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Abstract 

A wide variety of sensory studies have shown that cortical neural activity varies 

dramatically across trials. This trial-by-trial neural variability is relatively large in the 

pre-stimulus period and considerably smaller (quenched) following stimulus 

presentation. The magnitude of neural variability affects behavior such that 

perceptual performance is better on trials and in individuals where variability 

quenching is larger. Are neural variability magnitudes transient states that change 

with time, attentional demands, and/or cognitive requirements? Or are they static 

individual traits? Here, we show that neural variability magnitudes are remarkably 

consistent across four different tasks with different attentional and cognitive 

demands as well as across experimental sessions separated by one year. These 

results reveal that, in adults, neural variability magnitudes are solidified individual 

traits, which change little with behavioral state or time, and may predispose 

individual subjects to exhibit distinct behavioral capabilities.   

 

Significance statement  

Brain activity varies dramatically from one moment to the next. Recent research has 

revealed that differences in the magnitude of trial-by-trial neural variability can 

explain differences in behavioral performance across subjects. Do neural variability 

magnitudes represent flexible states that are under the control of an individual or 

are they static individual traits? By comparing neural variability magnitudes across 

four different experiments with different attentional and cognitive demands, and 

across two experimental sessions separated by one year, we demonstrate that 
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neural variability magnitudes are remarkably consistent individual traits. We suggest 

that the magnitude of neural variability may predispose individual subjects to exhibit 

different behavioral capabilities. 

 

Introduction 

Neural activity in the mammalian brain is notoriously variable/noisy over time 

(Vreeswijk and Sompolinsky, 1996; Faisal et al., 2008). This variability is apparent 

across trials before the presentation of a stimulus (i.e., ongoing variability) and also 

after the presentation of a stimulus (i.e., stimulus-evoked variability) (Arieli et al., 

1996; Churchland et al., 2010; Goris et al., 2014). Recent research has shown that 

ongoing neural variability is considerably larger than stimulus-evoked variability, 

thereby demonstrating that sensory stimulation reduces (“quenches”) ongoing 

neural variability (Churchland et al., 2010). Such variability quenching was reported 

consistently across studies examining a variety of cortical areas and arousal states, 

while using different types of stimuli, and when measuring neural activity with 

electrophysiology in animals (Monier et al., 2003; Finn et al., 2007; Mitchell et al., 

2007; Churchland et al., 2010, 2011; Hussar and Pasternak, 2010) or neuroimaging in 

humans (He, 2013; He and Zempel, 2013; Schurger et al., 2015).  

Several lines of evidence show that neural variability has a strong impact on 

behavioral performance. First, larger variability quenching is associated with better 

perceptual performance, whether examined across trials (Schurger et al., 2015) or 

across individual subjects (Arazi et al., 2017). Second, actively allocating attention to 

a visual stimulus improves behavioral performance primarily by reducing the trial-by-
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trial response variability of single neurons (Mitchell et al., 2007) and the 

shared/correlated variability across the local neural population (Cohen and 

Maunsell, 2009; Mitchell et al., 2009). Third, increasing dopamine and 

norepinephrine levels increases the magnitude of neural variability in both humans 

(Garrett et al., 2015) and animals (Aston-Jones and Cohen, 2005; Sakata et al., 2008) 

and generates behavior that is more exploratory (variable) (Aston-Jones and Cohen, 

2005).  

While neural variability is under the flexible control of attention and 

neuromodulation to a certain extent, many of the mechanisms that generate and 

govern neural variability are likely to be a product of individual genetics and early 

development. For example, mechanisms that govern the reproducibility of neural 

activity by maintaining stable excitation-inhibition balances (Turrigiano, 2011) and 

reliable synaptic transmission (Ribrault et al., 2011), are the product of individual 

genetics and environmental exposure during early critical periods (Hensch, 2005; 

Takesian and Hensch, 2013). Since individual subjects have different genetics and 

experience different environments, one may expect intrinsic neural variability 

magnitudes to differ across individuals and potentially predispose them to different 

behavioral capabilities.  

To determine whether neural variability magnitudes of individual adult subjects are 

flexible or static, we measured neural variability with EEG while subjects performed 

four tasks that differed in their structure, stimulus, attentional demands, and 

cognitive requirements. These experiments allowed us to quantify neural variability 

across trials where the subjects’ attention was either diverted away from the 
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stimulus (to an unrelated task) or focused on the stimulus using tasks with varying 

cognitive requirements. The same subjects performed all four experiments in two 

experimental sessions separated by a year. This experimental design enabled us to 

quantify individual neural variability magnitudes in each of the experiments and 

experimental sessions. By examining the consistency of individual neural variability 

magnitudes across experiments and over time, we determined whether these 

measures reflect flexible states or static individual traits. 

 

Materials and Methods  

Subjects. Twenty-four subjects (eight males, mean age during the first session= 23.7 

years, SD= 1.4) took part in this study. All subjects had normal or corrected-to-

normal vision. The study was approved by the Ben-Gurion University Internal Review 

Board.  Subjects provided written informed consent during both experimental 

sessions and were either paid for their participation or received research credit.  

Experimental design. All subjects completed four experiments in each of the two 

experimental sessions. The gap in time between the first and the second session was 

12.3 months on average (SD = 1.1). The study was performed in a dark and sound 

proof room. The stimuli were presented using MATLAB (Mathworks, Inc., USA) and 

Psychtoolbox (Brainard, 1997).  

Checkerboard experiment: The visual stimulus consisted of a checkerboard annulus 

with an inner radius of 0.6° visual angle and an outer radius of 3.7° visual angle. The 

experiment contained 600 trials: 400 trials with the stimulus and 200 trials where the 

stimulus was omitted. The stimulus was presented for 50ms and followed by a 
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randomized inter-trial interval lasting 750-1200ms. The experiment also included an 

orthogonal color-detection task at fixation, which was intended to divert attention 

away from the checkerboard stimulus. Subjects were instructed to press a key 

whenever the black fixation cross changed its color to gray. The experiment 

contained 80 random color changes, which lasted 30ms and subjects had one second 

to respond. Correct and incorrect responses were indicated by changing the fixation 

cross to green or red, respectively. 

Choice reaction time (CRT) experiment: A black triangle or a circle was presented at 

the center of the screen for 300ms on each trial. Subjects were instructed to press 

the right or left arrow keys, respectively, as quickly as possible using their right index 

finger. Each trial was followed by an inter-trial interval of 1200ms. A total of 200 

trials were presented, 100 trials with each of the two stimuli.  

Go-no-go experiment: Stimuli and structure were identical to those described in the 

CRT experiment, except that participants were instructed to press the spacebar as 

quickly as possible with their right index finger whenever they saw a circle ( “go” 

trial) and not when the triangle was presented (“no go” trial). A total of 300 trials 

were presented and 80% of the trials contained the “go” stimulus. 

2-back experiment: Stimuli were composed of 4 Chinese letters, presented at the 

center of the screen and participants were asked to press the "J" key whenever the 

current letter matched the one that was presented 2 trials before. Each letter was 

presented for 500ms and followed by an inter-trial interval of 500ms. A total of 300 

trials were presented with 20% of them containing a 2-back repeat. 
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EEG and eye tracking recordings. EEG data were recorded using a 64-channel 

BioSemi system (Biosemi Inc., Netherlands), connected to a standard EEG cap 

according to the international 10-20 system. Data were referenced to the vertex 

electrodes. Electrooculography (EOG) was recorded using two electrodes at the 

outer canthi of the left and right eyes and one electrode placed below the right eye. 

In the checkerboard experiment, the position of the right eye was recorded using an 

eye-tracker (EyeLink 1000, SR-research) at a sampling rate of 1000Hz. 

EEG preprocessing. Data was analyzed using Matlab (Mathworks, Inc.) and the 

EEGLAB toolbox (Delorme and Makeig, 2004). Continuous EEG data was down 

sampled to 512Hz, filtered using a 1-40 Hz band pass filter, and re-referenced to the 

bilateral mastoid electrodes. EEG epochs were extracted using a time window of 

700ms (200ms pre-stimulus to 500ms post-stimulus) and baseline correction was not 

performed so as not to alter trial-by-trial variability in the pre-stimulus interval. In 

the checkerboard experiment only trials where stimulus was presented were 

extracted, in the CRT experiment trials with both stimuli (circle or triangle) were 

extracted, in the go-no-go experiment only the “go” trials were extracted and in the 

2-back experiment trials with the four different stimuli (Chinese letters) were 

extracted. Epochs containing absolute amplitudes that exceeded 70µV or where the 

power exceeded 25db in the 20-40Hz frequency range were identified as containing 

eye blinks or muscle artifacts, respectively, and were removed from further analysis.  

In the checkerboard experiment identification of eye blinks was confirmed by eye 

tracking; trials containing horizontal or vertical eye movements that exceeded 1.5 SD 

of the mean were identified as trials where fixation was not maintained (i.e. trials 

containing saccades) and excluded from EEG analyses. Mean number of trials across 
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subjects and sessions after trials rejection in the four experiment was 249 trials in 

the checkerboard experiment (SD=50), 146 trials in the CRT experiment (SD=39), 161 

trials in the go-no-go experiment (SD=53), and 254 trials in the 2-back experiment 

(SD=46). The mean number of trials did not differ between the first and second 

experimental sessions.    

EEG data analysis. Trial by trial variability was computed for each time-point in the 

extracted epochs (-200 to 500ms) for each of the 64 electrodes, in each subject 

separately. Trials from the first and second sessions were analyzed separately. 

Absolute level of trial-by-trial variability in the pre-stimulus interval was computed as 

the mean variance within a time window of -200ms and 0ms pre-stimulus. Absolute 

level of trial-by-trial variability in the post-stimulus interval was computed as the 

mean variance within a time window of 150-400ms post-stimulus.  

Relative trial-by-trial variability was computed by converting the variability time 

courses to percent change units relative to the mean trial-by-trial variability in the 

pre-stimulus period (-200 to 0ms). We then estimated variability quenching for each 

subject in each task and session by computing the difference in variability between 

the pre-stimulus period (-200 to 0ms) and post stimulus period (150 to 400ms). We 

focused our analyses on the four occipital electrodes (O1, O2, PO7 and PO8) with the 

strongest visual responses. 

To ensure that changes in variability were not driven by changes in the mean EEG 

activity, we computed the coefficient of variation (CV) by dividing the magnitude of 

variability by the area under the curve of the mean ERP response (i.e., the ERP 

amplitude). This was computed separately for the pre (-200 to 0ms) or post (150 to 
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400ms) stimulus intervals. We then computed CV quenching as the relative change 

in the CV between the pre and post stimulus periods (in units of percent change). To 

examine the temporal dynamics of the CV, we computed it in the same manner, 

while using a sliding window with a width of 50ms and overlap of 5ms (Figure 7).  

Behavioral data analysis. Mean accuracy, mean reaction time (RT) and reaction time 

variability (across trials) was computed for each subject and each session, in CRT, go-

no-go and two-back tasks as well as the color-detection task in the checkerboard 

experiment. The first 10 trials in each experiment and trials with RT below 200ms 

were excluded from the analysis. Trials with incorrect responses were excluded from 

the RT analyses.    

Statistical Analysis. We assessed relationships across measures using Pearson's 

correlations. The statistical significance of the correlation coefficients was assessed 

with a randomization test where we shuffled the labels of the subjects before 

computing the correlation coefficient. This procedure was performed 10,000 times 

while shuffling the labels across subjects randomly each time to generate a null 

distribution for each pair of EEG/behavioral measures. For the true correlation 

coefficient to be considered significant it had to be higher than the 95th percentile or 

lower than the 5th percentile of this null distribution (i.e., equivalent to a p-value of 

0.05 in a one tailed t-test). Comparisons across experiments/tasks were performed 

using a one-way ANOVA with task as the only factor, followed by post hoc Tukey’s 

tests when the initial result indicated significant differences.   

Electrode offset variability. The Biosemi EEG system utilizes active electrodes, which 

do not yield a measure of impedance. Instead, fluctuations in electrode offset (i.e. 
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slow changes in the voltage potential over time) are considered the best indication 

for the quality of EEG recording (Kappenman and Luck, 2010). We, therefore, 

computed the electrode offset variability across trials for each subject during each of 

the experiments in each experimental session. We computed the offset value for 

each trial, the variability across trials in each of the four examined electrodes, and 

finally the mean across electrodes in each experiment. We then correlated offset 

variability with the EEG variability measures to check if differences in the quality of 

EEG recordings across individuals could explain our results.   

Gaze variability. Gaze position was measured during the checkerboard experiment 

only. We computed the distance from the fixation cross at each time point from 

stimulus onset to 500ms post stimulus, then computed the standard deviation across 

trials for each time point, and finally averaged across all time points (0-500ms) to 

generate a single measure of gaze variability per subject. We correlated gaze 

variability across the first and second sessions to determine whether individual 

subjects exhibited reproducible gaze variability across sessions. Three subjects were 

excluded from this analysis due to difficulties in the calibration process of the eye 

tracker in one of sessions.  

 

Results 

Twenty-four subjects completed two experimental sessions separated by one year. 

Each session included four experiments that differed in their structure, stimulus, 

attentional demands, and cognitive loads. In the first experiment, subjects passively 

observed a checkerboard annulus on each trial, while their task was to identify and 
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report infrequent color changes of the fixation cross. This enabled us to measure 

neural variability magnitudes to an un-attended stimulus (i.e., the checkerboard). In 

the second experiment, subjects performed a choice reaction time (CRT) task where 

they responded with one button to a circle stimulus and with another button to a 

triangle stimulus. This enabled us to measure neural variability magnitudes to an 

attended stimulus during a very easy task. In the third experiment, subjects 

performed a go-no-go task where they responded only to the circles (go trials) and 

not to the triangles (no-go trials). This enabled us to measure neural variability 

magnitudes to an attended stimulus during a somewhat harder task that required 

response inhibition. In the final experiment, subjects performed a 2-back task where 

they were presented with alternating Chinese letters and instructed to respond 

whenever the current letter matched the letter that was presented two trials before. 

This enabled us to measure neural variability magnitudes to an attended stimulus 

during a difficult working memory task. 

Differences in the attentional and cognitive demands of the four tasks were clearly 

evident in the behavioral performance of the subjects (Figure 1). One way ANOVA 

analyses demonstrated that there were clear differences in the accuracy rates 

(𝐹(3,92) = 99.1, 𝑝 =. 1𝑥10−27), mean reaction times (𝐹(3,92) = 56.7, 𝑝 =. 8𝑥10−20), 

and reaction time variability (𝐹(3,92) = 131.9 , 𝑝 =. 3𝑥10−31) across the four tasks. 

Post-hoc Tukey’s tests revealed that there were significant differences across all 

pairs of tasks (𝑝 < 0.01 for all behavioral measures), except for the CRT and Go-no-

go tasks. Specifically, accuracy rates were higher, mean reaction times were lower, 

and reaction time variability was lower in the CRT and Go-no-go tasks as compared 

with the color-detection task in the Checkerboard experiment and the 2-back task. In 
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addition, accuracy rates were significantly higher, mean reaction times were lower, 

and reaction time variability was lower in the color-detection task as compared with 

the 2-back task. This demonstrates that the CRT and Go-no-go tasks were easier than 

the color-detection and 2-back tasks and that the 2-back task was harder than the 

color-detection task. 

Note that in the Checkerboard experiment the relatively difficult color-detection task 

diverted the subjects’ attention away from the checkerboard stimulus, thereby 

allowing us to quantify trial-by-trial neural variability to an unattended stimulus. In 

contrast, the 2-back task required that subjects attend the stimulus, thereby allowing 

us to quantify trial-by-trial neural variability to a strongly attended stimulus. 

 

 

Figure 1: Behavioral performance measures. Mean across subjects and sessions for accuracy 

(A), reaction time (B) and reaction time variability (C) in each of the four tasks. Error bars: 

standard error of the mean across subjects. Asterisks: Significant differences across 

experiments (Post-hoc Tukey’s tests, 𝑝 < 0.01). One asterisk: Significant differences 

between CB experiment and CRT or GNG experiments. Two asterisks: Significant differences 
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between 2B experiment and all other experiments. CB: checkerboard, CRT: choice reaction 

time, GNG: go-no-go, 2B: 2-back.  

 

Neural variability quenching  

We examined trial-by-trial neural variability as a function of time before and after 

stimulus presentation in each of the four experiments (Figure 2). Trial-by-trial 

variability was reduced (i.e., quenched) following stimulus presentation in all 

experiments and in both recording sessions performed a year apart. Variability 

quenching was sustained from 150 to 400ms after stimulus presentation and most 

evident in occipital electrodes (O1, O2, PO7 and PO8). We quantified variability 

quenching as the relative change (in units of percent change) between pre-stimulus 

(-200 to 0ms) and post-stimulus (150 to 400ms) periods, while focusing our analyses 

on the four electrodes noted above. 
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Figure 2: Temporal and spatial dynamics of trial-by-trial neural variability. Each time-course 

represents the changes in relative trial-by-trial variability (percent-change units relative to 

the pre-stimulus period) during the first (black) or second (grey) experimental session, which 

were separated by one year. Each panel displays the results of a different experiment. Gray 

background: 150-400ms post-stimulus period with sustained variability quenching that was 

selected for further analyses. Insets: topographic maps of variability quenching magnitudes 

during the 150-400ms window, demonstrating that quenching was strongest in occipital 

electrodes across all four experiments. 
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Neural variability is a stable individual trait 

We quantified three measures of trial-by-trial variability for each subject. Absolute 

trial-by-trial variability was quantified in the pre-stimulus (-200 to 0ms) and post-

stimulus (150-400ms) periods for each subject, in each of the four experiments, and 

each of the experimental sessions (see Materials and Methods). Variability 

quenching was quantified as the difference between variability magnitudes in the 

pre and post stimulus periods. All three measures of variability were strongly and 

significantly correlated across the two EEG recording sessions in each of the four 

experiments (𝑟(24) > 0.58, 𝑝 < 0.003, Figure 3). This demonstrates that the neural 

variability magnitudes of individual subjects barely changed over a one year period. 
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Figure 3: Individual neural variability magnitudes were consistent across experimental 

sessions separated by one year. Scatter plots present the magnitudes of variability 

quenching (A), pre-stimulus variability (B), and post-stimulus variability (C) in individual 

subjects during the first and second experimental sessions for each of the four experiments. 

The unity line is drawn for reference in each panel. Each point represents a single subject. 

Asterisks: significant correlation as assessed by a randomization test (𝑝 < 0.003). Pearson’s 

correlation coefficients and p-values are noted in each panel.  

 

Individual variability magnitudes were also strongly correlated across experiments.  

Given the strong correlations across sessions (Figure 3), we averaged each of the 

variability measures across the two sessions. We then compared individual variability 

magnitudes across experiment pairs. This analysis revealed strong, positive, and 

significant correlations across all pairs of experiments when examining variability 

quenching (𝑟(24) > 0.74, 𝑝 < 0.4𝑥10−4, Figure 4), pre-stimulus variability (𝑟(24) >

0.85, 𝑝 < 0.8𝑥10−7, Table 1), or post-stimulus variability (𝑟(24) > 0.89, 𝑝 =

0.4𝑥10−8, Table 1) magnitudes.  
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Figure 4: Individual variability quenching magnitudes were consistent across experiments.  

Scatter plots demonstrate the relationship between variability quenching magnitudes in 

each pair of experiments.  Each dot represents a single subject. The linear fit is drawn for 

reference in each panel. Asterisks: significant correlation as assessed by a randomization test 

(𝑝 < 0.0004). Pearson’s correlation coefficients are noted in each panel.  

 

 CB-CRT CB-GNG CB-2B CRT-GNG CRT-2B GNG-2B 

Pre 
stimulus 

r = 0.86 
p = 0.5*10-7 

r =0.93 
p = 0.8*10-10 

r = 0.86 
p = 0.7*10-7 

r = 0.96 
p = 0.3*10-10 

r = 0.89 
P=0.6*10-8 

r = 0.93 
p = 0.8*10-10 

Post 
stimulus 

r = 0.9 
p = 0.1*10-8 

r=0.9 
p = 0.2*10-8 

r = 0.89 
p = 0.3*10-8 

r = 0.95 
p = 0.1*10-11 

r = 0.9 
p = 0.1*10-8 

r = 0.94 
p = 0.1*10-10 

 

Table 1: individual magnitudes of pre-stimulus (top row) and post-stimulus (bottom row) 

neural variability were strongly correlated across experiments. Pearson’s correlation 

coefficients and p-values (as assessed by a randomization test) are noted for each pair of 

experiments. CB: checkerboard, CRT: choice reaction time, GNG: go-no-go, 2B: 2-back.  
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Differences in neural variability across tasks 

As demonstrated above, the four tasks examined in this study included different 

visual stimuli and imposed different cognitive and attentional demands (Figure 1). 

Since previous research suggests that neural variability should decrease with 

attentional load, we compared both variability quenching and absolute variability in 

the pre and post stimulus periods across the four tasks (Figure 5). While variability 

quenching was somewhat larger in the three experiments where the stimulus was 

attended (i.e., CRT, Go-no-go, and 2-back) as compared with the experiment where 

the stimulus was not (i.e., the checkerboard experiment), these differences were not 

statistically significant (𝐹(3,92) = 0.74, 𝑝 = 0.53, one way ANOVA). Neural variability 

in the pre-stimulus and post-stimulus periods were also not significantly different 

across tasks (𝐹(3,92) = 1.49, 𝑝 = 0.22;  𝐹(3,92) = 0.44, 𝑝 = 0.72; respectively, one 

way ANOVA).  

Most importantly, differences in neural variability magnitudes across subjects were 

considerably larger than differences across tasks. To demonstrate this, we computed 

the mean pair-wise differences in variability across subjects (within each task) and 

the mean pair-wise differences in variability across tasks. Between-subject 

differences in neural variability magnitudes were significantly larger than between-

task differences in neural variability magnitudes when comparing pre-stimulus 

variability (two tailed t-test, 𝑝 = 0.008), post-stimulus variability (two tailed t-test , 

𝑝 = 0. 5𝑥10−5), and variability quenching (two tailed t-test , 𝑝 = 0.2𝑥10−6). 
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Figure 5: Neural variability differences across experiments.  (A) Neural variability quenching. 

(B) Neural variability in the pre-stimulus interval (-200 to 0ms). (C) Neural variability in the 

post-stimulus interval (150 to 400ms). (D) Mean differences in the magnitudes of neural 

variability across tasks (black bars) and across subjects (gray bars). Error bars: Standard error 

of the mean across subjects. CB: checkerboard, CRT: choice reaction time, GNG: go-no-go, 

2B: 2-back. Asterisks: significant differences (two tailed t-test, 𝑝 < 0.001).                                                                                                                                                                                                                                                                                                                                                                                            

 

Neural variability and behavioral performance 

We found significant relationships between individual neural variability magnitudes 

and accuracy rates in the 2-back working memory experiment (Figure 6A). Accuracy 

rates were positively correlated with pre-stimulus variability magnitudes (𝑟(24) =

0.45, 𝑝 = 0.025; uncorrected) and post-stimulus variability magnitudes (𝑟(24) =
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0.44, 𝑝 = 0.033; uncorrected). Accuracy rates were also negatively correlated with 

variability quenching magnitudes (𝑟(24) = −0.4, 𝑝 = 0.049; uncorrected). Note that 

variability quenching magnitudes are negative such that larger (more negative) 

quenching was associated with better accuracy. Taken together, these results 

suggest that individuals with larger pre-stimulus variability who quench more, exhibit 

better cognitive performance. 

All other correlations between neural variability magnitudes and behavioral 

performance measures (i.e., accuracy, mean reaction time, and reaction time 

variability) were not significant (Figure 6 & Table 2).  Note that the 2-back task was 

the hardest task in our study with a mean accuracy rate of 60% across subjects 

(Figure 1).  

 

Figure 6: Relationships between neural variability and behavior. Pearson’s correlation 

coefficients were calculated between each of the three behavioral measures: accuracy (A), 

mean RT (B), RT variability (C) and each of the three variability measures: variability 

quenching (black bars), pre stimulus variability (dark gray bars) and post stimulus variability 

(light gray bars). Asterisks indicate significant correlations as assessed by a randomization 

analysis (𝑝 < 0.05, uncorrected). CB: checkerboard, CRT: choice reaction time, GNG: go-no-

go, 2B: 2-back.  
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 Accuracy Mean RT RT variability 

 Quench Pre Post Quench Pre post Quench Pre Post 

CB r=0.14 

p=0.49 

r=-0.07 

p=0.79 

r=-0.01 

p=0.96 

r=-0.05 

p=0.81 

r=0.18 

p=0.43 

r=0.14 

p=0.5 

r=-0.16 

p=0.45 

r=0.04 

p=0.87 

r=0 

p=0.97 

CRT r=0.26 

p=0.22 

r=-0.23 

p=0.28 

r=-0.22 

p=0.3 

r=0.1 

p=0.63 

r=-0.04 

p=0.86 

r=0.08 

p=0.71 

r=-0.03 

p=0.87 

r=0.06 

p=0.77 

r=0.13 

p=0.54 

GNG r=0 

p=0.97 

r=0.05 

p=0.81 

r=-0.1 

p=0.64 

r=-0.12 

p=0.57 

r=0.23 

p=0.28 

r=0.09 

p=0.69 

r=0.04 

p=0.84 

r=0.08 

p=0.71 

r=0.03 

p=0.88 

2B r=-0.4* 

p=0.049 

r=0.45* 

p=0.025 

r=0.44* 

p=0.033 

r=-0.09 

p=0.68 

r=-0.05 

p=0.8 

r=-0.26 

p=0.21 

r=-0.16 

p=0.45 

r=0 

p=0.97 

r=-0.19 

p=0.37 

 

Table 2: Relationship between measures of neural variability and behavioral measures. 

Pearson’s correlation coefficients and p-values for each behavioral (accuracy, mean RT or RT 

variability) and each variability (Quenching, pre-stimulus or post stimulus) measure.  

Asterisks indicate significant correlations as assessed by a randomization analysis (𝑝 < 0.05, 

uncorrected). CB: checkerboard, CRT: choice reaction time, GNG: go-no-go, 2B: 2-back.  

 

Signal strength and trial by trial variability 

Previous studies have demonstrated that trial-by-trial variability is associated with 

the mean strength of the neural response (Churchland et al., 2010). To demonstrate 

that the findings described above are independent of between-subject differences in 

the mean EEG response amplitudes, we also performed the analysis using the 

coefficient of variation (CV: trial-by-trial variability divided by the mean EEG 

response, see Materials and Methods). As with trial-by-trial variability (Figure 2), the 

CV also exhibited a strong reduction following stimulus presentation, within the 

same time-window, across all four experiments (Figure 7).   

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 19, 2017. ; https://doi.org/10.1101/096198doi: bioRxiv preprint 

https://doi.org/10.1101/096198


22 
 

Most importantly, computing the CV in equivalent pre (-200 to 0ms) and post (150 to 

400ms) stimulus periods for each of the subjects revealed significant correlations 

across sessions (Quenching: 0.61 < 𝑟(24) < 0.82, pre-stimulus: 0.48 < 𝑟(24) <

0.77, post stimulus: 0.61 < 𝑟(24) < 0.76;  𝑝 < 0.02) and across all task pairs 

(Quenching: 0.59 < 𝑟(24) < 0.91, pre-stimulus: 0.41 <  𝑟(24) < 0.65, post 

stimulus: 0.5 <  𝑟(24) < 0.78;  𝑝 <  0.05) except for the following: Checkerboard 

and CRT (Quenching: 𝑟(24)  =  0.37, 𝑝 =  0.07; pre-stimulus: 𝑟(24)  =  0.26, 𝑝 =

 0.23; post-stimulus: 𝑟(24)  =  0.25, 𝑝 = 0.24), Checkerboard and Go-no-go (post-

stimulus: 𝑟(24)  =  0.28, 𝑝 =  0.18), and Checkerboard and 2-back (pre stimulus: 

𝑟(24)  =  0.37, 𝑝 =  0.08; post-stimulus: 𝑟(24)  =  0.36, 𝑝 =  0.08). Note that even 

in these exceptions, correlations were always positive and most were close to 

significant. 
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Figure 7: Temporal dynamics of the coefficient of variation (CV) in percent change units 

relative to pre-stimulus period. Each panel presents results from a single experiment in the 

first (black) and second (gray) experimental sessions. Gray background: time window (150-

400ms) of sustained variability quenching that was selected for the previous analyses 

(Figures 2-5).  

 

Alternative sources of trial-by-trial variability  

We examined whether non-neural sources of variability, such as gaze variability or 

the quality of EEG recordings could explain our results regarding consistency across 

tasks or sessions. We utilized eye tracking data from the checkerboard experiment to 

demonstrate that individual magnitudes of neural variability quenching were not 

significantly correlated with gaze position variability in either the first (𝑟(21)  =

 −0.14, 𝑝 =  0.26) or second (𝑟(21)  =  −0.28, 𝑝 =  0.1) recording session. 

Furthermore, re-running our analysis after regressing out individual measures of 

gaze position variability revealed equivalent results to those described above (Figure 

3&4). Specifically, variability magnitudes remained correlated over time (Quenching: 

𝑟(21)  =  0.78, 𝑝 = 0.3𝑥10−4;  Pre stimulus: 𝑟(21)  =  0.76, 𝑝 = 0.6𝑥10−4; Post 

stimulus: 𝑟(21)  =  0.6, 𝑝 = .0036). This reassured us that the consistent 

magnitudes of neural variability described above were not associated with the ability 

of the subjects to maintain fixation. 

To demonstrate that our results were not due to individual differences in the quality 

of the EEG recordings, we computed the electrode offset variability (see Materials 

and Methods). Electrode offset variability, was not significantly correlated with the 
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magnitude of variability quenching in any of the experiments performed in either the 

first or second session (−0.26 < 𝑟(24) < 0.21, 𝑝 > 0.11). Furthermore, re-running 

our analysis after regressing out individual magnitudes of electrode offset variability 

revealed equivalent results to those described above (Figure 3&4). Specifically, 

variability magnitudes remained correlated over time (Quenching: 0.8 < 𝑟(24 ) <

0.89, Pre stimulus: 0.76 < 𝑟(24) < 0.92, Post stimulus: 0.59 < 𝑟(24) <  0.92;  𝑝 <

0.003) and across tasks (Quenching: 0.57 <  𝑟(24)  <  0.93,  Pre stimulus: 0.73 <

 𝑟(24)  <  0.76,  Post stimulus: 0.76 <  𝑟(24)  <  0.94, 𝑝 <  0.004). 

 

Discussion 

Our results demonstrate that neural variability magnitudes differ across adult 

subjects in a consistent and reproducible manner over long periods of time and 

across tasks with dramatically different attentional and cognitive demands. This was 

true for neural variability magnitudes in either pre-stimulus or post-stimulus periods 

and for variability quenching magnitudes (Figures 3&4, Table 1). These consistent 

individual differences in the magnitude of neural variability were much larger than 

differences across the tasks (Figure 5) despite the use of tasks with different 

structures, stimuli, and considerably different attentional and cognitive demands 

(Figure 1). Furthermore, when examining the task with the highest cognitive 

demands in our study, a two-back working memory task, we found that individuals 

with larger pre-stimulus variability, post-stimulus variability, and larger variability 

quenching exhibited more accurate detection of letter repeats. Taken together, 

these results reveal that neural variability magnitudes are mostly static individual 
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traits that can be modified only slightly by mechanisms of attention or 

neuromodulation, yet can explain differences in behavioral capabilities across 

subjects when the task is demanding. 

Neural variability: state or trait? 

To what degree is neural variability under flexible behavioral control? Previous 

studies have reported that actively allocating attention to a visual stimulus reduces 

the trial-by-trial response variability of single neurons (Mitchell et al., 2007) and the 

shared/correlated variability across the local neural population (Cohen and 

Maunsell, 2009; Mitchell et al., 2009). Indeed, it has been proposed that attention 

improves behavioral performance primarily by reducing correlated trial-by-trial 

variability/noise (Cohen and Maunsell, 2009). Additional studies have reported that 

raising the levels of dopamine and/or norepinephrine increases the magnitude of 

neural variability in both humans (Garrett et al., 2015) and animals (Aston-Jones and 

Cohen, 2005; Sakata et al., 2008). It has been suggested that these neuromodulatory 

mechanisms are associated with activation of exploration versus exploitation states. 

In the exploration state, the animal behaves in a more variable manner that enables 

learning through trial-and-error, whereas in the exploitation state the animal 

behaves in a more reproducible manner in order to exploit previously learned 

information.  

While attention and neuromodulation are invaluable mechanisms for flexibly 

changing the magnitude of trial-by-trial neural and behavioral variability, individual 

differences in neural variability magnitudes are also governed by many other 

neurophysiological mechanisms. At the single cell level, these include the noisy 
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response characteristics of peripheral sensors (Schneeweis and Schnapf, 1999), the 

stochastic nature of synaptic transmission (Ribrault et al., 2011), and the dynamic 

changes caused by neural adaptation (Clifford et al., 2007) and synaptic plasticity 

(Feldman, 2009). At the neural network level, additional variability is generated by 

adjustments of the excitation/inhibition balance (Turrigiano, 2011) and continuous 

interaction and competition across large neural populations (Kelly et al., 2008). 

These mechanisms are likely to be the product of multiple genetic and 

environmental factors that create and modify developing neural circuits and 

eventually solidify their structure and function during specific critical periods in 

development (Hensch, 2005).   

Our results reveal that there are large differences in neural variability magnitudes 

across adult subjects and clearly show that individual neural variability magnitudes 

are remarkably consistent across tasks and over time. This suggests that they mostly 

represent individual traits rather than flexible states. We speculate that examining 

these measures in young children would be particularly interesting for understanding 

how neural variability may change during development and then stabilize in 

adolescence or adulthood. Analogous behavioral research in humans (MacDonald et 

al., 2006) and birds (Ölveczky et al., 2011) has already shown that behavioral 

variability diminishes during early development and stabilizes in adulthood. 

The behavioral significance of neural variability 

There is ongoing debate regarding the potential behavioral significance of different 

measures of neural variability. On the one hand, several studies have demonstrated 

that smaller trial-by-trial neural variability is associated with better perceptual and 
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cognitive performance. For example, fMRI studies have reported that trial-by-trial 

variability is smaller on trials where a threshold-level stimulus is detected (Schurger 

et al., 2010) and on trials where a stimulus is later remembered (Xue et al., 2010) . 

Similarly, MEG and EEG studies have reported that neural variability quenching is 

larger on trials where a threshold-level stimulus is detected (Schurger et al., 2015) 

and in individuals with lower (better) contrast discrimination thresholds (Arazi et al., 

2017) . Furthermore, excessive neural variability has been reported in different 

disorders including autism (Milne, 2011; Dinstein et al., 2012), ADHD (Gonen-Yaacovi 

et al., 2016), and schizophrenia (Yang et al., 2014), while electrophysiology studies 

have reported that neural responses are more variable in elderly animals (Turner et 

al., 2005; Yang et al., 2009) and humans (Anderson et al., 2012) who exhibit cognitive 

decline. These results are in line with signal detection theory principles, which 

suggest that intrinsic variability/noise reduces the detection and discrimination 

abilities of a perceptual system (Green and Swets, 1966).   

Other studies, however, have reported that younger individuals exhibit larger fMRI 

time-course variability than elderly individuals (Garrett et al., 2010) and that this 

coincides with faster and more consistent responses when performing cognitive 

tasks such as perceptual matching, attentional cueing, and delayed match to sample 

(Garrett et al., 2013). It has been proposed that such increased ongoing variability 

may be beneficial for cognitive performance, because it allows for higher neural 

complexity and enables a neural network to flexibly switch between different states 

(McIntosh et al., 2008). A possible compromise between these potentially 

contradictory studies is that large ongoing neural variability together with large 

quenching may yield the best perceptual and cognitive performance(Schurger et al., 
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2015; Arazi et al., 2017). An important conclusion from both lines of research is that 

it is essential to carefully de-compose neural variability into distinct components 

such as ongoing variability and stimulus-evoked variability when examining 

relationships with behavioral measures (Dinstein et al., 2015). 

Our results also represent a potential compromise between the two views described 

above. We found significant positive correlations between the accuracy of 

performance on the two-back task and pre-stimulus neural variability magnitudes as 

well as a significant negative correlation with variability quenching magnitudes 

(Figure 6). This suggests that a combination of larger ongoing neural variability along 

with stronger variability quenching are associated with better behavioral 

performance. These effects were only found with respect to the two-back task, 

which was the hardest task in our study (Figure 1). We speculate that this evidence 

suggests that individual differences in neural variability magnitudes exhibit a 

behavioral impact mostly in tasks that involve considerable attentional and cognitive 

loads. 

Signal strength and trial-by-trial variability 

Previous electrophysiology studies have demonstrated that trial-by-trial variability 

scales with the mean amplitude of the examined neural responses (Shadlen and 

Newsome, 1994). To examine trial-by-trial variability independently of the mean 

response most electrophysiology studies, therefore, use the Fano Factor or the 

coefficient of variation (CV), which normalize trial-by-trial variability by the mean 

response (Churchland et al., 2010; Goris et al., 2014). Animal studies, however, have 

rarely examined the behavioral impact of neural variability magnitudes.  
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In contrast, human neuroimaging studies that have examined the relationship 

between response variability and behavior using fMRI and EEG have rarely reported 

CV (Garrett et al., 2013, 2015; He and Zempel, 2013; Gonen-Yaacovi et al., 2016; 

Arazi et al., 2017). Nevertheless, to relate our findings to both literatures, we carried 

out our analyses once using trial-by-trial variability measures and again using the CV 

measure. We found almost equivalent results in both cases, which revealed that 

large between-subject differences in variability magnitudes are consistent across 

experimental sessions and tasks even when normalizing trial-by-trial variability by 

the mean EEG response. Consistent differences in neural variability magnitudes 

across subjects are, therefore, likely to reflect differences in underlying physiological 

mechanisms that are specific to the variability of neural activity rather than the 

strength of neural activity.    

Measurement noise 

Measures of trial-by-trial neural variability may be biased by subject-specific 

measurement noise of non-neural origin. We examined two potential sources of 

non-neural variability in our study: eye-gaze variability (indicative of the stability of 

fixation across trials) and trial-by-trial variability in electrode offset (indicative of the 

stability of the EEG recording). We did not find any significant correlation between 

electrode-offset variability or gaze-position variability and neuronal measures of 

variability. Furthermore, regressing out individual magnitudes of electrode offset 

variability or gaze position variability did not alter the results. These additional 

analyses demonstrate that the individual magnitudes of trial-by-trial variability were 

not associated with these potential sources non-neural measurement noise. With 
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that said, additional studies examining the consistency of individual neural variability 

magnitudes across different neuroimaging techniques (e.g., fMRI and EEG) would be 

necessary for demonstrating the potential robustness of these findings across 

techniques with different types/sources of measurement noise.       

Conclusions and future directions 

This study adds to accumulating evidence demonstrating that neural variability 

measures of individual subjects are remarkably useful for understanding their 

individual behavioral capabilities. While neural variability is to some degree under 

flexible control of attention and neuromodulation, our results demonstrate that 

neural variability magnitudes are mostly consistent across distinct tasks and 

recording sessions. We, therefore, propose that neural variability magnitudes 

represent stable between-subject differences in fundamental neural characteristics 

that were likely forged by genetics and environmental exposures during early 

development. Revealing how neural variability magnitudes develop during childhood 

and how they may be manipulated in adulthood are likely to be of great interest for 

further basic and clinical research (Dinstein et al., 2015). 
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