDS individuals 0 yrt
A Death rate + Aging rate of undiagnosed acute stage individuals 1/3 yr!
L, Death rate + Aging rate of undiagnosed chronic stage individuals 1/3 yrt
LI, Death rate + Aging rate of undiagnosed AIDS individuals 5/6 yrl
o Death rate + Aging rate of diagnosed acute stage individuals 1/3 yr!
W, Death rate + Aging rate of diagnosed chronic stage individuals 1/3yr!
1, Death rate + Aging rate of diagnosed AIDS individuals 2/3 yrl
YIo Progression rate from undiagnosed acute to undiagnosed chronic 1yrt
Y1, Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 yrt
Yo Progression rate from diagnosed acute to diagnosed chronic 1yr!
Y Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 yrl
Po Diagnosis rate of acute stage individuals 0.5 yrt
Py Diagnosis rate of chronic stage individuals 0.225 yr!
0y Diagnosis rate of AIDS individuals 50 yr!
P Immigration rate of infected individuals 0 yrt

10) Emigration rate of infected individuals 0yr 1
troot Root (polytomy) time 0 yr
to Time to begin simulation of the transmission model 2 yr
tend Time to end simulation of the transmission model 10 yr
Nloci Length of the sequences to simulate 100 base pairs
PG Probability of a sequence given diagnosis 0.48
Ny, (to) Number of undiagnosed early-stage individuals at g 11
Ny, (to) Number of undiagnosed chronic-stage individuals at tg 15
Ny, (to) Number of undiagnosed AIDS individuals at tg 0
Ny, (to) Number of diagnosed early-stage individuals at tg 4
Ny, (to) Number of diagnosed chronic- stage individuals at ¢o 8
Ny, (to) Number of diagnosed AIDS individuals at ¢y 6
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Table 2: Parameters of the genetic model used in simulation of datasets.

Parameter | Interpretation Value
154 Rate of transversions 0.013 yrt
ay Rate of transitions between purines 0.03 yr!
QR Rate of transitions between pyrimidines 0.1 yr!
TA Equilibrium frequency of adenine 0.37
TG Equilibrium frequency of guanine 0.23
T Equilibrium frequency of cytosine 0.18
T Equilibrium frequency of thymine 0.22
Osite Relaxation of the molecular clock with respect to sites 0
o Relaxation of the molecular clock with respect to edges 0.1yr
Ofixed The initial component of the sequence stem 0.001 yr
Oprop Proportion of time since infection to add to the sequence stem 0.05
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Figure 4: Grid-based estimates of likelihood surfaces and likelihood profiles from fitting to simulated data. The top row shows
the surface (A) and profiles (B and C) estimated using only the diagnosis likelihood. The bottom row shows the surface (D)
and profiles (E and F) estimated using both the diagnosis and the genetic likelihood. Red dots and red lines indicate true values
of £7, and e, used in simulation. Point estimates and 95% confidence intervals are shown in green just above the horizontal
axis of the likelihood profile plots. Confidence intervals for E and F account for both statistical uncertainty and Monte Carlo
noise (Ionides et al., 2016) using a square root transformation appropriate for non-negative parameters. Augmenting the
diagnosis data with genetic data yields smaller confidence intervals for €5, and €y, , and resolves the nonidentifiability of these
parameters when estimated using only the diagnoses. Note that scales of the likelihood surfaces shown in A and D are not
the same; E and F have the same scale as B and C but with a vertical shift.
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4.2 Analysis of an HIV subepidemic in Detroit, MI

In this data analysis, we explored whether our full-information approach could estimate key transmission
parameters using HIV protease consensus sequences and diagnosis times. We focused our analysis on a
subepidemic in the young, black, MSM community. The cohort of individuals that we chose to study is
shown in Fig. 5. See the Materials and Methods section for details on how we selected the subepidemic
and cleaned the sequence data.

As in the study on simulated data, we were interested in what the genetic data yield beyond what we
can see using the diagnoses alone. Therefore, we again estimated likelihood profiles in two ways: using
only the diagnosis data and using both the diagnosis data and the genetic sequences. We estimated
likelihood profiles for three parameters of interest: €1,, €7,, and 9. In contrast to the simulation study,
in this analysis we were faced with a parameter space of much higher dimension. To reduce the dimension
of the problem we fixed some parameters: rates of disease progression, rates of diagnosis, and the rate of
emigration. Parameters that were fixed and fit are shown in Tables 3 and 4, respectively. Algorithmic
parameters are specified in Section S4.2. For each likelihood profile we first used iterated filtering
Tonides et al. (2015) to maximize the likelihood for a sequence of values that spanned the reasonable
range of the parameter. Second, we used the particle filter to estimate likelihoods for each parameter
set obtained from iterated filtering. We repeated this process of maximization followed by evaluation
until the profile stabilized. All initial-value parameters were fixed, with the exception of t,,0t. Initial
counts for individuals in each class were fixed. See the supplement for details on how we arrived at these
counts.

When only the diagnosis data are used, we find that the model prefers to explain all infections as
originating outside the cohort, with the maximum likelihood estimate (MLE) for ¢» ~ 120 infections per
year (Fig. 6). Under this explanation for the data, little or no transmission occurs inside the cohort: this
covariate-defined subgroup acts as a sentinel of the broader epidemic. Equivalently, this result would
imply that the covariates we used to select these cases do not define a meaningful subepidemic.

On the other hand, when the genetic data are folded in, the estimate of ¢ is greatly revised: the MLE
for 1 becomes ~ 6 infections per year. On its face, this is evidence for a low rate of transmission into
the cohort and, therefore, evidence that the cohort subepidemic is much more self-contained. Although
this may in part be true, the lower estimate of 1) is also potentially driven by assumptions of the genetic
model. Supposing, as it does, that all immigrant lineages coalesce at a single, global polytomy, the model
insists that sequences from immigrant infections derive from a broad genetic pool. The breadth of this
pool—the average genetic distance between an imported infection and any other observed sequence—
is determined by the depth of the polytomy, an estimated parameter. Nevertheless, the low estimate
of 1 implies that few infections derive from this broader pool. The model’s disallowance of a more
structured immigrant pool makes it difficult to say more, however. In particular, the low value of 1 is
not inconsistent with the existence of chains of transmission originating within the cohort, leaving it,
and returning. Such chains would produce sequence clustering despite the openness of the cohort to
transmission. Future work, incorporating genetic and diagnosis information from the broader epidemic
will be needed to better quantify the latter effect.

Joint likelihood profiles over e, and ¢, show support for transmission from both of the early-stage
groups, with evidence for higher infectiousness in the early-stage diagnosed class than in the early-stage
undiagnosed class. However, it is epidemiologically implausible that diagnosis increases transmission:
this is a paradox. Since the paradox did not arise in the simulation study, it cannot be due to a coding
error in the implementation of the model or the statistical methodology. Assuming no errors in the
data, therefore, it must derive from some inappropriate feature of the model. We propose two possible
explanations for how the model and data combine to yield this result.

One possibility is that temporal clusters of genetically related diagnoses favor high infectiousness for
the early-stage diagnosed. For example, this could be an artifact of unmodeled clusters in HIV testing.
We searched the data for such clusters, but found no conclusive evidence for their presence.

A second possibility is understood by noting that, under the model, any significant amount of trans-
mission from the undiagnosed classes leads necessarily to an exponentially growing accumulation of
diagnoses, in conflict with the data. When the genetic data were left out, the model accounted for the
observed, roughly linear, ramp-up in diagnoses using immigration, hence the relatively high estimated
1. Incorporating the genetic data eliminates this option, forcing the model to explain the epidemic’s
sub-exponential growth as a consequence of diagnosis itself.
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To illustrate the second possibility, we estimated likelihood profiles using only the diagnosis likelihood,
fixing the immigration rate, v, at zero. These profiles show that, when forced to explain the diagnoses
without any imported infection, the model prefers to do so by making the early-stage diagnosed class
most infectious (Fig. 6). This suggests that the model lacks flexibility to explain the pattern in the
diagnoses without immigration; this constraint likely limits efficient use of information in the genetic
sequences. To remedy this problem, one could modify the model by explicitly introducing a small and
ephemeral population of susceptible hosts.

In this methodological paper, we display but one iteration of the scientific method and it is clear
that our motivating scientific questions remain incompletely answered. Our principal goal, however, is
to illustrate how the methodology facilitates the formulation and testing of scientific hypotheses. For
example, the results above suggest a number of straightforward model modifications: the plug-and-play
property of the methodology makes it nearly as straightforward to evaluate the evidence for these new
hypotheses just as we have done for the old. Moreover, we have shown how probing the data with a
mechanistic model can lead to clear identification of flaws in model structure, along with indications for

improvements.
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Figure 5: The distribution of age at diagnosis through time for black MSM in Detroit, MI. The cohort that we selected for
analysis is outlined in red. We excluded the data from 2012 to limit effects from delays in updating the MDCH database. 29
individuals that were diagnosed at ages greater than or equal to 60 years are not shown on this plot.

13


https://doi.org/10.1101/096396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096396; this version posted December 23, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table 3: Parameters fixed in the data analysis.

Parameter | Interpretation Value
L, Death rate of undiagnosed acute stage individuals 1/70 yrl
W, Death rate of undiagnosed chronic stage individuals 1/70 yrt
1, Death rate of undiagnosed AIDS individuals 1/2 yrt
o Death rate of diagnosed acute stage individuals 1/70 yrt
153 Death rate of diagnosed chronic stage individuals 1/70 yrl
1, Death rate of diagnosed AIDS individuals 1/70 yrt
Yo Progression rate from undiagnosed acute to undiagnosed chronic 1yr!
Y1, Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 yrl
Yo Progression rate from diagnosed acute to diagnosed chronic 1yrt
Y Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 yrt
Po Diagnosis rate of acute stage individuals 0.225 yr!
Py Diagnosis rate of chronic stage individuals 0.225 yr!
0, Diagnosis rate of AIDS individuals 50 yr!

1) Emigration rate of infected individuals 0yr!
Ny, (to) Number of undiagnosed early-stage individuals at tg 20
Ny, (to) Number of undiagnosed chronic-stage individuals at g 36
Ny, (to) Number of undiagnosed AIDS individuals at ¢y 0
Ny, (to) Number of diagnosed early-stage individuals at % 4
Ny, (to) Number of diagnosed chronic- stage individuals at %o 22
Ny, (to) Number of diagnosed AIDS individuals at g 16

Osite Relaxation of molecular clock with respect to sites 0yr
to Time to start filtering 1 Jan 2004

14


https://doi.org/10.1101/096396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096396; this version posted December 23, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

Table 4: Parameters fit in the data analysis. We present confidences intervals for parameters for which we computed likelihood
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profiles. For all other parameters, we present only the point estimate.

Diagnosis data Diagnosis data
. . . . s
Parameter | Interpretation Diagnosis data and genetic with 1 fixed at 0
sequences
Immigration rate of 1 1 1
P infected individuals 120 (104, 134) yr 5.82 (2.55, 11.2) yr 0yr
Infectiousness of
€1, undiagnosed acute stage 0 (0, 0.413) 0.257 (0.0399, 0.623) 0 (0, 0.192)
individuals
Infectiousness of
€ undiagnosed chronic stage 0.0042 0.00048 0.0056
individuals
Infectiousness of
€1, undiagnosed AIDS 0 0 0
individuals
Infectiousness of diagnosed
EJo acute stage individuals 0.0675 (0, 1.17) 3.36 (3.13, 4.2) 7.34 (5.78, 9.25)
en Infectiousness of diagnosed 0.0089 0.17 0.032
chronic stage individuals
Infectiousness of diagnosed 0 0 0
&2 AIDS individuals
15} Rate of transversions - 0.0042 yr'1 -
ay Ratve of transitions between ) 0.047 yr'l )
purines
an Rat'e (?f .transmons between ) 0.043 yr'l )
pyrimidines
A Equlpbnum frequency of ) 0.37 )
adenine
. Equllllbrlum frequency of ) 0.24 )
guanine
_ Equll}bnum frequency of ) 0.18 )
cytosine
o Equll.lbnum frequency of ) 0.21 )
thymine
Relaxation of molecular
o . - 2 yr -
clock with respect to edges
Proportion of time since
Oprop infection to use for - 0.064 -
diagnosis edge
Amount of calendar time to
Orixed add on to diagnosis edge ) 0.00049 yr )
troot Time of the polytomy that - 27 Aug 2000 ;
joins all genetic lineages
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Figure 6: Estimated likelihood profiles from fits to data from the black, MSM cohort. A-C show likelihood profiles computed
using only the diagnosis likelihood. D-F show likelihood profiles computed using both the diagnosis likelihood and the genetic
likelihood. G and H show likelihood profiles computed using only the diagnosis likelihood when 1) is fixed at zero. Black dots
represent particle filter likelihood evaluations of parameter sets obtained using iterated filtering. Red dots represent mean log
likelihoods of the multiple likelihood evaluations (black dots) at each point in the profile. Red lines are loess fits to the red
dots. Green bars along the lower margin of each panel encompass 95% confidence intervals for each parameter. Confidence
intervals account for both statistical uncertainty and Monte Carlo noise (Ionides et al., 2016). The smoothed profile was
calculated on the square root scale, appropriate for non-negative parameters, with a green dot indicating the maximum.
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5 DISCUSSION

We demonstrated, via a simulation study, that our algorithms provide access to the likelihood surface
of a population dynamic model fit to genetic sequence data. This opens the door to likelihood-based
phylodynamic inference. As this study shows, incorporating information from genetic data has the
potential to improve on inference that we obtain using diagnosis data alone.

In our analysis of an HIV subepidemic in Detroit, MI, we showed that our methods can be used to
ask questions of current public health interest by fitting practical models to data of nontrivial size. This
study illustrates how the ability to confront the model with different data types, alone or in combination,
can be essential to understanding how the model interacts with the data, to uncovering shortcomings of
the model, and to pointing the way toward improved model formulations. The ability of our methods to
incorporate different data types made it possible to assess each source of information’s contribution to
the overall inference. In turn, the ability to easily restructure the model, guaranteed by the plug-and-play
property, will allow us to push forward model development.

The scope of our methodology goes beyond the examples presented: the algorithms described here
are applicable across a wide range of host-pathogen systems and may find application in realms beyond
genetics. From an abstract perspective, these algorithms provide the ability to relate demographic
processes with a growing tree-like structure to the evolution of discrete characters that are carried and
passed along the branches of that tree. So long as this evolution occurs on a similar timescale to that
of the demographic process, and measurements of the discrete process are heterochronous, the methods
presented here apply.

In this paper, we demonstrated the methods using relatively short consensus sequences derived from
Sanger sequencing. While our methods may be well suited to analysis of data from fast-evolving RNA
viruses, they may also apply in studies of pathogens that evolve more slowly. Advances in sequencing
are increasing the range of problems for which phylodynamic inference is applicable (Biek et al., 2015).
The ability to apply phylodynamic inference to bacterial and protozoan genomes opens the door to
many epidemiological applications. One area that may be particularly interesting to explore using our
methods is hospital outbreaks of drug resistant bacteria. Hospital records on location and duration of
stay may provide fine-scale information on populations of susceptible and infected individuals. Accurate
measures of these demographic quantities may allow for efficient use of information held in genetic data.
Furthermore, the relatively small size of outbreaks in hospitals means that stochasticity may play a
large role in their dynamics, and our methods are designed to explicitly account for the role of different
sources of stochasticity.

We conclude by placing our new methodology in the context of the eight current challenges identified
by Frost et al. (2015) for inferring disease dynamics from pathogen sequences. We will make some
relevant comments on each challenge, in order.

1. Accounting for sequence sampling patterns. Our methodology explicitly models sequence
sampling. The chance of an individual being diagnosed, or subsequently having their pathogen se-
quenced, is permitted to depend on the state of the individual. This state could contain geographic
information, or whatever other aspect of the sampling procedure one desires to investigate. Sam-
pling issues revolve around how the dynamics and the measurement process affect the relatedness
of sequences, and are more naturally handled in a framework that deals jointly with estimation
of the population dynamics and the phylogeny. Thus, our main innovation of joint estimation is
directly relevant to this challenge.

2. Using more realistic evolutionary models to improve phylodynamic inferences. In
this paper, we have used simple evolutionary models that have been widely used for previous
phylodynamic inference investigations. Our methodology does not particularly facilitate the use
of more complex evolutionary models, since the large number of trees under consideration puts
a premium on rapid likelihood computation. However, our methodology is primarily targeted at
drawing inference on the population dynamics rather than the micro-evolutionary processes. For
this purpose, it may be sufficient to employ an evolutionary model which captures the statistical
relationship between genetic distance and temporal distance on the transmission tree, together
with an appropriate estimate of the uncertainty in this relationship. Better evolutionary models
would be able to extract information more efficiently from the data, but from our perspective this
challenge may not be a primary concern.

3. The role of stochastic effects in phylodynamics. Our methodology explicitly allows for
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stochastic effects in the population dynamics and sequence collection.

4. Relating the structure of the host population to pathogen genetic variation. Our
framework explicitly models this joint relationship. Further scientific investigations, fitting models
using methods accounting properly for the joint relationship, will lead to progress in understanding
which aspects of dynamics (such as super-spreading) might be especially important to include when
carrying out phylodynamic inference.

5. Incorporating recombination and reassortment. In principle, our methodology is flexible
enough to include co-infection and its evolutionary consequences. Due to computational consider-
ations, it will be important to capture parsimoniously the key aspects of these processes.

6. Including phenotypic as well as genotypic information. Our framework naturally com-
bines genotypic information with other information sources. For example, in our data analysis we
complemented genetic sequence data with diagnosis times for unsequenced patients.

7. Capturing pathogen evolution at both within-host and between-host scales. The di-
agnosis edges on our phylogenetic tree allow for differences between observed and transmissible
strains, and therefore give a representation of within-host diversity or measurement noise. Other
approaches to within-host pathogen diversity are possible within our general framework. For exam-
ple, one could include within-host branching of the phylogenetic tree. More complete investigation
of within-host pathogen dynamics will require additional modeling. Due to the larger models and
datasets involved, applying our methodology to such investigations will require further method-
ological work on scaling.

8. Scaling analytical approaches to keep up with advances in sequencing. In this manuscript,
our goal was to develop generally applicable and statistically efficient methodology. Our method-
ology is structured with computational efficiency in mind, subject to that goal. Our approach
combines various algorithms that have favorable computational properties: peeling, particle fil-
tering with hierarchical resampling and just-in-time variable construction, and iterated filtering.
There is scope for computational enhancement by adapting the methodology to high performance
architectures. In particular, parallel particle filtering is an active research topic (Paige et al., 2014)
that is directly applicable to our methodology. There are also possibilities for improving scaling by
imposing suitable situation-specific approximations; for example, it might be appropriate to reduce
the computational burden by supposing that some deep branches in the phylogeny are known.

In summary, our new methodology has potential for making progress on many of the challenges identified
by Frost et al. (2015). Beyond that, the methodology offers a full-information, plug-and-play approach
to phylodynamic inference that gives the scientist flexibility in selecting appropriate models for the
research question and dataset at hand. Although technical challenges remain, especially in scaling these
methods to large data, these algorithms hold the potential to ask and answer questions not accessible
by alternative approaches.

6 MATERIALS AND METHODS

6.1 Overview of sequential Monte Carlo estimation of the likelihood

Sequential Monte Carlo (SMC) is a stochastic algorithm originally designed to estimate imperfectly
observed states of a system via a collection of dynamically interacting simulations Arulampalam et al.
(2002). SMC is also called the particle filter algorithm, and each simulation is usually called a particle.
SMC sequentially estimates the unobserved state of the system at the time of each observation by
iterating through three steps: (1) for each particle, simulate the latent process forward in time to the
next data point, (2) for each particle, compute the conditional probability density of the observation
given the proposed latent state, and (3) resample the particles with replacement with probabilities
proportional to their conditional probabilities. While inference of unobserved states is one use of the
particle filter, we are primarily interested in using the filter as an estimator of the likelihood. The
average of the conditional likelihoods across particles is an estimator of the conditional likelihood of
each observation, and the product of these conditional likelihoods is an unbiased estimator of the full
likelihood of the data (Theorem 7.4.2 on page 239 in Del Moral (2004)).

The basic particle filter described above only requires the ability to simulate realizations of the latent
state and the ability to evaluate the density of an observation given the latent state. As we explained
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earlier, in our case the latent state contains both the full transmission forest and the phylogeny of the
pathogen lineages. At minimum, the observations consist of a set of genetic sequences of the pathogen.
Although in principle these methods could be applied to homochronous sequences, we primarily envision
using them to fit models to heterochronous sequences. Additional datatypes can be incorporated into
the likelihood evaluation if desired so long as there is a means to relate these data to the latent state.

We implemented the particle filter such that the algorithmic code is independent of the code that
specifies the model. This structure allows for realizing the advantanges of the plug-and-play paradigm
by facilitating quick comparisons between models of different forms. Pseudocode for the algorithm is
provided in the supplement. In Alg. 1 we give an outline of the pseudocode, and we show a schematic
of simplest form of the algorithm in Fig. 7. In our framework, the user specifies the model by writing
three functions:

1. A simulator for the initial state of the latent process. This function initializes T (¢o). For
example, in a model with only one class of infected individuals, this function would initialize 7T (¢¢)
by specifying the number of infected individuals at ¢y3. Each of these individuals then becomes a
root of a tree in the transmission forest. Each root of the transmission forest has its own genetic
lineage; these comprise P(tg). In our implementation, the initializer does not construct P(¢g); the
structure of P(t) is built as needed (see below in the section ‘Just-in-time construction of state
variables’).

2. A forward simulator for the latent state. This function simulates growth of 7 (¢) forward
in time from one observation to the next. This function also places the next observation on 7 (t),
assigning the sequence to an individual by augmenting 7 (¢) with a diagnosis edge and a sequence
node. Note that this function does not simulate evolution of genetic sequences. Rather, the algo-
rithm proposes ancestral relationships between genetic sequences via the simulated transmission
forest. While formally, the pathogen phylogeny P(t) is part of the latent state, for computational
efficiency we choose not to simulate its structure in full. The function in (3) builds the necessary
components of P(t) given the simulated transmission forest and placement of sequences on the
forest.

3. An evaluator for the conditional probability of observing a sequence. This function
returns the conditional probability of observing a sequence given the latent state and all previously
observed sequences. In particular, this function conditions on the structure of the subtree of P(t)
that connects the observed sequences. The simplest choice for this function is to (1) make the
strong assumption that P(t) maps directly onto 7 (t), and therefore build the phylogeny based
strictly on the topology of T (¢) and (2) evaluate the conditional likelihood of the genetic sequence
using the peeling algorithm (Felsenstein, 1981). These two choices are equivalent to assuming a
strict molecular clock. However, one may choose more complicated functions, such as mappings
that allow for discrepency between T (¢) and P(t) or a relaxed molecular clock, to better match the
mechanistic processes that generate real data. The branching pattern of the transmission forest
and of the phylogeny may differ for a number of reasons Romero-Severson et al. (2014), so there
may be strong arguments for allowing for discrepency between these trees.

Algorithm 1: GenSMC [Corresponding step numbers for the complete description in Section S2
are in brackets]

input: simulator for the initial state; a dynamic model; diagnosis times; genetic sequence data; number of
particles; number of nested particles; number of relaxed clock samples.
initialize filter particles [step 1]
for each diagnosis time do [step 2]
simulate particles through to next diagnosis time [steps 3, 5]
propose multiple candidate individuals for the next diagnosis [steps 6, 7]
propose multiple relaxed clock edge lengths for each candidate assignment [steps 8-11]
compute particle weights: the probability density of the diagnosis and sequence [steps 4, 12, 13]
resample according to particle weights [steps 14-21]
compute conditional log likelihood [step 22]
end for output: log likelihood estimate; latent states estimates.
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Figure 7: A schematic of the particle filter. Here, we show steps to run the filter from the first sequence to the second.
Transmission forests are shown in black and phylogenies that connect observed sequences, P(t), are shown in blue. Observed
sequences are depicted as blue dots. This schematic shows how the algorithm uses just-in-time construction of state variables
to ease computational costs. Although the model describes how P(¢) relates to T () across all branches of the transmission
tree, the algorithm only constructs the subtree of the phylogeny needed to connect the observations (and therefore evaluate
conditional probabilities of sequences). Note that in our implementation of the particle filter we introduce additional procedures
in the proposal and weighting steps. These procedures, which are detailed below, allow for more accurate assessment of a
particle’s weight (through hierarchical sampling) and estimation of the conditional probability of a sequence under a relaxed

clock.
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6.2 Maximization of the likelihood via iterated filtering

The particle filter provides access to the likelihood surface, but it does not provide an efficient way to
maximize the likelihood. A closely related class of algorithms, iterated filtering, allows for maximizing
the likelihood. Iterated filtering incorporates perturbation of unknown parameters into the particle
filter. Repeatedly passing the filter over the data while shrinking the size of the perturbations allows the
parameters to converge to their maximum likelihood estimates. The setup here, with a growing state
space, does not perfectly match the framework used to develop iterated filtering by Ionides et al. (2015).
However, the basic iterated filtering approach of perturbing parameters and filtering repeatedly can be
applied, and can be assessed on its empirical success at maximizing the likelihood.

6.3 Computational Structure

One way our algorithms differ from a standard SMC approach is that each particle maintains a latent
state comprising of tree structures that reach back to t.,01. As the algorithm incorporates each additional
data point its memory requirement grows. From a practical perspective, the necessity of maintaining a
deep structure in the particles presents challenges for writing a computationally feasible implementation
of the algorithm. We developed several innovations to meet the computational challenges posed by
numerically integrating over tree space. In this section, we give an overview of key components of
our implementation that contributed to numerical tractability. For details, see the source code at
https://github.com/kingaa/genpomp (to be archived at datadryad.org).

6.3.1 Data structures and their relationship to model specification

Our implementation holds two tree structures in memory for each particle: (1) 7(t), the transmission
tree, and (2) P(t), the subtree of P(t) that connects all sequences observed up to time ¢. We represent
T (t) as a vector of nodes, where each node contains the index of its mother, a timestamp, and the index
of the genetic lineage with which it is associated (if any). Although the model of the latent state includes
the full phylogeny of the pathogen, P(t), our algorithms only need to keep a subtree of the phylogeny,
P(t), in memory. We also represent P(t) as a vector of nodes. However, nodes of P(t) require more
memory than the nodes of 7(¢). In addition to the information in a transmission tree node, each node
of ﬁ(t) contains the indices of the node’s daughters, an array of probabilities, and an evolutionary edge
length. These additional components allow for computing the likelihood of observing the sequences at
the tips of P(t).

Our implementation provides a set of functions that allow for specifying the model via forward-in-
time simulation of the latent state. These functions provide access to the latent state and allow for
modifying the latent state by branching lineages in 7 (¢), terminating leaves in 7 (t), etc. Our code does
not provide access to P(t). Instead, internal functions update the structure of P(t) as necessary (detailed
in the following section on just-in-time construction of state variables). The structure of 75(t) is in part
determined by the molecular clock model. Our current implemention supports strict molecular clock
models and relaxed molecular clocks with gamma distributed edge lengths (as we use in this paper).
Alternative models for P(t) are possible, and the plug-and-play structure of our algorithms allows the
user to explore a wide range of alternative models.

6.3.2 Just-in-time construction of state variables

Although the model of the latent process includes the full phylogeny of the pathogen, P(t), for the
purposes of computation we need only store ﬁ(t) in memory. In our implementation, we add new edges
to P(t) at the time of measurement; it is not until a sequence is placed on a lineage of T (t) that we have
enough information to update ﬁ(t) We call this approach just-in-time construction of state variables
because simulation of part of the state is postponed until the last moment. An alternative approach
would include simulation of P(¢) in tandem with the transmission forest. Then, when a sequence is
attached to T (t) the necessary components of P(t) to relate the new sequence to all previously observed
sequences would be guaranteed to be present. When the transmission forest is large relative to the
phylogeny such an approach would be costly in both computation and memory.
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6.3.3 A hierarchical sampling scheme

We developed a hierarchical sampling scheme to allow for scaling the effective number of particles while
holding only a fraction of the effective number of particles in memory. This sampling scheme allows for
holding J particles in memory while approaching effective sample sizes approaching J K, where J is the
number of base particles and K is the number of nested particles. In this hierarchical scheme, we split
the proposal into two steps: (1) proposal of the transmission forest, and (2) proposal of the location
of the sampled sequence on the transmission forest. Each of J particles first proposes a transmission
forest. Then each of the J particles calculates the likelihood of the observed sequence for K possible
locations of the observed sequence (Fig. 8). One of the K nested particles is kept, sampled with weight
proportional to its conditional likelihood, and the remaining K — 1 particles are discarded. The weight
of the surviving particle is the average of the conditional likelihoods of the K nested particles.

6.3.4 A Monte Carlo procedure for the relaxed molecular clock

As we have no closed-form expression for the conditional probability of an observed sequence under a
relaxed clock, we estimate this probability via simulation. Fig. 9 shows how we incorporate this Monte
Carlo procedure into our SMC framework. We generate L instances of the subtree of the phylogeny
that connects all previously observed sequences up to time ¢, P(t). We then augment each subtree with
an edge to accommodate the new sequence. The length of this edge is gamma distributed as described
above. When connecting the new edge to the existing phylogeny, there are two cases: either the edge
connects at the root or the new edge splits an existing edge. In the case of a split edge, we allocate
edge length to either side of the split according to a beta distribution. This procedure maintains gamma
distributed edge lengths. Having constructed the phylogeny connecting all sequences up to the new
sequence, we then use the peeling algorithm (Felsenstein, 1981) to compute the conditional probability
of the new sequence. The average of the conditional probability given each of the L subtrees is an
estimate of the conditional probability of the new sequence under a relaxed clock.

6.3.5 Parallelization

We used openMP (Dagum and Menon, 1998) to parallelize the algorithm at the level of a single machine
to reduce runtimes. In particular, we parallelized the outer loop of the hierarchical sampling scheme
described above. Each processor handles one base particle at a time. The cost in memory for n processors
handling J particles with a nested sample size of K is therefore at worst J 4+ nkK, as each processor may
have at most K additional particles in memory.

6.4 A model of HIV transmission: computation of the measurement model

Fach diagnosis event consists of a diagnosis time and, possibly, an associated genetic sequence. In the
case where the diagnosis event has no sequence, the measurement model is only the conditional density
of the diagnosis time. When there is an associated sequence, it is the product of the conditional density
of the diagnosis time and the conditional probability of the genetic sequence.

We compute the conditional density of a diagnosis time as follows. We decompose the density into
two terms: (1) The probability of no diagnosis over the last interdiagnosis interval: e~ -0 e where
pi is the diagnosis rate for class Iy, k € {0,1,2}, and Ay is the integrated hazard of a diagnosis from
class I,: Ay = Zle 0r N1, r, Where, 0, is length of the r*® subinterval in the interdiagnosis interval over
which the count of class Iy, Ny, ,, is constant, and (2) the hazard of a diagnosis at the time of diagnosis:
Zi:o prli. The conditional density of a diagnosis time is the product of these two quantities, and is
therefore a mixture of a probability and a density. To compute the first, each particle accumulates the
person-years of undiagnosed individuals over the last diagnosis interval (Fig. 10). The second is easily
computed given the number of each class of undiagnosed individual at the time of diagnosis.

The conditional probability of a genetic sequence is the probability of observing that sequence given
the latent state of the system and all previously observed sequences. Our Monte Carlo approach for
computing this probability under a relaxed clock is detailed in the ‘Computational Structure’ section.
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Figure 8: A schematic of our hierarchical sampling scheme. In this scheme, we split the proposal into two steps: (1) simulation
of the transmission forest and (2) selecting an eligible individual to be sequenced. When each particle is expensive, it may pay
to invest more effort in evaluating the conditional probability of a sequence given the latent state. This procedure is easily
nested within the simpler form of the particle filter shown in Fig. 7. In turn, one can add additional Monte Carlo steps to the
weighting step in this procedure to evaluate the conditional probability of a sequence under a relaxed clock (see Fig. 9).
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Figure 9: A schematic showing our Monte Carlo approach to estimate the conditional probability of a sequence under a relaxed
clock. Note that this procedure only modifies the subtree of the phylogeny that joins the sequences, P(t). At the top, we
show a particle just before attaching a new sequence. In this case, the particle has already incorporated two sequences, and
the location of the third sequence on the transmission forest has already been selected. First, we make L copies of P(t2), the
subtree of the phylogeny that connects all sequences observed up to time ¢z (at (I)). For each of these phylogenies we propose
an attachment site and an edge length for sequence g3 (at (2)). The edge length of the edge subtending sequence gs, eg, is
drawn from a Gamma distribution parameterized as described in the text. We split the edge between the root and sequence g2
according to a Beta distribution into two lengths, a; and by; this procedure preserves Gamma distributed edge lengths for two
components of the split edge. Then, for each proposed phylogeny, we use the peeling algorithm to compute the conditional
probability of sequence g3 (at 3)). Finally, we sample one of these proposed phylogenies with probability proportional to its
weight (at (4)). The unsampled proposals are discarded and the particle takes the average of the conditional probabilities as
its weight.
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Figure 10: A schematic of quantities used in calculation of the conditional density of a diagnosis and the conditional probability
of a genetic sequence. At @& we show a simulated transmission tree. For simplicity, this tree only has individuals of class Iy
and class Jy. Dashed arrows fall from events in the transmission tree that change the count of Iy individuals in the population.
At @B we show a plot of the trajectory of the Iy class. This plot shows the quantities we use to calculate the integrated
hazard of diagnosis for the I class, Ag, over an interval of time from t; to t3. We first subdivide the time interval into
R subintervals over which the number of Iy individuals is constant (indicated with dashed lines). We let the number of I
individuals in the r*" subinterval be Ni,,r. The integrated hazard of diagnosis is then: Ay = p, Zle 6-Niy,». The integrated
hazards of diagnosis for the other two classes of undiagnosed individuals are computed in the same fashion. At (C) we show
the set of L subtrees of the phylogeny that we use to numerically estimate the conditional probability of sequence g2 under
our relaxed clock model. The ¢! subtree is constructed by augmenting P(t1) with a new edge with length e, drawn from
a gamma distribution parameterized as described in the text. For each of these L subtrees we use the peeling algorithm to
compute we = P[g2|g1, Pe(t2)], the conditional probability of observing sequence g» given sequence gi and the structure of
7513(232). The average of these conditional probabilities is a numerical estimate of the conditional probability of g» under our
relaxed clock model. For simplicity, here we do not show the case in which the edge length of g» splits an existing edge; this
case requires a beta bridge to apportion the length of the split edge so as to maintain gamma distributed edge lengths. For
this more complicated case, see Fig. 9.

6.5 Data analysis methods: the sequence data

We preprocessed the sequence data following Volz et al. (2013a) to facilitate comparision with that work.
We excluded poor quality sequences and recombinant sequences, and accounted for known sources of
selection. We first aligned all sequences to the reference sequence for the pol gene of HIV subtype-B. We
then masked known drug resistant sites, as specified in the Stanford database of HIV drug resistance
Bennett et al. (2009). We used the program HyPhy Pond et al. (2005) to identify the type of each
sequence and then excluded recombinant sequences and nonsubtype-B sequences. Many individuals
in the dataset have multiple sequences. To limit the complexity of the problem, we chose to keep
only first available sequences that were collected within one year of diagnosis. Our methods could, in
principle, allow for multiple sequences from each individual. However, this extension has not yet been
implemented. We took the time of diagnosis as the time of sequencing — for most sequences this is a
reasonable approximation. Poor quality sequencing often manifests as sequences with clipped ends. We
therefore considered the length of a sequence as a proxy for quality, and we excluded sequences whose
concatenated length was shorter than 1100 base pairs.
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6.6 Data analysis methods: selecting a subepidemic

The Michigan Department of Community Health (MDCH) maintains an extensive dataset on HIV posi-
tive individuals living in the state of Michigan. This dataset stretches back to the beginnings of the HIV
epidemic in the United States, and includes over 30,000 diagnoses and nearly 9,000 genetic sequences.
Analysis of the full dataset is beyond the scope of our current implementation. Further developments,
possibly including preliminary splitting of the full phylogeny into clusters, will be necessary to apply
our methods to larger-scale situations. We therefore selected a subset of the cases based on a number of
clinical covariates. We chose to focus on the young, black, MSM, subepidemic, which has been of recent
concern in Detroit and elsewhere in the USA (Maulsby et al., 2014). In selecting this subset, one of our
goals was to choose a well-defined subpopulation. We selected records of individuals from the the MDCH
dataset that met the following criteria: black, MSM, known not to be an intravenous drug user, and
diagnosed in one of 10 counties that comprise the Detroit Metropolitan Area. For this subpopulation,
the distribution of the age at diagnosis through time shows striking patterns. In particular, it there
is evidence for cohorts of infected individuals that may be clusters of transmission within the young,
black, MSM community. We selected a cohort from this population that may represent such a cluster
of transmission: individuals that were between the ages of 19 and 28 inclusive in the year 2011 (a span
of 10 years) and were diagnosed between 1 January 1999 and 31 December 2011 (Fig. 5). We selected
this particular cohort of individuals because it contains what appears to be a pulse of transmission, and
because it coincides with when we have high rates of sampling for the genetic sequence data. Counts
of individuals diagnosed between 1 January 1999 and 31 December 2003 were used to determine initial
conditions (detailed in the supplement). We fit models to data from 1 January 2004 to 31 December
2011. This portion of the cohort has 709 diagnoses and 253 primary genetic sequences. We subsampled
the genetic sequences, randomly selecting 100 sequences to keep in the analysis. For the current im-
plementation of our methodology, and in the context of this HIV model, 100 sequences was around the
limit of computational tractability.

7 SUPPLEMENTARY MATERIAL

Supplementary materials are available online at Molecular Biology and Evolution (http://www.mbe.
oxfordjournals.org/). The supplement provides a formal specification of the class of models described
in the New Approaches section, technical details on the algorithms we developed to maximize and
evaluate the likelihood of these models, and additional details concerning the data analysis presented in
the main paper. The source code for our software implementation of the SMC algorithms is available at
https://github.com/kingaa/genpomp (to be archived at datadryad.org).
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S1 The GenPOMP model: linking infectious disease dynamics
with genetic data

We define a class of models that describes an environment within which our general software
implementation can be described. We aim at sufficient generality to represent the breadth of
applicability of our methodology and the key methodological innovations, yet including enough
details to describe the specific data analysis in the main text.

Data consist of n* genetic sequences of a pathogen. We use a convention that j:k denotes the
arithmetic sequence (7,7 4+ 1,...,k), so that the entire collection of genetic sequence data can be

written as
*

(gTag; s 79;)(7,*) = 91:n*-
We use asterisks to denote data, to distinguish these from quantities arising in the model. The times
at which the sequenced samples are collected are also data, and the total number of sequences, n*,
will be modeled as the outcome of a random process rather than some fixed quantity. We write the
genetic sequence times as

( Tat;,'-w frkz*) :t;n*'

We suppose that the data are collected in a time interval
T = [tm tend]a

with tg < ] < 5 < -+ < t7. < tenq. For simplicity, we avoid the possibility of simultaneous
observations. If no sequence is available for the diagnosis at some time ¢, we set g = NA.
Otherwise, we suppose the collection of sequences g7.,,- consist of aligned sequences of length L,

ie., gt € {AC,T,G}".

Here, we do not include the possibility of additional clinical or epidemiological measurements avail-
able at diagnosis, though an extension to allow this is fairly straightforward. Further, we consider
that only a consensus pathogen sequence is available from each host, so we ignore the possibil-
ity of extracting information from data on pathogen genetic diversity within hosts. Nevertheless,
our framework can account for sequencing error and differences between observed and transmitted
pathogen populations.

The partially observed Markov process (POMP) model consists of a latent, unobservable, Markov
process {X (t),t € T} and an observable process {Y (t),t € T}. X(¢) takes values in a set X and Y (¢)
takes values in a set Y. A POMP model for genetic data, which we call a GenPOMP, is required
to have the following structure. {Y'(¢)} consists of a collection of random number N of diagnosis
times, denoted T7.y, and corresponding sequences G1.n. The observed outcomes are N = n* and
(T, Gr) = (t),g)) for n € 1:n*. We adhere to a convention that random variables are denoted by
upper case letters; the corresponding lower case letters are used for possible values of the random
variable, and asterisks denote the actual data for observable variables; blackboard bold typeface is
used for sets.

Recall that, in the main text, we wrote X (t) = (7 (t), P(t),U(t)) where T (t) is a transmission forest
and P(t) is a phylogeny. Here, it is convenient to take a different, but functionally equivalent,
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approach. We do not require that X (t) itself contains 7 (¢) and P(t), but we do require that
{X(u),to < u <t} is sufficient to construct 7 (¢) and P(t). This additional layer of abstraction lets
us define the GenPOMP model without having to explicitly construct the processes {7 (t),t € T}
and {P(t),t € T}.

The set X should describe the state of each individual in a study population. The study population is
supposed to contain a finite number of individuals drawn from a countable collection of individuals
who could potentially enter the study population. We suppose these potential individuals are
labeled with values in the natural numbers, N = {1,2,3,...}, and so collections of individuals in
the study population take values in the set H consisting of all finite subsets of N. We suppose there
is a random process {H (t),t € T}, with H(t) taking a value in H corresponding to the identities
of all individuals in the study population at time ¢. Formally, we suppose that H(t) is constructed
from X (t) via a suitable function mapping X to H. We suppose that each individual in the study
population has a state in a set S. For a simple compartment model, S could be finite or countable,
however, we also allow for the possibility of continuous real-valued state variables. In particular,
we will later define a random clock process governing the rate of pathogen evolution within each
individual infected host. To keep track of the state of each member of the study population, we
suppose that the state of any individual ¢ in the study population at time t is given by a random
variable X;(t), constructed from X (t) via a suitable function mapping X to S. A canonical way to

do this is to take
X=[]s" (S1)

heH
for which an element (sil,siQ, . .,Sik) € X is interpreted to mean that the study population is
{i1,12,...,i;} € H and individual ¢; is in state s; € S. Our definition of the study population is the

collection of individuals being modeled, and so the state of individuals outside the study population
is necessarily undefined. In order to define {X;(t),t € T} as a stochastic process, one can formally
define an additional state ® and set X;(¢) = © when i ¢ H(t). Note that, in general, {X;(t),t € T}
does not inherit the Markov property from {X (¢),¢ € T}. If individual state transitions occur as an
independent Markovian process once that individual is infected (as is the case in our HIV example)
then {X;(t),t € [ti,tena]} has a conditional Markov property given i € H (t;).

The state process may, in general, need to include other components in addition to {X;(t),i €
H(t)}. For example, X (¢) may include dynamic variables affecting the entire population, such as
environmental or sociological processes. For the remainder of this article, the specific construction
in equation (S1) suffices, but that is not essential to our approach. If S is countable then X, given
by (S1), is also countable and {X(¢)} is a Markov chain. Otherwise, {X(¢)} is a more general
Markov process.

Some basic properties of individuals characterize the model as a disease transmission system, and
these are required to construct the evolutionary process model for the pathogen. This leads us
to define functions that return properties about the state of an individual, and we call these
query functions. This notation differs from usual compartment models, where each individual is
modeled as residing in a single compartment. We write properties as functions of X (t), rather
than components of X (t), to keep applicability to a broad class of population models. As long as
the required query functions can be defined for a population model, the statistical methodology
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developed will apply, giving the scientist considerable flexibility in the specification of the model.

We require that an individual’s state, i.e., its value in S, can describe whether that individual is
infected and infectious. We represent this requirement by supposing that there is a query function

Q[:S%{O,l}

defined as,

1 if s is an infected state,
Qr(s) = e .
0 if s is an uninfected state.

To link the model to diagnosis data, we require that a state in S determines whether an individual
is diagnosed while part of the study population. Specifically, we suppose there is a query function

QD :S — {0, 1}
such that

1 if s is a state for individuals diagnosed as infected while in the study population,
0 otherwise.

Qp(s) = {

We then define
D(t) = Z Qp(X;(1)),
i€ H(t)

which counts the number of individuals diagnosed while in the study population, by time t. This
counting process (i.e., a non-decreasing integer-valued process) is relevant for relating the model to
the data on the study population. Note that D(t) does not count the number of clinically diagnosed
individuals in the study population at time ¢, which would require a different accounting for the
possibility of immigration and emigration of diagnosed individuals.

Now, we define the set of infected states to be

I={seS:Qi(s)=1}.

We suppose that the state contains information about the identify of the infector, and we do this
by requiring the existence of a query function

Qr:1—-NuU{0}
defined such that

j if s is infected by individual j within the study population,
Qrls) = { 0 if s is infected by an infector outside the study population.
The capability to construct the query function Qr(s) requires that the identity of the infector is
stored in the state variable at the point of infection, so it is available later as part of the state of
the infectee. Information on the identity of the infector is not usually required for a compartment
model, but is useful when working with genetic data in order to track lineages of the pathogen.
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The evolutionary process of the pathogen genome within an individual in the host populations is
modeled using a relaxed molecular clock, meaning that standard molecular models for evolution are
applied on a stochastically perturbed timescale. It has become established that the usual models for
molecular evolution fit sequence data better if one allows such fluctuations in the rate of evolution
(Drummond et al., 2006). To implement a relaxed clock, we construct a random process on each
edge of the transmission tree. This process scales calendar time to evolutionary time, the latter
meaning a modified timescale on which the evolutionary rate is constant. We therefore require the
existence of a query function
QF IT—-R

returning the relaxed evolutionary clock time corresponding to evolution of a transmissible pathogen
population within an infected individual. Specifically, Qr(s) represents the random, individual-
specific, clock time for the evolutionary process that separates the host’s transmissible pathogen
population from the rest of the pathogen community when the host is in state s € I. For an indi-
vidual based model in which an individual is infected within the study population, this corresponds
to the evolutionary process within the host subsequent to infection. Immigrant pathogens require
additional assumptions on how they relate genetically to pathogens already circulating in the study
population. Conditional on the randomly perturbed molecular clock, pathogen evolution is usually
specified by a general time-reversible Markov model.

We also suppose the existence of a query function
Q AT—R

which returns the relaxed evolutionary clock time separating the measurable pathogen population
from the transmissible host population within an infected individual. If and when an individual
gives rise to a pathogen genetic sequence within the dataset, this clock time adds to the clock time
Qr(s) in determining the probability distribution of the measured sequence.

The separation of the pathogen evolutionary process into transmitted and untransmitted mutations
has multiple interpretations. The choice of primary interpretation has consequences for the appro-
priate model specification of the branch separating the measurement node v from the transmission
tree. The plausibility of these different interpretations will depend on the biological system under
investigation.

(B1) Measurement error. Sequencing error could be modeled by an arbitrary evolution-like process
on the branch separating the measured sequence from the transmissible sequence.

(B2) Transmissible versus measurable strains. The measured sequence may reflect the dominant
strain reproducing most competitively within the host. It is conceivable that much of the
diversity resulting from within-host evolution may lead to pathogens which are non-viable or
non-competitive for between-host transmission. The evolutionary branch corresponding to
the measurement event could represent this dead-end evolution, leaving the main body of the
transmission tree to represent evolution of a transmissible strain.

(B3) Within-host diversity. A strain transmitted subsequent to sequencing could be more similar
to an ancestral strain than to the sequenced strain by chance, due to within-host genetic
variation, even without appealing to a phenomenon such as (B2). The measurement branch
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permits such behavior, so may help to adjust for unmodeled within-host pathogen genetic
diversity.

Other model-specific quantities can be defined by additional query functions, but are not essential
components of a GenPOMP model. For example, epidemiological models commonly consider the
number of susceptible or removed individuals. Also, having defined an appropriate query function
for a category of individuals, one can define a process counting such individuals. For example, to
complement the query function (); for infected individuals, we can define a process

It = > Qi(Xit)

iEH(t)

counting the number of infected individuals in the study population. We can also write the size of
the study population at time ¢ as,

Pt)y=[H(t)= > 1.
)

1€H (¢

Our framework therefore incorporates the structure of arbitrary compartment models (Breté et al.,
2009) represented at the level of compartment membership for each individual.

The history of the query functions for infected individuals,

{Qr(Xi(w)), Qp(Xi(w)), QrL(Xi(w)), Qr(Xi(w)), Qa(Xi(u)) : to<u<t}, (S2)

is sufficient to construct the transmission forest, 7(¢), and phylogeny, P(t), described in the New
Approaches section of the main text. Formally, for (S2) and elsewhere, we extend the query
functions to take an undefined value, denoted by ®, when the argument is outside the defined
domain. To specify the measurement process model, recall that the measurement process {Y (¢)}
consists of an increasing sequence of diagnosis times {7}, } associated with the diagnosis counting
process { D(t)}, together with a collection of genetic sequences {G,,}. We suppose that the sequences
{Gr} are modeled as a continuous-time Markov chain on P(¢). The probability distribution of the
genetic sequence G, at time 7T, conditional on {X(t),t < ¢,} and Gi.,—1, therefore depends on
P(t) and G1.,—1. If a genetic sequence for the diagnosis at time 7;, is not available, we assign G,
the value NA. We suppose this occurs with probability 1 — pg, independently of { X (¢)}.

We have defined the GenPOMP model so that the pathogen genetic sequence arises only in the
measurement model. No genetic sequences are included in the state process, or its particle repre-
sentation. Our approach is consistent with viewing the genetic evolutionary model as a principled
way to define and evaluate a statistical metric between genetic sequences that respects the tree
structure of the evolutionary process and has the property that similar sequences are more likely to
come from closely related pathogens. A measurement model satisfying these criteria and providing
a statistical fit to the data need not be judged on the details of its biological strengths and weak-
nesses if the microevolutionary processes are not the focus of the investigation. The individual,
stochastic molecular clocks determining the rate of evolution within each host are included in the
latent process component of the GenPOMP model to facilitate Monte Carlo integration over the
distribution of these clocks, as described in Section S2.
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The definition of a GenPOMP model given here is general and abstract. The population model
{X(t)} corresponds to an arbitrary individual-based Markovian model constrained to include con-
cepts of transmission of a pathogen and measurement of pathogen genetic sequences. The measure-
ment model is constrained to be based on a Markovian evolutionary process, but this is standard
in current models used for phylodynamic inference. Our methodological approach applies to this
general GenPOMP model class, subject to being able to simulate from the individual-based model
and compute the rate at which individual hosts provide a pathogen sequence. The Markovian
assumption is convenient algorithmically. In one sense, it is not fundamentally a limitation since
non-Markovian models may be approximated by Markovian models with additional state variables.
In another sense, it is a practical limitation since increasing the size of the state space increased
the computational effort required.

S2 A GenSMC algorithm for filtering the GenPOMP model

We develop a sequential Monte Carlo (SMC) approach for the framework of Section S1. We will
use the name GenSMC to describe an SMC algorithm for GenPOMP models. As an instance of
SMC, the basic principles and theoretical foundation for GenSMC follows from the general theory
of SMC (Liu, 2001). However, GenPOMP models have a particular structure that places particular
demands on a GenSMC algorithm. Many variations are possible on our GenSMC algorithm, but
demonstration of one successful GenSMC algorithm provides a foundation and motivation for future
improvements. Our GenSMC approach is presented as pseudocode in Algorithm S-1, which is an
expanded version of Algorithm 1 in the main text. We proceed to define the notation that will be
required.

To construct our algorithm, we specify a concrete class of GenPOMP models. Let {X(t),t € T}
be a latent GenPOMP process with the form

X(1) = (1), (8),0(1), A®), D(1)) (53)

having components ®(t), ¥(¢), I'(t), A(t) and D(t) defined as follows:

{D(t)} records diagnosis events within the study population, as defined in Section S1. We
suppose that no diagnoses occur simultaneously, so {D(t)} is a simple counting process.
Therefore, we can model {D(t)} via a conditional intensity process p(®(t), ¥(t)) such that

P[D(t+0) — D(t) = 0| ®(t),¥(t)] = 1—3p(R(t),T(t)) + o(6),
P[D(t+38) = D(t) = 1| 0(t), ¥()] = dp(®(1), ¥(1)) + 0(9),
P[D(t+6) — D(t) > 1| ®(t), ¥(t)] = o(é),

where o(0) denotes a function f : [0,00) — R satisfying lims_,o f(5) /6 = 0. Here, p(X(t)) is
called the diagnosis rate.

{U(t)} is a piecewise constant process which records a list of the identity labels of individuals
diagnosed by time t.
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{®(t)} contains everything else in the GenPOMP model, so is essentially arbitrary within
the general requirements of a GenPOMP model. We suppose that observation events are
also recorded in the state process; specifically, the observation counting process {D(¢)} is a
function of {®(¢)} which gives rise to observation times {77,7%,...} at which the genetic
measurements {G1,Gs, ...} are made.

{I'(t)} is a list of the relaxed clock process for all the interior edges of the transmission tree,
ie, I'(t) = {Qr(X;(t)),i € N} where Qr is defined in Section S1.

{A(t)} is a list of the relaxed clock process for the terminal branches of the transmission tree,
ie., A(t) ={Qa(X;(t)),i € N} where Qa is defined in Section S1.

The relaxed clock processes affect the micro-evolution of the pathogen, but in our model the genetic
process has no consequence for the transmission dynamics: the genetic sequence is simply a marker,
and the genetic models we use are models for neutral evolution. A consequence of this is that the
relaxed clock processes only have to be evaluated when needed to compute the conditional proba-
bility mass function for attaching a new genetic sequence to the genetic tree. If these components
of the latent process can be computed when needed, there is no need to continually update them.
Our computational strategy to take advantage of this is called a just-in-time representation and
is formally described in Section S3.4. Informally, the just-in-time representation is the tool that
lets us define the latent GenPOMP model as a continuous-time Markov process while updating
the relaxed clock processes at diagnosis times, when needed. To simulate the GenPOMP model
forward in time using a just-in-time representation, we need to be able to evaluate the relaxed
clock process over arbitrary time intervals, and also split the evolutionary time over a branch of
the transmission tree if a new measurement divides this branch. An example of a Markovian clock
with these properties is the Gamma process.

We will show that the relaxed clock processes {I'(t)} and {A(¢)} can be represented by two pro-
cesses {U(t)} and {V(¢)} which generate the evolutionary clocks that are necessary to evaluate
the likelihood of the sequences. The processes {U(t)} and {V(¢)} are constant except at diagnosis
times, and so are fully specified by the discrete processes Uy.ny and Vj.n, with U, = U(T,) and
V, = V(T,,). The construction of {U(t),V(¢)} is an instance of just-in-time variables, as discussed
further in Section S3.4. Therefore, for the purposes of Algorithm S-1, it is convenient to replace
the representation in equation (S3) with an equivalent representation,

X(t) = (®(t), ¥(t),U(t), V(t), D(1)), (54)

The construction of {U(¢)} and {V(¢)} is described in Figure S-1

Algorithm S-1 is written using discrete time steps corresponding to the sequence of observation
times, together with the start and end times of the interval T. It convenient to define

* *
t():t07 tn*+1 = tenda

so that T = [tg, ¢y, 1]. {¥(¢)} is fully specified by its values at the discrete set of observation times,
and so we define a process {¥,,} with
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Figure S-1: The diagram represents the transmission tree for a particle where individual 1 infected
individual 2 at time A < ¢ and individual 3 at time D < t. Sequences are collected at times B,
C and E. Measured but untransmitted sequence mutations occur along BB’, CC’" and EE'. For
this particle, we know that the sequence at time B corresponds to individual 2, and the sequence
at time E belongs to individual 1. Suppose we then wish to evaluate the probability of the new
sequence at time ¢ conditional on it belonging to individual 3, as shown on the diagram. From
the previous observed sequences, assigned to B’ and E’, this particle has already been assigned
evolutionary clock times for the segments AB’ and AE’. To place the new sequence at C’, we first
generate a new clock process for the segment DC’, which is represented by the variable U ki 0
step 8 of Algorithm S-1. Then, we split the evolutionary clock time for AE’ into AD and DE’ in a
way that is consistent with the corresponding calendar times and the stochastic evolutionary clock

process. This computation is represented by the variable V njklm in step 10 of Algorithm S-1.
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To provide a discrete time representation of {®(t)}, we write
Oy = {0(1),th1 <t <1n},
forn=1,...,n" + 1, with &9 = ®(¢;). Similarly, we write

Dy = {D(t),t,_, <t <t}
Diagnosis events are modeled as perfectly observed, almost tautologically. We write d*(t) for the
observed value of D(t), defined as

d*(t) = sup{n: t; <t}.

Also, we write d} for the observed value of D,. Perfectly observed components of the latent
process of a POMP model require special attention in sequential Monte Carlo algorithms, and so
Algorithm S-1 uses the targeted proposal developed in Section S3.2 to handle the diagnosis process.

Hierarchical sampling (described in Section S3.3) is carried out in Algorithm S-1 over the com-
ponents ®(t) and W(t) in (S3), as well as over the components U, and V,, in the just-in-time
representation of {I'(¢)} and {A(¢)}.

The pseudocode for Algorithm S-1 adopts a space-saving convention that index j always ranges
over 1:J, index k ranges over 1: K, index [ ranges over 1: L, and index m ranges over 1: M. Thus,
for example, line 6 of Algorithm S-1 has an implicit loop over j € 1:J and k € 1: K.

If g} = NA then wa(n, j, k,l,m) is defined to be the probability of not recording a genetic sequence
at diagnosis. In this case, steps 7 to 16 are not necessary: it suffices to take K = 1, with U,, and
V,, being undefined. This special case is omitted from Algorithm S-1 for simplicity.

To implement Algorithm S-1, we require code to generate initial values, and to simulate the dynamic
model for all the hierarchical layers conditional on the diagnosis events. Specifically, we require
simulators for

fao,10(0,%0), (S5)
S0 @01 001,00 (Onlbn—1,n_1,dy,), (S6)
Junj@n w1 (Un]dn, Yn_1), (S7)
fUn|Un71,Vn717¢O:n,\I’O:n (un|un717 Un—1, Q0:n, wO:n) s (88)
SV Vi 1Un @00 o (Vn|Un—1, Un, 0n, Yoin ) - (S9)

We then require code to evaluate the diagnosis rate,
p(8(1),¥(t)) (510)

as well as the genetic measurement model,

fGn|G1:n—17@0:n7‘y0:n7U0:n7V0:n (g: ‘ gT:n—la ¢0:n7 %;m UQ:n, UO:n)' (Sll)
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All the densities in (S5-S11) may additionally depend on a parameter vector 6.

Algorithm S-1: GenSMC
input: dynamic model simulators listed in (S5-S9) and observation model evaluators (S10, S11);
sequences, g7.,«; observation times ¢7,,.; initial time, ¢3; terminal time, ¢7. 1 = feng;
number of particles, J; number of hierarchical samples, K, L, M.
simulate (ng, \Ifgj) ~ foo.w,(¢0,%0) and set U(fj = VOF] =0
for n in 1:n* do
propose transmission process: (I)ij( ) ~ J&, 10010 1,Dn (q§n|q>5 lj,\I/f; 14 ;‘L)
. &
set wi(n,j) = exp {— [ p(®};(t), Oy (1)) dt} p(®p ;(8), Uiy 5(E5))
set (I)Onj ((I)(I]?n 1j7®5,j)
propose attachment site: \Ilf,j f\yn@m W, _ 1(77Z1n|<1>n], e 17])
set \IJ(I)Dn gk = (\IJOFn 1,50 \Ilrlj]k)
evolution on the new branch: U” ikl ™~ UL Un 1.V 1 @0 Woum (un| UL
P
set Uomkz (UO:nfl,]W Un,jkl)
evolution on the split branch: vr njkim an|Vn717Un7q>O:na\I’0:n (vn|anil,], Uf], 0o \I’éjndk)
F P
set ‘/Onjklm = (‘/E)n 1,5° Vn]klm)
set w2(n’j7 k7l7m) fGn‘Gln 1)¢’0n7\IIOn,UOn,VOn(gn|g1n 1’¢0’n,]’ O’I’ij"U n]kl"/bpn,jklm)
WeightS: w(n,j, kv l) m) = w (n’ ]) w2(n’ ]7 k) lu m)
. L M .
set w(n,j, k) = (1/LM)> 1> g w(n,j, k,l,m)
resample: select index (I',m')(j, k) with probability
. K .
set w(n, j) = (1/K) 3 w(n, j, k)
resample: select index k’(j) with probability w(F’J ’;)
set w(n) = (1/7) 27— w(n, j)
resample: select indices j'(j) with probability wlf?n]))

F _ P
set (I)Onj CI)0 n,5'(7) and \IJOWJ - \IlomJ/(j) k' (5')

_77P F  _ P
set Using = Usangr(y e v raymerey 380 Vo = Vo ey () 1 ey 1)
conditional log likelihood estimate: £,,;.,,—1 = logw(n)

F P
1]7V -1, On]’\IIOnjk)

w(n7j7k7l7m)
w(n,j,k)

end

simulate ®J. | () ~ fo . 1l ,\pn D, *+1 (P[] j, Ol 5 i y)

set w(n*+1,7) = exp {— fte“d (@F ey1(t)) dt}

conditional log likelihood: /- L imr = =log {(1/J Z] Lw(n*+1,5)}

output: log likelihood estimate: ¢ = > Jil Zn|1.n—17 and filtered state estimates

S2.1 The implementation of GenSMC in the genPomp program

Many computational issues arise in effective implementation of a GenSMC method such as Algo-
rithm S-1. Data structures are needed to keep track of the individuals in the study population, and
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the genetic relationships between pathogens in different hosts. Efficient implementation of all these
computations, including use of a multi-processor computing environment, is necessary to work on
problems of a practical scientific scale. The record of our implementation is the open-souce code
for the genPomp program that we developed to carry out inference for GenPOMP models, avail-
able at https://github.com/kingaa/genpomp. The accuracy of genPomp has been successfully
tested against exact analytic calculations for some very small scale situations, and against the pomp
package (King et al., 2016) for situations where no diagnoses lead to genetic sequences.

There is a substantial difference in the level of abstraction between the formal mathematical rep-
resentation of a GenPOMP model in Algorithm S-1 and the practical implementation in genPomp.
One could write more pseudocode to bridge this gap, but that is beyond the scope of this article.
We have focused instead on the foundational task of understanding how Algorithm S-1 fits in with
the theory and practice of SMC.

S2.2 Extending GenSMC to infer unknown parameters: The GenlF algorithm

Sequential Monte Carlo (SMC) algorithms such as Algorithm S-1 produce a Monte Carlo approxi-
mation to the likelihood of the model, but do not directly provide estimates of unknown parameters.
A substantial literature has emerged on using SMC as a basis for statistical inference (Kantas et al.,
2015). TIterated filtering (Ionides et al., 2006, 2015) uses SMC, together with parameter pertur-
bations, to maximize the likelihood function. Iterated filtering has demonstrated effectiveness on
various nonlinear models arising in infectious disease transmission studies (Ionides et al., 2015, and
references therein). We developed an adaptation of Algorithm IF2 of Ionides et al. (2015), which
we call GenlF as an abbreviation of iterated filtering for GenPOMP models. Our implementation
of this GenlF algorithm is included within the genPomp program, as described fully in the source
code. Conceptually, and computationally, GenlF is a simple extension to GenSMC. GenlF carries
out multiple iterations of Algorithm S-1 (GenSMC) adding perturbations to the candidate values
of unknown parameters. GenSMC selects particles consistent with the data, and so allowing par-
ticles to have diversity in their parameters values naturally selects for parameter values consistent
with the data. The theory and practice of iterated filtering focuses on using this phenomenon,
with multiple SMC iterations having perturbations of decreasing magnitude, to maximize the like-
lihood. Previous iterated filtering theory does not encompass the just-in-time variables employed
by GenSMC. In the context of GenlF, this means that the current theoretical justification of IF2
(Tonides et al., 2015) does not perfectly apply when we carry out inference for the molecular evolu-
tion parameters. Heuristically, however, the principle of iterated filtering still applies, and we rely
on empirical results to confirm that maximization performance is satisfactory.

Algorithms that permit numerically satisfactory likelihood maximization and likelihood evaluation
provide a foundation for carrying out likelihood-based statistical inference. Profile likelihood meth-
ods can be used for obtaining confidence intervals, and likelihood ratio tests or Akaike’s information
criterion can be used for model selection.
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S2.3 Scalability of GenSMC
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Figure S-2: Results from two experiments exploring how the standard deviation in the log likeli-
hood estimate scales with the number of sequences fit. On the left, results from fitting to simulated
sequences. On the right, results from fits at the MLE in the data analysis.

To explore the scalability of our GenSMC implementation, we performed two experiments: one
with simulated data and one with real data. For the simulated data, we first simulated an epidemic
conditional on observing 100 sequences. We then ran the particle filter at the truth 10 times, each
time using 10,000 particles. Finally, for each sequence, we computed the standard deviation of the
cumulative log likelihood estimate across the 10 filtering evaluations. This computation yields a
measure of the variability in the log likelihood estimate if one were to stop filtering at each sequence.
For the real data, we performed the same calculation using filtering results from fits at the MLE
of the data analysis, again using 10 particle filters each with 10,000 particles. The results from
simulated data provide a controlled assessment of how Monte Carlo variance scales as the number
of sequences grows. The results from real data give us one example of how Monte Carlo variance
scales in practice. In both cases, the standard deviation of the log likelihood estimate remains
relatively small up to around 25 sequences (Figure S-2). An interpretation of this is that placing
early sequences on the growing phylogenetic tree is relatively easy. It can become harder to find
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trees with appropriate places to attach later sequences, leading to increasing Monte Carlo variance.
Monte Carlo variance is expected to grow as the size of a computational problem increases, but we
did not find a rapid exponential growth. The peeling algorithm for computing the likelihood of the
genetic sequences conditional on the phylogeny was typically the largest computational component,
though not for all regions of parameter space.

S3 A theoretical derivation of the GenSMC algorithm

To derive and justify GenSMC (Algorithm S-1) for the GenPOMP model, we work up in stages from
a simple and standard SMC algorithm. Initially working in discrete time, we start in Section S3.1
by writing an SMC algorithm that allows for general dependence between the latent process and
the observation process. Then, we consider a useful class of targeted proposal distributions in
Section S3.2. We add hierarchical layers of resampling in Section S3.3. In Section S3.4, we consider
a just-in-time approach to construction of state variables which can have their creation postponed
until necessary. In Section S3.5, we move these developments into the context of continuous time
models. Putting these components together, we obtain Algorithm S-1.

S3.1 A basic SMC algorithm

Consider a model consisting of a latent stochastic process Xo.ny = (Xo, X1,...,Xn) and an observ-
able process Yi.y = (Y1,Y2,...,Yn). In this setting, N corresponds to the number of discrete time
points, differing from the notation of Section S1. Data consist of a sequence y7. € Y¥, modeled
as a realization of Y7.n. We suppose X, and Y, take values in measurable spaces X and Y, and we
require the existence of a joint density fx, .v;,y on XV ! x YV, Conditional densities are denoted
using subscripts, for example, the density of Y,, given Y1.,_1 and Xj., is written as

fYn|X0m,Y1:n,1(yn | Z0:n, Y1:n—1)- (S12)

In a standard POMP model, {X,,} is a latent Markov process and the conditional distribution of
Y,, depends only on X,, (Breté et al., 2009). In the context of GenPOMP, we require the marginal
Markov property for the latent process,

an|XOm_1(3?n | To:n—1) = an|Xn_1(90n | Tp_1). (S13)

but we allow a general form for the measurement model in equation (S12), where the conditional
distribution of the nth observation can depend on the entire histories of the latent process and
the observation process. SMC techniques for POMP models can be extended to this more general
dependence structure (Liu, 2001). A basic SMC algorithm is outlined in Algorithm S-2. This is
essentially the basic bootstrap filter algorithm of Gordon et al. (1993), generalized to allow for
the dependence on the history of the process in (S12). Notationally, for Algorithm S-2 we set
Zn = Xo.n, and use superscripts F' and P to denote particles representing the filtering and predic-
tion distributions respectively. We use systematic resampling in place of multinomial resampling
(Arulampalam et al., 2002; Douc et al., 2005).
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Algorithm S-2: A basic Sequential Monte Carlo (SMC) algorithm:

input: simulator for fx,|x,_, (¥n | Zn—1); simulator for fx,(zo); evaluator for
fYn\chn,Yan(y:z | Z1:m, YT m_1); data, y7. 53 number of particles, J.

initialize filter particles: simulate X(f ;i ~ Ixo (zo) for jin 1:J
initialize particle filter history: %”OI”; = XOI”: j
for nin 1: N do
prediction simulation: X,{;j ~ X Xpa (:z:deij) for jin 1:J.
history of the prediction: %Tfj = (%nliu, Xfij)
evaluate weights: w(n,j) = fyn|X0:my1m71(y;‘L|%nITj,yf:nfl) for jin1:J
normalize weights: @w(n,j) = w(n,j)/ Zizl w(n, m)
apply systematic sampling to select indices kq.; with P{k; = m} = @w(n,m).
resample: set va,j = er,k:j and %Tfj = f%”n}?kj for jin1:J
estimate conditional log likelihood: én|1:n—1 =log (J 7! Z;{l:lw(n, m))
end

output: log likelihood estimate, (= Zﬁle An|1:n_1; filter sample, c%”n{'ﬂlzj, for nin 0: N.

Computational resources are an issue for GenPOMP models, since the spaces X and Y are both
large. Furthermore, the dependence on the history in (S12) leads to additional computational
requirements for both memory and numerical operations. Careful implementation of SMC is there-
fore necessary to make the approach practical. We therefore proceed to develop extensions of
Algorithm S-2 that are necessary to improve numerical tractability for GenPOMP models.

To understand Algorithm S-2, and subsequently extend it, we write out an algebraic justification
of the prediction and filtering steps. For a general latent process Xy.n and observable process Yi.n
modeling data yj. 5 collected at times ¢;., assuming (S12) and (S13), the prediction identity is

fXO:n|Y1:n—1 (x():n ‘ yT:nfl) = an|Xn—1 (SCn ’ xn_l)fXO;n—ﬂYl;n—l (1'0:71—1 ’ yinfl) (814)

The SMC interpretation of (S14) is that fx, . |vi.._, (Zo:n—1]91.,_1) is represented by a collection
of J filter particles %f_jl, j=1,...,J. Algorithm S-2 corresponds to a basic version of SMC in
which particle j has a time t,, value generated from fx, |x,_,(@n | Xf—l,j) to give rise to a time ¢,

prediction particle Xij. Xij inherits its history from Xffl,j and so ‘%nlj.} = (%n}il,ja Xij).

A general filtering identity is

! (o | Yim) = fY"|X°1"’Y1:n71(y;KL | 20 Y1in—1)
Xo:n|Y1: : 1n) =
O.n| 1in n n fYn|Y1:n_1(y,;; | yT:n—l)

fXO:n‘Yl:nfl(xO:n | yik:n—l)' (815)

The SMC interpretation of (S15) is that observation y; requires the prediction particle %nlfj repre-
senting fx,..|vi.._ (Tom | ¥i.,_1) to be given a weight proportional to fy, | x...v1.._. (Un | %,fj, Yim_1)-
The denominator on the right hand side of (S15) is an irrelevant constant for computing the nor-
malized weights. However, this denominator is approximated in Algorithm S-2 as the normalizing
constant, giving a Monte Carlo estimate of the nth term in a factorization of the likelihood of the
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data,
N

vin (y1.n) = Iy (yg) H fYn‘Yl:n—l (y:L | YTin—1)- (S16)
n=1

For a discrete time representation of a simple GenPOMP model, Algorithm S-2 might be directly
applicable. For example one can take X, to correspond to all the information about individuals
in the population at time n, so that Xg., includes the transmission tree. We could also suppose
that Xg., includes information on who would get sequenced if there are observed sequences—but
not how many sequences were observed, which is part of the measurement. For example, at each
time point t,, the state could contain a permutation listing the order in which eligible individuals
are sequenced. This construction may appear somewhat contrived, and we proceed to relax it by
allowing part of the latent process to be fully observed and therefore also be part of the measurement
process. Regardless of that issue, evaluation of fy,|x,...vi.._1 (¥nlZTon, Y3, 1) involves evaluating
the likelihood of a phylogeny, which can be computed efficiently by a peeling algorithm, together
with term for the probability of the sequence being collected.

S3.2 A targeted SMC approach with a partial plug-and-play property

Some models of interest may have the feature that the event of obtaining a measurement has an
appreciable consequence for the latent dynamics. HIV, for example, has the features that sequencing
of the pathogen typically occurs at diagnosis. The fraction of infections which are sequenced is high,
and diagnosis plays an important role in transmission dynamics both through changes in sexual
contact behavior and reduced infectivity due to antiviral drugs. For HIV, it is therefore natural to
consider models where sequencing events correspond to transitions of an individual between states
and therefore correspond to a perfectly observed component of the latent process. This kind of
situation needs some extra care, since fy;,|x... Vi1 (yi| 2. F g Yim— 1) in Algorithm S-2 becomes zero
for every draw of 2 P - which is not consistent with y*. The standard SMC approach to this is to
allow for the p0581b111ty of targeted SMC proposal distributions, not necessarily the “vanilla” choice
fx,|x,_,- Suppose the proposal distribution for the SMC algorithm is g, (zn|Tn-1,¥;,), which is
permissible since the proposal distribution is in general allowed to depend on any past, current or
future observations. This corresponds to rewriting (S14) as

fX,L|Xn,1 (Tn | Tn—1)

Qn(mn‘xn—lv y:z)

on:n\YLn—l(inn ’ yinfl) = qn(mn’xn—b y:)fXO:n—l\len—l(xom—l ‘ yi‘:nfl)v (817)

which is interpreted to mean that the targeted SMC proposal particle ,%’npj, with X, P ; drawn

: . -1
from gy, (2, X1 1],yn) must be given a weight fx, |x,_,( nj| 1] {qn ]Xn 1J,yn)}
corresponding to the ratio in square brackets in (S17).

A special case of a targeted proposal arises in the situation where part of the state variable is
perfectly observed. To describe this situation, suppose we can partition the latent and observable
processes as,

Xn = (AmBn)a (818)
Y, = (Bn,Cn), (819)
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with the data being (b]. 5, c]. ). The prediction identity in (S17) can then be written as

fAn Bo Xom—1[Yiim—1 (@ns brs Tomn—1 | Y1in—1)
[ fan,Baix_i (@n, b7, [ 20-1)
Qn(an |xn—1 y y;kz)

n(@n|Tn—1,Y3) o1 Vit (T0m—1 | Y1—1)- (520)

Then, to obtain the filtering distribution fa, x,.. 1B, V1.1 (@n> Tom—1 by, Yi.,,_1) one normalizes
the weighted particle representation of f4, B, x¢._1[Vim_1(@n; 05, T1m—1[y7,,—1) in (S20), with the
normalizing constant being the conditional likelihood, fg,|v;.,_,(b5|y1.,_1). A particular target
choice of interest in (S20) is

Qn(an’-rn—l) y:L) = fAn\Xn,l(an | xn—l)- (821)

(S20) becomes

S A0, B, Xom—1[Yim—1 (@ns Oy T0:n—1 | Y1 1)

= an|An,Xn,1(b;kz|anv Tp-1) fAn|Xn,1(an | mnfl)fXOm,ﬂYl;n,l(xO:nfl | Ylin—1)- (522)

On the component of the state space that is not perfectly observed, the proposal in (S21) is plug-
and-play (Breté et al., 2009; He et al., 2010) meaning that the algorithm needs only a simulation
from fa,x,_,(an | 2,—1). However, we require numerically tractable evaluation of the importance
sampling weight

IBoAn X1 (Oplan, Tn_1),

arising from the identity (S22), and so we describe the algorithm as partially plug and play.

Using a targeted proposal typically leads to algorithms without the plug-and-play property. Here,
we work with situations where fg |4, x,_, (b]an, Tn—1) is tractable, even if the complete transition
density of (An, By) is intractable. Thus, f4,|x,_,(an|%n-1) can be specified in a fairly arbitrary
way.

Example 1. B, might be the number of diagnoses at time n, which might have a Poisson or
negative binomial distribution conditional on A,,.

Example 2. Writing the number of sequenced diagnoses at time n by D3, unsequenced diagnoses
by DU, and infected individuals by I,,, we might have B, = (D3, DY) and A,, = I,,. The joint

n?

distribution of DS, DY and I,, — D3 — DY might be multinomial given I,,.

Example 3. B, might describe the race or age group of diagnosed individuals as well as whether
they were sequenced.

S3.3 SMC with hierarchical sampling

For computational considerations, it may be preferable to maintain J filtering particles and generate
K prediction particles from each, rather than maintaining JK filtering particles. Computation of
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the K prediction particles can be localized on a single core of multi-processor hardware, and the
memory usage may scale with J rather than JK.

In the context of Algorithm S-2, extended to include the general proposal distribution of Sec-
tion S3.2, we write {ijk, k€ 1:K} for K draws from qn(wn]Xf_Lj,y;;) for each value of j. We
compute the weights in the second layer of the hierarchy by

X?f—l,]ﬁ y;;):|

We then define Xf,j to be a draw from {ijk,, k € 1: K} with probability proportional to wy, j,

with the history g%”nF] being constructed accordingly. We then assign (%,LF] a weight

1 K
wn,j = % ;wn,jk. (823)

The filter particles {%fj, j=1,...,J} can be again resampled with weight proportional to wy, ;
if so desired. Resampling each layer of the hierarchy one at a time gives an approach that we
call staggered resampling. It might sometimes be preferable to resample J particles from all JK
particles {Xijk,j =1:Jk=1:K} with weights wy, j5. This process, resampling two or more
layers of the hierarchy at the same time, we call simultaneous resampling. The staggered resampling
in (S23) can have computational advantages in terms of memory: one never needs to keep all JK
particles in memory simultaneously. Also, staggered resampling is convenient in a multi-processor
computational environment, where the computations for the first layer of the hierarchy can be
split across processors and the second layer can be computed without any need for communication

between processors.

Another motivation for hierarchical sampling arises when one can separate the generation of the
prediction particle into a computationally expensive step followed by a cheap step. Heuristically,
if the particles are large and computationally expensive, one wants to ensure that a particle does
not get culled due to a single unfortunate draw from a proposal distribution. A component of
the proposal distribution that is computationally expensive but not critical for the particle weight
should be carried out relatively few times. By contrast, a component of the proposal distribution
that is computationally cheap but critical for the particle weight, and hence for the survival of
the particle, should be carried out relatively many times. For this motivation, there may be
no compelling reason to carry out staggered resampling, in which case simultaneous resampling
should be preferred. Both hierarchical sampling possibilities can arise in different parts of a single
algorithm, potentially giving rise to several layers of sampling and resampling.

Hierarchical sampling is a standard technique, and theory exists to guide a good sampling struc-
ture (Skinner et al., 1989). In practice, however, preliminary experimentation is a good guide.
Hierarchical resampling receives diminishing returns for increasing values of K, since since J is the
basic Monte Carlo sample size which asymptotically justifies the Monte Carlo approach. Moderate
values of K > 1 can have compelling practical advantages, which can be quantified by evaluating
the variance of the Monte Carlo likelihood estimate.
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S3.4 Just-in-time evaluation of some state variable components

In equation S3, our GenPOMP model included state processes {I'(¢)} and {A(¢)} which have no role
in the dynamics, meaning that they do not affect the infinitesimal transition probabilities for {®(¢)}
and {U(t)} but do affect the measurements. If the measurements depend only on some subset or
combination of these state variables, it is computationally desirable to generate the required subsets
or combinations only when needed. Carrying out this computational shortcut, which we call just-
in-time generation, does not change the model under consideration so long as the required variables
are properly constructed at the time they become necessary. Two advantages to just-in-time state
variable generation are

1. There may be state variables which, on some event of positive probability, have no effect on
the measured components of the system. These state variables can be omitted when carrying
out inferences on the rest of the system.

2. The sampling of these variables, and consequent resampling of particles, occurs only when
information on the just-in-time variables arrives. In combination with hierarchical sampling
(Section S3.3), trying multiple copies of the just-in-time variables for each particle can help
to prevent particles being lost due to a single unfortunate draw of a random variable.

To formalize the definition of just-in-time variables, we suppose that X,, can be split into two parts,
written as

Xp = (Pp, Th).

We say that =,, = h,(Xo.,) gives a just-in-time representation of Y, if

S Wi Xom Un | Y1n—1,0:0) = Fyo Vi 1.80m,Z0m (Un | Y1n—1, G0, E0in) (S24)

where &, = hy(zo.n). If we can evaluate (524) and simulate draws from fg, =@, ,,=,_,, then
we can effectively replace T, by Z, in an SMC method such as Algorithm S-2. A particular case,
arising in the just-in-time replacement of (I'(¢), A(t)) by (U(t),V(t)) in Algorithm S-1, occurs
when the dynamics of {®,,} do not depend on {Y,}, i.e.,

fonXom_1 (Dn [ Tom-1) = [o,|00_1 (Pn | P0:n—1)- (525)

In this case, implementing a just-in-time scheme requires that we can draw from fz ¢, =, , and
we can evaluate the density in equation (S24). In practice, =y may be a trivial random variable,
since there is no observation at ty, but this is not necessary for the just-in-time construction.

The utility of just-in-time evaluation depends in part on the reduction of dimension in replacing

Z, by Y,,. For example, nothing is gained by the just-in-time representation =,, = 1,,.

S3.5 Moving from discrete time to continuous time

Continuous time Markov population models can be approximated in discrete time by a Markov
chain (Breté et al., 2009) using a stochastic Euler method. A continuous time measurement model
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can similarly be discretized to match the time steps of the Euler approximation. For a continuous
time latent process model, suppose that {X(¢),t € T} is a right continuous stochastic process
taking values in X. We suppose that the continuous-time measurement process {Y (¢)} consists of a
counting process, {D(t)}, together with a sequence of measurements {G1, G, ... } where G,, occurs
at time T,, = inf{¢ : D(¢) > n}. This notational setup is based on Section S1, but we no not require
any of the additional structure of a GenPOMP model at this point. We write t] <5 < --- < ty. for
the observation times of the data, g}.,.. Here, we suppose that D(t) is part of X (¢) and, specifically,
is represented by the observed component B(t) in the decomposition

corresponding to a continuous-time version of equation (S18). This situation arises in GenPOMP
models when {D(t)} counts diagnosis events for a disease transmission model {X ()}, as in Sec-
tion S1. Suppose that the rate of observation events at time ¢ does not depend on the measurement
process {Y;, : t, <t} given the current state process X (t), i.e.,

PID(t +6) = D(t) = 0| X (), {Ys,s < t}] = 1= p(A(t)) 3+ o(9), (526)

P[D(t +8) — D(t) = 1| X(t), {Yars < 1}] = p(A(£))5 + o(6). (s27)
Then, dividing the interval (¢} _,,t*] into subintervals of width ¢ and taking 6 — 0, the limit of
discrete approximations using (S26) and (S27) corresponds to a combined weight from evaluating
(S23) in each of the 1/4 subintervals with no measurement followed by one subinterval with a
measurement, i.e.,

(th—t7_1)/0

imd  TT (1= p(AGoy +m8)) b p(AD)) fricrn s TumXon (9] 9oty s T0n)
m=1

*
n—1

[
= €exXp {_/ p(A(S)) ds} X p(A(t;)) X ka|G1:n—17T1:n,X0;n (g;kz ’gi(:nflﬂ tT:nv xO:n)- (828)
t

Note that one can view the first two terms of the product in equation (S28) as a density with
respect to Poisson counting measure.

S4 Details of the HIV model used in the main text

In this section we provide additional details that describe the HIV model used in the main text. As
the system is Markovian, we can fully specify the model by defining probabilities of each possible
change to the state of the system given the current state over an interval of time 0. There are three
types of events that change the state of system, each in a fundamentally different way:

1. An individual changes class. This event modifies an existing lineage on a transmission tree.

2. An individual in the study population infects a new individual. This event adds a new lineage
to an existing transmission tree.
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3. An individual outside the study population infects a new individual. This event seeds a new
transmission tree consisting of a single individual. The genetic tree associated with with this
new transmission tree joins all other genetic trees at the polytomy.

We define probabilities for the first two types of events from an individual-based perspective. Recall
that the state of any individual ¢ at time ¢ is given by a random process {X;(¢)}. The probabilities
of class changes for each individual over an interval of time § are given by

P[Xi(t+6) =1 | Xi(t) = Io] = 0y, + 0(6),

P[Xi(t+6) = Jo | Xi(t) = L] = dp, +0(6),

P[X;(t+0) =1 | X;(t) = L] = &y, +0(5),

P[X;(t+0)=J1 | Xs(t) = L] = 6p, +0(6), (529)
P[Xi(t+0) = Jo | Xi(t) = Io] = dp, + 0(0),

PXi(t+6) = Ji | Xi(t) = Jo] = &y, +0(9),

P[Xi(t+6) = Jo | Xi(t) = J1] = 0vs +0(6),

P[Xi(t+6) =0 | Xi(t) =s] = 6(us + ) + 0(6).

Above, s is a state-dependent death rate for an individual in state s € S = {Iy, I1, I2, Jo, J1, Ja},
Xi(t) = @ if individual ¢ is not in the study population at time ¢, and ¢ is a constant rate of
emigration from the study population. The probability that an infected individual from inside the
population gives rise to a new infection is,

P[the i individual infects a new individual in [t, 4 6]| X;(t) = s| = des+0(6),

where €, is the infectiousness of an individual in state s. The probability that an infected individual
from outside the population gives rise to a new infection is,

P[an infection occurs from outside the study population in [t,¢ + 5]] = 0+ 0(9).

Note that this last probability, in contrast to those before, is not defined on a per capita basis.
Also note that all new infections start in class Iy; this model does not allow immigration of later
stage infected (or diagnosed) individuals into the population.

This model closely resembles a model from a recent phylodynamic analysis of the Detroit HIV
epidemic Volz et al. (2013), but differs in key ways. First, whereas Volz et al. (2013) modeled
incidence as a smooth, deterministic function, we model incidence mechanistically as a function
of the states of individuals in the system. Second, instead of using a system of deterministic
ordinary differential equations to model counts of individuals in each state, our model incorporates
stochasticity into the process of state transitions.

S4.1 Initial values for the HIV model

The initial value for a GenPOMP model is X (tg). In general, the initial value can be treated as
an unknown parameter vector which can be estimated using our GenlF methodology. There may
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be only limited information about these parameters in the data, but that is not a major problem
for constructing profile likelihood estimates on other parameters of interest. However, a more
parsimonious modeling approach is to set X (¢y) to be a suitable function of the values of the dynamic
parameters. For example, under a stationarity assumption for the dynamic system, one might set
X (to) to be a random draw from the stationary distribution or some mean value approximation to
this. Our HIV model is not stationary, since we follow an age-cohort, but nevertheless we decided
to initialize at plausible values given the dynamic parameters rather than estimate additional
parameters. Further investigation could relax this assumption.

Part of the specification of X (tg) involves determining the genetic relationship assumed between
infections that do not occur in the study population during the modeled period. The time %,
at which we start modeling the population does not have to match the time at which we start
to observe it. We could, for example, have zero sequencing probability before some time point.
However, for our HIV model, these two times coincide. In the context of this HIV model, this
component of the initial value involves determining the depth of the assumed polytomy, quantified
by the time t,00t < to at which all trees in the transmission forest are modeled as meeting in the
phylogenetic tree.

We carried out the following construction of the initial values of the membership of each compart-
ment. We first note that the total number of diagnosed individuals is a perfectly observed quantity.
By selecting a cohort, we have the advantage of working with a well-defined subpopulation. Over
the time period from 2000 to 2012 we know exactly how many individuals were diagnosed. The
MDCH dataset only has gene sequences between 2004 and 2012, so we decided to set tg = 2004. By
2004, the cohort grew to have 42 diagnosed individuals. Our aim in specifying initial counts is to
apportion these 42 individuals to the three different classes of diagnosed individuals and populate
the three unobserved states (the undiagnosed individuals) with counts. We assume no deaths over
this period of four years. We constructed initial counts for each class by calculating under some
additional assumptions under which these values become numerically tractable. First, we made the
approximation that all rates of flow, with the exception of h(t), are fixed at a current parameter
estimate. Further, we suppose that h(t) is constant at some fixed value,

h(t) = ho,

ignoring the dependence of h(t) on the state of the system. We then approximate the initial state
by setting up and solving differential equations representing a deterministic solution to the model
equation, formally equivalent to requiring the system of equations (S29) to hold in expectation.
We fixed all rates of flow except h(ty) as described in the main text. Then, if the study cohort
begins with all counts at zero in 2000, there is only one possible iy for which the total number of
diagnoses in this approximating model matches the observed total number of diagnoses. We then
solve for this value of hg and in doing so we obtain the counts in each compartment. Trajectories
for the six states and their final values after four years are shown in Figure S4.1. This approach
to setting initial counts is not self-consistent with the model, as the model assumes that the rate of
new infections is dependent on the state of the system, or with the timing of diagnoses observed in
the four years leading up to the start of filtering. This simple way of setting the initial conditions
is a starting point. Exploring the effect of initial conditions on model fits could be an area of future
work.
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We treated the time of the polytomy as an initial value parameter, with each particle starting with
its own polytomy time. In this way, the polytomy time fits naturally into the iterated filtering
maximization routines.

10 11 12

301

201

101

Jo J1l J2

Count

30 1
201

101

|

2000 2001 2002 2003 2004 2000 2001 2002 2003 2004 2000 2001 2002 2003 2004
Year

Figure S-3: Trajectories of counts of each class of infected individuals over four years prior to tg =
2004 when assuming a constant rate of new infections, all flows between and out of compartments
as specified in the main text, and zero individuals initially in the cohort. We used the resulting
counts in 2004 as the initial values for the data analysis.

S4.2 Algorithmic parameters used for the numerical results

The choice of algorithmic parameters can affect the numerical efficiency of the GenSMC and GenlF
algorithms. For large computations, when Monte Carlo variability is an appreciable component of
parameter uncertainty, this can have an effect on the quality of the resulting statistical inferences.
In Table S-1 we supply the algorithmic parameters that we used in the simulation study (for
GenSMC) and in the data analysis (for both GenIF and GenSMC). We selected J, K, L and M
such that Monte Carlo uncertainty on parameter estimates and confidence intervals was tolerable
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(Ionides et al., 2016) and such that runtimes were not prohibitively long.

Three of the algorithmic parameters are only used in GenlF: the random walk standard deviation,
Orw, the cooling factor, a., and the number of GenlF iterations, I. Together, these parameters
determine the extent to which GenlF shrinks the diameter of the parameter swarm. In the GenlF
algorithm, perturbation of parameters over which we are maximizing occurs for each particle just
before the proposal step. We perturb the parameters by multiplying each by a random deviate from
a log normal distribution with mean one and standard deviation o,.,a, where i € {0,1,...,1 — 1}
is the iteration of GenlF. This choice of perturbation is appropriate for nonnegative parameters.
Although our framework allows for a different random walk standard deviation for each parameter,
in this case we found that the same random walk standard deviation for all parameters was effective,

and we report this value in Table S-1.

The algorithmic parameters in Table S-1 together with the source code at https://github.com/
kingaa/genpomp are sufficient to reproduce the methodology we apply in our analysis. The HIV
sequence data we analyzed are not publicly available, in accordance with our data use agreement
with Michigan Department of Community Health.
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Table S-1: Algorithmic parameters used in the simulation study and the data analysis.

Simulation .
Algorithmic Description Study Data Analysis
parameter GenSMC GenlF GenSMC
Diagnosis Diagnosis Diagnosis
Diagnosis data and Diagnosis data and Diagnosis data and
data only genetic data only genetic data only genetic
sequences sequences sequences
J Number of 10000 | 60000 | 10000 | 10000 | 10000 | 10000
particles
Number of
K att.achment i 5 ) 10 i 10
sites per
sequence
Number of
relaxed clock
L gamma ; 10 ; 10 ; 10
samples per
attachment
site
Number of
Y relaxed clock i 1 ) 1 i 1
beta samples
per gamma
Qe Cooling factor - - 0.95 0.95 - -
Random walk
Orw standard - - 0.01 0.01 - -
deviation
Number of
1 GenlF - - 50 30 - -
iterations
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