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Abstract 
Recent studies have identified prevalent subclonal architectures within many 
cancer types. However, the temporal evolutionary dynamics that produce 
these subclonal architectures remain unknown. Here we measure 
evolutionary dynamics in primary human cancers using computational 
modelling of clonal selection applied to high throughput sequencing data. Our 
approach simultaneously determines the subclonal architecture of a tumour 
sample, and measures the mutation rate, the selective advantage, and the 
time of appearance of subclones. Simulations demonstrate the accuracy of 
the method, and revealed the degree to which evolutionary dynamics are 
recorded in the genome.  Application of our method to high-depth sequencing 
data from gastric and lung cancers revealed that detectable subclones 
consistently emerged early during tumour growth and had considerably large 
fitness advantages (>20% growth advantage). Our quantitative platform 
provides new insight into the evolutionary history of cancers by facilitating the 
measurement of fundamental evolutionary parameters in individual patients.  
 
Introduction 
Carcinogenesis is the result of a complex process of Darwinian selection for 
malignant phenotypes1,2. The evolutionary process is driven by the 
accumulation of genetic alterations that allow cells to evade normal 
homeostatic regulation and prosper in changing microenvironments. High 
throughput genomics has shown that tumours across all cancer types are 
highly heterogeneous3, to the point that each cell may potentially be 
genetically unique4, thus leading to complex clonal architectures within 
tumours5. However, because longitudinal observation of tumour growth 
remains impractical, the temporal evolutionary dynamics that produce those 
clonal architecture remain undetermined.  Knowledge of these evolutionary 
dynamics is necessary to infer future evolutionary trajectories and modes of 
relapse. 
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Studying the temporal process of cancer evolution is challenging because 
molecular information is usually collected from an individual’s cancer at a 
single time point, typically at resection. However, the subclonal architecture of 
a cancer – as measured by the pattern of intra-tumour genetic heterogeneity 
(ITH) – is directly determined by the unobservable evolutionary dynamics.  
Thus, given a realistically constrained model of clonal expansion during 
tumour evolution, the pattern of ITH in a tumour can be used to infer the most 
probable evolutionary trajectory of that tumour. ITH represented within the 
distribution of variant allele frequencies (VAF), which is measured by high 
coverage sequencing of cancer samples, is particularly amenable to such an 
approach.  
 
We have previously shown that under a neutral evolutionary model (e.g. in the 
absence of subclonal selection), the VAF distribution has a predictable form 
that is observed in ~30% of cases from multiple cancer types6.  However, the 
majority of samples (~70% of cancers analysed) showed VAF distributions 
that were not consistent with neutral evolution.  
 
Here, using a stochastic model of subclone evolution in cancer and Bayesian 
inference, we identify the signature of selection in the cancer genome and 
quantify the evolutionary dynamics of non-neutrally evolving tumours.  
 
Results 
 
Theoretical framework 
We developed a stochastic simulation of tumour growth that accounts for 
subclonal selection (figure 1 and methods). At each division, a cell divides to 
produce either 0 or 2 surviving offspring with predefined probabilities, and 
daughter cells acquire new mutations at rate µ mutations per cell per division 
(figure 1A).  The fitness advantage of a mutant subclone is defined by the 
ratio of net growth rates between the fitter mutant (λm) and the background 
host population (λb)  
 

1+ 𝑠 = !!
!!

.       [1] 
 

This definition provides an intuitive interpretation for the fitness coefficient s, 
for example, an s of 1 implies that the mutant cell population grows twice as 
fast as the host tumour population. With the fitness coefficient 𝑠 = 0, we have 
thatλm=λb  and the subclone evolves neutrally. Within the model, neutral 
evolution leads to a VAF distribution characterised by a 1/f-distributed 
subclonal tail of mutations6 (Figure 1B), whereas clonal selection produces 
characteristic ‘subclonal clusters’ within the VAF distribution that have been 
identified in previous analyses7 (figure 1C). Importantly, as neutral mutations 
continue to accumulate within each subclone, the 1/f-like tail is also present in 
tumours with selected subclones8 (figure 1C).  
 
A mathematical analysis of the model indicates how subclonal clusters 
encode the underlying subclone evolutionary dynamics: the mean VAF of the 
cluster is a measure of the relative size of the subclone within the tumour, and 
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the total number of mutations in the cluster indicates the subclone’s relative 
age. Together, these two measures allow the fitness advantage s to be 
estimated9. 
 
We define t0=0 the time when the first transformed cancer cell begins to grow. 
At a later time t1, a cell in the tumour acquires a ‘driver’ somatic alteration that 
confers a fitness advantage, giving rise to a new subclone that expands faster 
than the other tumour cells. We note that the driver need not be a genetic 
mutation, but could be epigenetic or even microenvironmentally determined.  
The number of mutations acquired by the founder cell of the fitter subclone is 
 

𝑀!"# = 𝜇𝜆𝑡!,     [2] 
 

where 𝜆 = log (2) if we measure time in units of tumour volume doublings. We 
have previously shown that the effective mutation rate (the number of 
mutations for every newly generated lineage) can be estimated from the 1/f 
tail6. For a subclone that emerges at time t1 we would expect to observe 𝑀!"# 
mutations at a frequency 𝑓!"# which given some sequencing noise will present 
as a cluster of mutations with a mean 𝑓!"# in the VAF distribution. Therefore, 
equation [2] allows us to estimate t1, the time when the subclone appeared.  
 
Nsub(t) and Nbackground(t) represent the population size of the subclone and 
background populations at time t.  The frequency of the subclone in the 
tumour at time tend when the tumour is resected is given by 
 

𝑓!"#(𝑡!"#) =  !!"#(!!"#!!!)
!!"#$%&'()* !!"# !!!"#(!!"#!!!)

.   [3] 

 
Under exponential tumour growth we have 
 

𝑓!"#(𝑡!"#) =  !!!(!!!)(!!"#!!!)

!!!!!"#!!!!(!!!)(!!"#!!!)
.   [4] 

 
Solving for the fitness advantage s gives 
 

𝑠 =
!!!!! !"

!!"#
!!!!"#

!!(!!"#!!!)
.     [5] 

 
Therefore, given an estimate of the age of the tumour, tend (for example 
assuming the final population size is 109, we can calculate tend via 2!!"# =
1− 𝑓!"# ×10!) then equations [2] and [5] provide a means to measure the 

selective advantage of a subclone directly from the VAF distribution (figure 
2A). In the case where we have multiple subclones, equation [5] takes a 
slightly modified form (supplementary note).  
 
Limits of detectability of subclonal selection  
The ability to detect and quantify selection in human cancers naturally 
depends on the strength of the signal and the resolution of the data at hand. 
Because the population in tumours is expanding, the later a subclone 
appears, the fitter it has to be to grow to a detectable size before the tumour is 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2016. ; https://doi.org/10.1101/096305doi: bioRxiv preprint 

https://doi.org/10.1101/096305
http://creativecommons.org/licenses/by-nc-nd/4.0/


removed from the body and studied in the lab10.  Consequently, the combined 
effect of the fitness advantage of a subclone and the time of its appearance 
determine whether a clone will be of a detectable size. Moreover, in high 
throughput sequencing of cancer samples, the sequencing depth sets a lower 
limit on the size of observable subclonal mutations (e.g. ~5% for 100X depth 
sequencing11). 
 
To determine how these evolutionary parameters and technical 
considerations constrain the ability to detect subclonal selection in the cancer 
genome, we developed a sensitive test that calculated the probability of 
observing a particular VAF distribution under neutral evolution.  When the 
observed VAF distribution had a low probability of occurring under neutral 
evolution, we rejected the neutral model in favour of the alternative ‘subclonal 
selection’ hypothesis (see methods and supplementary figures 1,2). This 
analysis showed that only sufficiently early or very fit subclones are likely to 
be distinguishable from neutral evolution in moderate depth (100X) 
sequencing data (Figure 1D). In addition, the VAF distribution when the 
subclone is dominant (>90%) is indistinguishable from neutrality, as it is then 
the case that only neutral within-clone evolutionary dynamics are captured by 
the VAF distribution. In other words, once a fitter subclone has swept to near-
fixation in a tumour, the tumour reverts to neutral dynamics. 
 
Accurate measurement of subclonal evolutionary dynamics in synthetic 
tumours 
To infer evolutionary dynamics from VAF distributions, we implemented a 
Bayesian statistical inference framework (figure 2B & methods) that used our 
computational model of subclone evolutionary dynamics to simultaneously 
estimate all the parameters of interest from the sequencing data (principally 
the number of subclones, subclone fitness and time of occurrence, and the 
mutation rate). Importantly, this method allowed us to perform Bayesian 
model selection12 for the number of subclones within the tumour. This enabled 
us to calculate the probability that a given tumour contained 0 subclones (s=0, 
neutral evolution) or 1 or more subclones (non-neutral evolution).  
 
In synthetic data (VAF distributions derived from computational simulations of 
tumour growth with known parameters), our framework accurately recovered 
the parameters governing tumour evolution in the presence of both subclonal 
selection (figure 2C,D) and neutral dynamics (figure 2E,F). In the case of 
subclonal selection, we were able to consistently recover the correct mutation 
rate (figure 2G), the number of mutations in the clone (figure 2H) and the size 
of the subclone (figure 2I), and via equation [5] we could infer an accurate 
posterior distribution for the fitness advantage of the subclone (figure 2J). 
 
Measuring subclonal selection in human cancers 
We used our approach to quantify evolutionary dynamics in primary human 
cancers.  We restricted our analysis to datasets were the depth of sequencing 
was very high to allow for accurate measurements of the clonal dynamics. To 
avoid the confounding effects of copy number changes, we exploited the 
hitchhiking principle13 and restricted our analysis to consider only single 
nucleotide variants (SNVs) that were located within diploid regions  (see 
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methods). Thus, upon adjusting for purity, we would expect to observe a 
‘clonal cluster’ at VAF=0.5, and a potentially complex distribution of mutations 
with VAF<0.5 representing the subclonal architecture.  
 
First, we applied our model to a high depth exome sequenced (>200X) lung 
adenocarcinoma dataset14. We used patient 4990 which had 5 samples from 
different sites sequenced. Sample 12 appeared to have a subclonal 
population (figure 3A). Bayesian inference found strong evidence in favour of 
one subclone, thus rejecting neutral evolution (figure 3A, Bayes Factor=9.1) 
and measured a median relative fitness of ~1.3 (95% credible interval:1.18-
1.47) for the subclone over the background tumour population (figure 3B). In 4 
other samples from patient 4990, our model identified neutral evolution as the 
most likely model (see supplementary figure 3). Sample 12 appeared to have 
copy number alterations on chromosome 3 that were not apparent in the other 
samples, suggestive that a copy number alteration may have driven the 
subclonal expansion (supplementary figure 4). 
 
Next we applied the model to a whole genome sequenced gastric cancer 
dataset15. We applied the analysis to 10 samples that had high cellularity 
(>50%) and after removal of non-diploid regions contained a large number of 
mutations (>1000). Six of the samples showed strong evidence in favour of 
the neutral model (figure 3D and supplementary figure 5), while 4 samples 
had evidence of a subclone under differential selection (figure 3E and 
supplementary figure 5). As in the lung adenocarcinoma sample, we 
measured the relative fitness of the subclones to be >1.2 (20% advantage) in 
all 4 cases (figure 3F), and to have emerged early during tumour growth 
(supplementary figure 6). In these cases, there is no obvious subclonal 
cluster, possibly due to the comparably lower depth (~80X). Also we observed 
that the clonal cluster often appear to have more mass on the left hand side 
(supplementary figure 7), suggesting that the subclone has arisen to a very 
high frequency and is then obscured by the clonal mutations. Interestingly, 2/4 
of these samples were MSI+, one plausible explanation is that the 
hypermutator phenotype results in an increased likelihood of acquiring an 
adaptive mutation when the tumour is still small enough for the clone to 
expand to a detectable frequency in a reasonable amount of time.  
 
Selection in constant size populations is more efficient 
The analysis above considered only exponentially growing populations, which 
is a growth-pattern well supported by empirical data in many cancer types 16-

21. Some tumours however, especially benign lesions, may reach a plateau in 
their growth, and consequently are better represented by sigmoidal-type 
growth models22,23. In a sigmoidal model of tumour growth, the tumour 
population at late times can be approximated as a population of constant size 
with continual turnover of cells. Interestingly, in a fixed size population it has 
been shown that the fixation time of beneficial mutations is proportional to the 
logarithm of the population size (see methods)24, which suggests that clonal 
expansions can be relatively rapid when the population is no longer growing.  
 
To examine the effect of the population growth profile on subclone evolution, 
we simulated a model of fixed population size using a Moran process, and 
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compared the speed with which subclones expand to the exponential growth 
model described above (figure 4A&B). The fitness advantage of a mutant in 
both fixed and growing populations was defined as the average offspring per 
generation (of the background host population). We introduced a fitter mutant 
in the growing population when the population was of size N, and simulated 
the Moran model for fixed size N; thus a new mutant starts out at a frequency 
1/N in both cases. We followed the average frequency of the mutant over 
time. In the fixed population model the fitter mutant spreads through the 
population at a significantly faster rate (figure 4C; p<0.001), and we noted that 
subclonal expansions can also lead to subclonal clusters in the VAF 
distribution in a fixed population (figure 4E). We note that a constant 
population of cells that acquires new passenger mutations and undergoes 
neutral drift (figure 4A) results in a neutral tail in the VAF distribution that 
however, does not directly encode the mutation rate6 (figure 1B).  
 
Under a logistic regime, initial cancer growth is exponential, slowing to a 
constant population size (with turnover) once a ‘carrying capacity’ is reached. 
We investigated how this pattern of population growth influenced the 
measurement of evolutionary dynamics. We simulated logistic growth where 
the population first grows exponentially and then transitions into a Moran 
model (figure 4B). We found that assuming for example a small carrying 
capacity of 104 cells, even if the fixed population size phase is 20 times longer 
than the growth phase, the dominant signature is that of the initial (neutral) 
growth, not the neutral drift within the fixed size population (figure 4F). 
Consequently, the mutation rate estimates match those measured in a purely 
exponential neutral model (figure 4F&G). We note that this is because 
tumours are very large populations, and effects of neutral drift during the 
constant phase are unlikely to be significant since the time it takes for variants 
to rise to a detectable frequency under these conditions is proportional to the 
population size N. Hence, even for barely-detectable tumours of 106 cells, it 
would take approximately a million generations before seeing those drift tails: 
much longer than a human lifetime. Hence in cancer data, irrespective of 
whether or not the population has become constant, the VAF distribution 
encodes initial tumour growth, and neutral tails do accurately inform on the 
mutation rate. 
 
Another growth regime that has been shown to be potentially applicable to 
cancer is power law growth.  We note that such power law (boundary driven) 
growth leads to a slightly different scaling form for the VAF distribution (see 
supplementary note).  We note that since only peripheral cells can proliferate 
in a power law model, the biological interpretation of neutral evolution in this 
growth regime is unclear. 
  
Discussion 
 
We have demonstrated how the distribution of mutations in a tumour can be 
used to directly measure the evolutionary dynamics of subclones. We 
confirmed that subclonal selection causes an overrepresentation of mutations 
within the expanding clone, manifested as an additional ‘peak’ in the VAF 
distribution, in-line with the detection of subclonal clusters by many recent 
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studies7. We note that our analysis predicts that even when subclonal 
selection plays a prominent role in tumour progression, the tumour will still 
show an abundance of low frequency variants (a 1/f-like tail, though the 
precise shape of the tail may be altered). This is a natural consequence of the 
tumour being a growing population, wherein the number of new mutations in 
the population is proportional to the population size.  
 
Remarkably, our quantitative measurement of the size of the selective 
coefficient (relative fitness) of an expanding subclone in a tumour revealed 
that (large) subclones had experienced fitness advantages in excess of 20% 
greater than the ‘resident’ populations of the tumour. These fitness 
advantages are more than an order-of-magnitude greater than a previous 
estimate of 0.04%25. However, such large fitness increases are not 
unprecedented in somatic evolution: a study of the competitive advantage of 
mutant stem cells in the mouse intestine (a constant population size) showed 
that KRAS and APC mutant stem cells have a ~2-4 fold increase in the 
probability of fixing in the crypt26, and TP53 mutant cells in mouse epidermis 
exhibited a 10% bias toward self renewal27. Moreover, our measured fitness 
increases are comparative with the most extreme values observed in 
experimental evolution settings, wherein most positively selected variants 
confer small percentage increases fitness28,29. Furthermore, a classical test 
for selection, the ratio of non-synonymous to synonymous variants (dN/dS) 
reveals small subset of genes (<20 in a pan-cancer analysis) with extreme 
dN/dS values indicative of strong selection30.   
 
Importantly, our analysis shows that there can be heterogeneity in the 
evolutionary process within a tumour: four regions of a single lung cancer 
were found to be evolving neutrally whereas an additional region showed 
strong evidence of subclonal selection.  We note that our analysis does not 
ipso facto identify the cause of the subclonal expansions. Irrespective, we 
note that any change experienced by a subclone that results in increased 
fitness, including copy number variation, epigenetic changes, point mutations 
or cell-extrinsic effects (clonal interactions or microenvironment effects) will be 
‘read out’ as causing selection in the VAF distribution.  This is because 
selection is inferred using only the frequency of SNVs, which will shift in 
frequency due to hitchhiking, regardless of the underlying mechanism.   
 
We note that our analysis indicates that even if cancer subclones experience 
pervasive weak selection, that this weak selection does not cause the VAF 
distribution to deviate detectably from the distribution expected under strict 
neutrality.  Thus, our analysis implies that so-called ‘mini-drivers’ could well be 
common in cancer31, but that each mini-driver has a corresponding ‘mini’ 
effect  on the subclonal composition of a tumour, and correspondingly that 
dramatic changes to the tumour population are only caused by ‘major-drivers’.  
Additionally, we note that for a cancer that is experiencing prevalent weak 
selection, neutrality provides an entirely adequate description of the 
evolutionary dynamics as measured by moderate depth sequencing data. 
 
The noise inherent in the data means that measuring evolution in the cancer 
genome is extremely challenging. For this reason we concentrated our efforts 
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on a small number of deeply-sequenced tumours, as the depth of sequencing 
in particular has a large effect on the ability to resolve subclonal structure in 
the genome (supplementary figure 8). We acknowledge that features that are 
not described in our model, principally the spatial structure of the tumour, 
could effect the accuracy of our estimates of evolutionary parameters32. 
Spatial models of tumour evolution can help elucidate other important 
biological parameters such as the degree of mixing within tumour cell 
populations10, which is a purely spatial phenomenon and cannot be quantified 
using non spatial models such as ours. Multiple samples per tumour also 
increase the power to detect selection within a cancer, as the probability that 
a ‘clone boundary’ where selection is evident will be sampled is increased. 
 
In summary, we have shown how clonal selection shapes the frequency 
distribution of subclonal mutations within a tumour, and used this knowledge 
within a mathematical framework to directly measure, in vivo in human 
malignancies, the fundamental evolutionary parameters that control subclonal 
evolution.  These data give new insight into the process of human 
carcinogenesis, and show the power of a quantitative phenomenological 
framework for understanding cancer evolution. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2016. ; https://doi.org/10.1101/096305doi: bioRxiv preprint 

https://doi.org/10.1101/096305
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 
 
Simulating tumour growth 
We implemented a branching process simulation of cell divisions during 
tumour growth, followed by a sampling scheme that recapitulates the 
characteristics of cancer sequencing data. Cancer sequencing data is 
plagued by various sources of noise, so this final step is required to ensure 
that the underlying evolutionary dynamics that govern cancer growth are not 
confounded by the noisy signal. First we will introduce the simulation 
framework for an exponentially expanding population where all cells have 
equal fitness. Later we show how elements of the simulation can be modified 
to include differential fitness effects of cells and non-exponential growth. 
 
Tumour growth begins with a single transformed cancer cell that has acquired 
the full set of genetic alterations necessary for malignancy. This first cell will 
therefore be carrying a set of mutations (the number of these mutations can 
be modified), which will be present in all subsequent lineages and thus are 
clonal (present in all cells) in the population. Any subsequent mutations that 
are acquired are likely to remain subclonal, but due to the stochastic nature of 
the model there are scenarios - such as a slow growing population with high 
cell death - where the mutations that are acquired during the first few divisions 
can become clonal. Expressions for the probability that a subclonal mutation 
becomes clonal have been derived elsewhere33. 
 
The dynamics of tumour growth are governed by a birth rate and death rate 
that are set at the beginning of the simulation. These can be modified to 
include selection and non-exponential growth. Given a birth rate b and death 
rate d (b>d, for a growing population), the average population size at time t 
will be given by, 
 

𝑁 𝑡 = 𝑒(!!!)!      
 
We set b=log(2) for all the simulations, such that in the absence of cell death 
the population will double in size at every unit of time. The tumour grows until 
it has reached a specified size Nfinal, where the simulation stops. At each 
division, cells acquire 𝜐  new mutations, where 𝜐  is drawn from a Poisson 
distribution with mean 𝜇. We assume new mutations are unique (infinite sites 
approximation). Not all divisions will result in surviving lineages, the probability 
of a cell division producing a surviving lineage, 𝛽  can be written as the 
following in terms of the birth and death rates 

𝛽 = !!!
!

. 
 
Selection 
 
To include the effects of selection, a mutant is introduced into the population 
that grows at a faster rate than the host population. We only consider the 
cases of one or two subclonal population under selection. The number of 
large-effect driver mutations in a typical cancer is thought to be small (<10 
see ref. 34), so this restriction was made for pragmatic reasons. Fitter mutants 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2016. ; https://doi.org/10.1101/096305doi: bioRxiv preprint 

https://doi.org/10.1101/096305
http://creativecommons.org/licenses/by-nc-nd/4.0/


can have a higher birth rate, a lower death rate or a combination of the two, all 
of which results in the mutant growing at a faster rate than the host 
population. Given that the host/background population has growth rate bH and 
death rate dH, and the fitter population has growth rate bF and death rate dF 
we define the selective advantage s of the fitter population as: 
 

1+ 𝑠 =
𝑏! − 𝑑!
𝑏! − 𝑑!

 

  
Fitter mutants can be introduced into the population with a specified 
advantage s and at a chosen time t1, allowing us to explore the relationship 
between the strength of selection and the time the mutant enters the 
population. 
 
A number of simplifications to our simulation scheme were made to improve 
computationally efficiency. This is particularly relevant for the Bayesian 
inference approach that requires many millions of individual simulations to be 
performed.  
 
The first simplification neglected cell death, and so models differential 
subclone fitness by varying the birth rate only. Setting the death rate to 0 (e.g 
𝛽 = 1, all lineages survive) increases simulation speed because a smaller 
number of time steps are required to reach the same population size.   
 
This simplification affects our ability to measure the effective mutation rate, 𝜇, 
which is the true mutation rate 𝜇 , divided by the probability of having 2 
surviving offspring 

𝜇 =
𝜇
𝛽 

The effective mutation rate is encoded in the low-frequency (1/f-like) tail of the 
distribution. In the presence of one or more subclones, the low-frequency tail 
consists of a combination of two or more 1/f tails.  If there are large 
differences in the 𝛽  value between subclones, then the inference on the 
effective mutation rate from the gradient of the low-frequency tail may be 
incorrect. However this is true only if there are large differences in 𝛽 in the 
different subclones. To show this, we simulated subclones with a range of 
different 𝛽 values, and inferred the mutation rate from the low frequency tail.  
Even in cases where the death rate was very different in the subclone 
compared to the host population (𝛽 = 1.0 vs 𝛽 = 0.5) the mean error on the 
estimates of the mutation rate was 42% (supplementary figure 9) - e.g. 
significantly less than the order of magnitude previously measured between 
cancer types 6. 
 
The second simplification restricts simulations to only a small population size. 
We note that the VAF distributions hold no information on the population size, 
meaning that a simulation can produce VAF distributions that match real data 
even when the simulated population size is unrealistically small.  Moreover, 
subclone fitness and size are both measured relative to the (unmeasurable) 
overall fitness and size of the entire tumour population. For example, imagine 
a tumour growing at some (exponential) rate, which could be either slow or 
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fast. Within the growing tumour, a subclone forms.  To achieve its final size, in 
the fast growing tumour the subclone must grow significantly faster than the 
host population for a short time, or relatively slowly for a long time.  In 
comparison, within the slower growing tumour, the subclone could grow 
comparatively slower for a shorter period and still achieve the same final size.  
In other words, both the time elapsed since the formation of a subclone and 
the final size of the subclone in the tumour together scale with the 
(exponential) growth rate and final size of the tumour as a whole (with the 
scaling specified in equations [3] & [5]).  Therefore we can simulate small 
tumours wherein subclones have large fitness advantages, and then scale our 
estimates of the selective advantage using realistic population sizes and 
growth rates to obtain biologically meaningful estimates of the evolutionary 
parameters.  The size of the simulated tumour has no impact on the accuracy 
of parameter inference, as long as we simulate for a time long enough for any 
possible subclones to accumulate enough mutations to be consistent with the 
data.  
 
To appropriately scale the estimates of s requires inputting an estimate of the 
age of the tumour in terms of tumour doublings into equation [5]. Assuming a 
final population size of 𝑁!"#, we can calculate 𝑡!"# as, 

𝑡!"# =
!"# ((!!!!")×!!"#)

!"# (!)
, 

where 𝑓!"  is the frequency of the subclone. We assumed 𝑁!"# = 10! , for 
generating the posterior distributions in figure 3. We also generated posterior 
distributions for s as a function of 𝑁!"#, for all samples that showed evidence 
of subclones, supplementary figure 10. 
 
To demonstrate the validity of this approach, we simulated a comparatively 
large tumour (105) with a high death rate (𝛽 = 0.25) and a subclone with a 
lower death rate (𝛽 = 0.74), and then used our inference scheme (see below) 
with beta=1 for both residual and subclonal cells (e.g. no death) to attempt to 
recover the selective advantage of the subclone in our simulated tumour. The 
posterior distributions were correctly centred around the true parameters(Fig 
2).  
 
Simulation method 
A rejection kinetic Monte Carlo algorithm was used to simulate the model 35. 
Due to the small number of possible reactions (we consider at most 3 
populations with different birth and death rates) this is more computationally 
efficient than a rejection-free kinetic Monte Carlo algorithm such as the 
Gillespie algorithm. The input parameters of the simulation are given in table 
1. 
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b Birth rate of host population 

d Death rate of host population 

bF Birth rate of fitter populations, each new population will have a 
unique bF 

dF Death rate of fitter populations, each new population will have 
a unique dF 

s Selective advantage of fitter populations calculated from bF 
and dF 

µ Mutation rate 

tevent Time when fitter mutant is introduced 

Nfinal Maximum population size, simulation stops once this is 
reached 

Table 1: Input parameters for simulation 
 
The simulation algorithm is as follows: 

1. Simulation initialized with 1 cell and set all simulation parameters 
2. Choose a random cell, i from the population 
3. Draw a random number r~Uniform(0, bmax+dmax), where bmax and dmax 

are the maximum birth and death rates of all cells in the population. 
4. Using r, cell i will divide with probability proportional to its birth rate bi 

and die with probability proportional to its death rate di. If bi+di 
<bmax+dmax there is a probability that cell i will neither divide nor die. If 
𝛽 = 1, ie no cell death then in the above dmax = 0. 

5. If cell divides, daughter cells acquire 𝜈 new mutations where  
𝜈 ~Poisson(µ) 

6. Time is increased by a small increment !
! !!"#!!!"#

𝜏, where 𝜏 is an 
exponentially distributed random variable 36 

7. Go to step 2 and repeat until population size is Nmax 
 
 
The output of the simulation is a list of mutations for each cell in the final 
population. 
 
Sampling 
To mimic the process of data generation by high-throughput sequencing we 
performed various rounds of empirically-motivated sampling of the simulation 
data. Sequencing data suffers from multiple sources of noise, most 
importantly for this study is that mutation counts (VAFs) are sampled from the 
true underlying frequencies in the tumour population (both because of the 
initial limited physical sampling of cells from the tumour for DNA extraction, 
and then due to the limited read depth of the sequencing). Additionally it is 
challenging to disentangle mutations that are at low frequencies from 
sequencing errors and consequently only mutations above a frequency of 
around 5-10% for 100X sequencing are detectable11.  The ability to resolve 
subclonal structures is dependent on the depth of sequencing.  This is shown 
in supplementary figure 8, where the same simulation has been sampled to 
different depths and the subclonal architecture is progressively obscured as 
the depth decreases. 
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For mutation i the frequency of mutation is binomially distributed 𝑓!~𝐵 𝑛 =
 𝐷! ,𝑝 = 𝑉𝐴𝐹!"#$ , where the sequencing depth D is itself a binomially 
distributed random variable and 𝑉𝐴𝐹!"#! is the known VAF of the mutation 
before sampling. The “sequenced” VAF is thus 𝑉𝐴𝐹 = !!

!!
. Sequencing data is 

often found to be overdispersed, for cases where we found the data to be 
overdispersed we used the Beta-Binomial distribution 37,38. In this model the 
frequency of mutation i is distributed according to 𝑓!~𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑛 = 𝐷! ,𝑝 =
𝑉𝐴𝐹!"#$ ,𝜌), where 𝜌 is the degree of overdispersion and introduces additional 
variance to the sampling. For 𝜌 = 0, the model is the usual Binomial model.  
All subsequent analysis is then done using these resultant sequencing noise 
processed VAF distributions.  
 
Testing Neutrality 
 
To assess what evolutionary parameters of selection lead to an observable 
deviation from neutrality we devised multiple metrics to detect deviations from 
the prediction of the neutral model. Previously we showed that under 
neutrality, the distribution of mutations with a frequency greater than f is given 
by 6: 
 

𝑀(𝑓) = ! 
!

!
!
−  !

!!"#
     [7] 

 
Previously, we fit a linear model of M(f) against 1/f and used the R2 measure 
of the explained variance as our measure of the goodness of fit. 
 
Another approach is to use the shape of the curve described by equation [7] 
and test whether our empirical data collapses onto this curve. To implement 
this, here we introduce a universal neutrality curve,  𝑀 𝑓 . Given an 
appropriate normalization of the data, any mutant allele frequency distribution 
governed by neutral growth will collapse onto this curve. We can normalize 
the distribution described by equation [7] by considering the maximum value 
of M(f), which is given when f=fmin. 
 

max (𝑀(𝑓)) =
𝜇 
𝛽

1
𝑓!"#

−  
1

𝑓!"#
 

𝑀(𝑓) =

𝜇 
𝛽

1
𝑓 −  1

𝑓!"#
max (𝑀 𝑓 )  

 

𝑀(𝑓) =

1
𝑓   −    1

𝑓!"#
1
𝑓!"#

−  1
𝑓!"#

 

 
𝑀(𝑓) is independent of the mutation rate and the death rate, which allows 
comparison with any dataset. To compare this theoretical distribution against 
empirical data we used the Kolmogorov distance, Dk, the Euclidean distance 
between 𝑀(𝑓) and the empirical data and the area between 𝑀 𝑓  and the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2016. ; https://doi.org/10.1101/096305doi: bioRxiv preprint 

https://doi.org/10.1101/096305
http://creativecommons.org/licenses/by-nc-nd/4.0/


empirical data. The Kolmogorov distance Dk is the maximum distance 
between two cumulative distribution functions. Mathematically Dk for 𝑀(𝑓) and 
an empirical cumulative distribution - 𝐺 𝑓  is defined as 
 

𝐷! = 𝑠𝑢𝑝! 𝐺 𝑓 −𝑀(𝑓)  
 
where sup is the supremum of the set of distances. Supplementary figure 11 
provides a summary of the different metrics. 
 
To assess the performance of the 4 classifiers we ran 105 neutral and non-
neutral simulations and compared the distribution of the metrics for these two 
cases. Due to the stochastic nature of the model, not all simulations that 
include selection will result in subpopulations at a high enough frequency to 
be detected, therefore to accurately assess the performance of our tests we 
only included simulations where the fitter subpopulation was within a certain 
range (20% and 70% of the final tumour size). All 4 metrics showed 
significantly different distributions between neutral and non-neutral cases 
(supplementary figure 1). Under the null hypothesis of neutrality and a false 
positive rate of 5%, the area between the curves was the metric with the 
highest power (67%) to detect selection, slightly outperforming the 
Kolmogorov distance and euclidean distance, with the R2 metric showing the 
poorest performace with a power of  61% (table S1 and supplementary figure 
1). 
 
We also plotted receiver operating characteristic (ROC) curves by varying the 
discrimination threshold of each of the neutrality tests and calculating true 
positive and false postive rates (using a dataset derived from simulations with 
subclonal populations at a range of frequencies, supplementary figure 2). This 
also showed that the R2 had the least disriminatory power, with the other 3 
performing equally well (see table S2 for AUC). Increasing the range of 
allowed subclone sizes decreased the classifier performance, likely because 
the subclone could merge into the clonal cluster or 1/f tail when it took a more 
extreme size. 
 
Statistical Inference 
 
We used Approximate Bayesian Computation (ABC)39 to infer the 
evolutionary parameters in our stochastic tumour evolution model that 
produced variant allele frequency distributions consistent with real sequencing 
data.  We also validated the accuracy of our inferences using simulated 
sequencing data where the true underlying evolutionary dynamics was known.  
 
As in all Bayesian approaches, the goal of the ABC approach was to produce 
posterior distributions of parameters that give the degree of confidence that 
particular parameter values is true, given the data.  Given parameter vector of 
interest θ and data D, the aim was to compute the posterior distribution 
𝜋 𝜃|𝐷 = !(!|!)! !

!(!)
, where 𝜋 𝜃  is the prior distribution on θ and 𝑝(𝐷|𝜃) is the 

likelihood of the data given θ. In cases where calculating the likelihood is 
intractable, as was the case here where our model cannot be expressed in 
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terms of well known and characterized probability distributions, approximate 
approaches must be sought. The basic idea of these ‘likelihood free’ ABC 
methods is to compare simulated data, for a given set of parameter values, 
with observed data using a distance measure.  Through multiple comparisons 
of different input parameter values, we can produce a posterior distribution of 
parameter values that minimise the distance measure, and in so doing 
accurately approximate the true posterior. The simplest approach is called the 
ABC rejection method and the algorithm is as follows40: 
 

1) Sample candidate parameters θ* from prior distribution π(θ) 
2) Simulate tumour growth with parameters θ*  
3) Evaluate distance, δ between simulated data and target data 
4) If δ ≤ ε accept parameters θ* 
5) If δ > ε accept parameters θ* 
6) Return to 1 

 
We used an extension of the simple ABC rejection algorithm, called 
Approximate Bayesian Computation Sequential Monte-Carlo (ABC SMC) 12,41. 
This method achieves higher acceptance rates of candidate simulations and 
thus makes the algorithm more computationally efficient than the simple 
rejection ABC. It achieves this by propagating a set of ‘particles’ (sample 
parameter values) through a set of intermediate distributions with ever 
decreasing ε until the target εT is reached, using an approach known as 
sequential importance sampling42. The ABC SMC algorithm also allows for 
Bayesian model selection to be performed by placing a prior over models and 
performing inference on the joint space of models and model parameters, (m, 
θm). In contrast to many applications of ABC that use summary statistics, we 
use the full data distribution, thus avoiding issues of inconsistent Bayes 
factors due to loss of information43,44. For further details on the algorithm see 
references41,45 and the supplementary note on the specific details of our 
implementation. Bayes factors for all data are shown in table S3. 
 
We used a modified version of the Kolmogorov distance as our distance 
function which has been used in similar inference problems46. The well-known 
Kolmogorov distance is however invariant to the mutation rate, one of the 
parameters we would like to infer. We therefore use an unnormalized version 
of this statistic that will depend on the mutation rate. Simply, we calculate M(f) 
for both datasets and as in the Kolmogorov distance take the maximum 
distance between the experimental data and the synthetic data. 
 

𝛿 = 𝑠𝑢𝑝! 𝑀!"# 𝑓 −𝑀!"#(𝑓)  
 
We only perform the fit for mutations with VAF>fmin, where fmin is the detection 
threshold of the data which we deem to be the point at which the 1/f peak tails 
off at low frequency. The priors used for inference are shown in the 
supplementary note. 
 
Bioinformatics analysis 
Where available we used variant calls provided from the original studies. The 
processing of the lung cancer sequencing data14 and gastric cancer6,15 is 
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explained elsewhere. We additionally applied the Sequenza algorithm47 to 
infer allele specific copy number states and estimate the cellularity. Copy 
number aberrations could also potentially result in the multi-peaked 
distribution we observe48, hence we only used mutations that were found in 
regions identified as diploid (and without copy-neutral LOH). The Sequenza 
algorithm also estimates the cellularity of the sample, which we used to 
correct the VAFs. For a cellularity estimate κ, the corrected depth for variant 𝑖 
will be 𝑑! = 𝜅×𝑑!. Due to the computational cost of fitting our model with high 
mutation rates we randomly sampled 2000 mutations from the gastric cancer 
samples and performed the analysis with these mutations. 
 
As noted our simulation can account for the over-dispersion of allele read 
counts. To measure the over-dispersion parameter 𝜌 , we fitted a Beta-
Binomial model to the clonal cluster where we know 𝑉𝐴𝐹!"#$ = 0.5. We used 
Markov Chain Monte Carlo (MCMC) to fit the following model to the right hand 
side of the clonal cluster so as to minimize the effects of the 1/f distribution or 
subclonal clusters: 

𝑓!~𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑛 = 𝐷! ,𝑝 = 𝑉𝐴𝐹!"#$ ,𝜌) 
where 𝐷!  is the sequencing depth, 𝑓!  is the allele read count and 𝜌 is the 
overdispersion parameter. We then used this estimate for 𝜌 in the simulation 
sampling scheme. Supplementary figures 7 and 12 shows the fits to the clonal 
cluster for all our data using both the Beta-Binomial and Binomial model. 
 
Logistic Growth 
In the logistic growth model, growth is density dependent and the environment 
has a maximum number of individuals it can support, which is commonly 
referred to as the carrying capacity, K of the population. The differential 
equation for logistic population growth is  
 

!"
!"
= 𝜆 1− !

!
𝑁.      

 
In the logistic population growth model, the birth and death rates of individuals 
in the population are proportional to the population size 
 

𝑏(𝑁) = 𝑏! − 𝑏!𝑁,      
𝑑 𝑁 = 𝑑! + 𝑑!𝑁.      

 
Where b1 and d1 are the intrinsic birth and death rates, and b2 and d2 can be 
calculated given a carrying capacity K from: 
 

𝐾 = !!!!!
!!!!!

       
 
When b2 = d2 = 0, we recover exponential growth. 
 
We consider two models of logistic growth, one where the birth rate 
decreases as the population grows (d2=0), and the other when the death rate 
increases (b2=0) as the population grows. This lets us explore the importance 
of stochastic effects. In the second model when b2=0, there is a fast turnover 
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in cells, while in the first model turnover is slow. We used b2=0 model for the 
simulations in figure 4. 
 
Moran Model 
The Moran model is a classic model from population genetics, it is a 
stochastic birth death process where at each time step one individual is 
chosen to die and one is chosen to replicate 49. Individuals that have fitness 
advantages are more likely to be chosen to replicate, the selection coefficient 
is often defined as relative increase in the average number of offspring per 
generation: a fitter individual will on average have 1+s more offspring. It has 
been shown that the average fixation time (in generations) of a neutral 
mutation is ~ N. In the case of a beneficial mutation the time to fixation, τfix is 
given by50 

𝜏!"# =
!
!
log (𝑁)    [9] 

Therefore for a fixed size neutral population, the timescales over which 
mutations may rise to observable frequencies is likely longer than the age of 
the tumour, see table 2. Results consistent with our simulations that 
demonstrated that if a tumour follows a logistic growth model, the dominant 
signal in the VAF distribution is that of the early exponential growth (Fig 4). 
Selection however can results in mutations reaching observable frequencies 
rapidly. 
 
 

Model Equation for τfix s N τfix (generations) 
Selection 𝜏!"#~

2
𝑠 log (𝑁) 0.5 109 82 

Neutral 𝜏!"#~𝑁 0.0 109 109 
Table 2 Fixation times in a neutral Moran model and a Moran model with 
selection. 
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Figure 1
A We model tumour growth using a branching process where cells have a birth rate and a death rate, mutations accumulate as the tumour grows and cells with fitness advantages grow at a faster rate than the host population. The variant allele 
frequency is a consequence of how a tumour grows, simulating a tumour with subclonal selection results in an additional peak, B compared to the neutral case, C. Using a test to detect deviations from the neutral model, we introduced fitter mu-
tations at different time points with varying selection coefficients and found that early/and or very fit subclones results in detectable deviations from the neutral model, D. Tumours were simulated with a final population size of 106, each pixel rep-
resents the average value for the metric (area between curves, see methods) over 50 simulations.
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Figure 2
A Extracting the mutation rate, the number of mutations in the subclone and the frequency of the subclone from the VAF distribution allows us to first measure the age of a subclone which we then use to measure the selective advantage of a subclone. We used 
Bayesian statistical inference together with our simulation to measure these parameters, where we simulate our model many times with different parameters to find those parameters that produce synthetic datasets that closely match the target data, B. Applying our 
inference scheme to a simulated dataset with one subclone, C and a neutral simulated dataset E we were able to correctly identify the most probable number of subclones D, F. As well as accurately measure the effective mutation rate G, the number of mutations 
in the subclone H, the frequency of the subclone in the population I and its fitness advantage J. Simulation parameters: μ=5/division, β=0.25, time clone appears = 5.2 (tumour doubling times), number of mutations in clone = 149, 1+s=1.8 (bH=0.69, dH = 0.52, bF = 
0.733, dF = 0.42), frequency of subclone = 0.49, final population size = 105. Red line in panels C and E are the median histograms from the simulations that passed the ABC inference, shaded areas are the 95% intervals.
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Figure 3
One sample from a lung adenocarcinoma dataset appeared to have a subclonal cluster A, our inference scheme identified a model with 1 clone as the most probably with a Bayes Factor of 9.1 in favour 
of this model over the neutral model. We inferred a median fitness advantage of 1+s~1.3, that is the clone grows 30% faster than the host tumour population C, and an effective mutation rate of 
20/division/exome C. We found the stomach cancer sample pf144 to be consistent with a neutral model, D and sample pfg116 to be consistent with 1 subclone, although the subclone appears to be ob-
scured by the clonal cluster E. Across 4 stomach cancer samples that showed evidence of a single subclone we observed similar fitness values F.
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Figure 4
We used a Moran model to compare the dynamics between fixed size populations and growing population, A, and found that in fixed size population selection can be more rapid C. We simulated a moran model with N=100, and in-
troduced a mutation at N=100 in the growing population so in both models the initial frequency of the mutation f0=1/100, clone has fitness advantage 1+s=0.5. Then measured the frequency at a later time fT, in the fixed population 
size the ratio fT/f0 increases quicker than in the growing population (p<0.001). The moran model can also produce VAF histograms similar to the neutral case, D (no selection, 300 generations)  and the non neutral case E (1+s = 2, 
number of generations = 10). However simulating a tumour that grows logisitically and transitions into a moran model B, even when the population followed a moran model for 20 times longer than it was in the growth phase, the main 
signature of the VAF distribution is that of exponential growth given we observe no differences in our neutrality metric F, or the inferred mutation rate G.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2016. ; https://doi.org/10.1101/096305doi: bioRxiv preprint 

https://doi.org/10.1101/096305
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00 0.05 0.10 0.15
1−R2

D
en

si
ty

0.0 0.2 0.4
Kolmogorov Distance

D
en

si
ty

Neutral
Non−neutral

0.0 0.1 0.2 0.3
Area

D
en

si
ty

0 2 4
Euclidean distance

D
en

si
ty

5% FPR

Figure S1
Taking 105 neutral simulations and 105 non neutral simulations (100X ‘sequencing ’ depth) with 
a subclone with frequency greater than 20% and smaller than 70% we found that all metrics 
had significantly different distributions.
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Figure S2
ROC analysis showed that the ability to detect deviations from the neutral model depends on the frequency of the subclone and that the area metrics is the 
most performant as it showed the largest area under the curve (see table S2 for values). 
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Figure S3
Applying our method to the 4 other samples from patient 4990 we found them to all be consistent with a neutral model with bayes factors 
in favour of the neutral model over the 1 subclone model ranging from 5.2 to 21.8 (see table S3).
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Figure S4
Copy number profiles for the 5 lung adenocarcinoma samples. Sample 4990-12 appears to have a 
CNA not present in the other samples.
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Figure S5
Inferred subclonal structure from 8 gastric cancers. 3 showed strong evidence of a subclonal population, while 5 were consistent with a neutral evolutionary model.
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Figure S6
Time subclone emerged and selective advantage of subclones for the 4 samples 
where we identified subclonal population under differential selection. Points are 
median values and lines are 95% credible intervals.
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Figure S7
MCMC fits to the clonal clusters of the gastric cancer samples. We fitted 
Beta-Binomial and Binomial models to the right hand side of the clonal 
clusters.
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Figure S8
Simulated tumour under neutral growth in silico sequenced to 25X, 50X, 100X and 250X, A. Simulated tumour under non-neutral growth in silico sequenced to 25X, 50X, 100X and 250X B. Subclonal structure becomes more obscured as the depth of sequencing 
decreases. We required 5 “reads” to be observed for the variant to be detected. So the detection limit is 5/depth, so for 100X sequencing the limit is 5%.
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Figure S9
We ran a large number of simulations with a single subclone 
where the probability that a new lineage survives, β is different 
between the background host population and the subclone. We 
then measured the mutation rate by fitting a linear model to the 
left hand peak. The % error on the inferred mutation rate 
increases as the difference between β values increases but the 
mean error is not more than 50% even when ∆β=0.5.
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Figure S10
For all samples identified with a subclonal population, posterior distribution for the relative fitness as a function of the assumed final population size.
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Figure S11
Simulated neutral simulation A and simulated simulation with 1 subclone C. To accept or reject the neutral model we tested 
a number of metrics where we compared the data (blue line) to the universal neutrality curve (red line), B & E.  We tested 
the area between the curves (shaded grey area), the Kolmogorov distance (orange line) and the Euclidean distance be-
tween all points on the two curves.
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Figure S12
MCMC fits to the clonal clusters of the lung adenocarcinoma samples. We fitted Beta-Binomial and Binomial models to 
the right hand side of the clonal clusters.
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