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Abstract

Pooling neural imaging data across subjects requires aligning the record-
ings that come from different subjects. In magnetoencephalography (MEG)
recordings, sensors across subjects are poorly correlated both because of dif-
ferences in the exact location of the sensors, and structural and functional
differences in the brains. It is possible to achieve alignment by assuming that
the same regions of different brains correspond across subjects. However, this
relies on both the assumption that brain anatomy and function are well cor-
related, and the strong assumptions that go into solving the inverse problem
of source localization. In this paper, we investigated an alternative method
that bypasses source-localization. Instead, it analyzes the sensor recordings
themselves and aligns their temporal signatures across subjects. We used a
multivariate approach, multi-set canonical correlation analysis (M-CCA), to
transform individual subject data to a common neural representational space.
We evaluated the robustness of this approach using a synthetic dataset where
we had ground truth. We demonstrated that M-CCA performs better on an
MEG dataset than a method that assumes perfect sensor correspondence
and a method that applies source localization. Lastly, we described how the
standard M-CCA algorithm could be further improved with a regularization
term that incorporates spatial sensor information.
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1. Introduction
In neuroimaging studies, data are frequently combined from many subjects
to provide results that represent a central tendency across a population. To
achieve this, it is necessary to find an alignment between brain activities
recorded from different subjects. In MEG recordings, corresponding sensors
across subjects can be poorly correlated both because of differences in the
exact location of the sensors1 (i.e. different head position in the helmet), and
structural and functional differences in the brains.

It is possible to achieve alignment by assuming that the same regions of
different brains correspond across subjects. Corresponding brain regions are
found by first localizing brain sources for each subject. The most commonly
used source localization method computes the minimum-norm current esti-
mates (MNE) in an inverse modeling approach (Gramfort et al., 2014). On
a separate second step, typically using individual MRIs, the sources for in-
dividual subjects are morphed onto sources in a common ‘average’ brain2.
The resulting morphed sources are considered to correspond from subject to
subject. The validity of this approach depends both on the assumption that
brain anatomy and function are well aligned and on the strong assumptions
that go into solving the inverse problem of source localization. These steps
and assumptions are satisfactory as long as the errors in localization com-
bined with the distortions in morphing, and the subject-specific deviations
in timing, are small relative to the effects being investigated.

In this paper, we proposed the use of multi-set canonical correlation anal-
ysis (M-CCA) to transform individual subject data to a common neural rep-
resentational space where different subjects align. The transformation is
obtained by maximizing the consistency of different subjects’ data at cor-
responding time points (Kettenring, 1971). Our approach utilizes the rich
temporal information that MEG sensor data offers, and circumvents the need
to find anatomical correspondence across subjects. This gives many advan-
tages. Firstly, M-CCA does not rely on any assumptions that go into solving
the source localization problem. Secondly, M-CCA focuses on capturing dis-
tributed patterns of activity that have functional significance, and establishes
correspondence across subjects based on these patterns. Therefore, M-CCA

1Note that we use ‘sensor’ to indicate the magnetic coils outside of the head and ‘source’
to indicate the origin of the measured signal on the cortex.

2Typically the standard MNI305 brain is used.
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does not rely on the assumption that brain anatomy and functions are well
correlated. It simultaneously avoids three types of subject mis-alignment: 1)
the mis-alignment given the structural differences of the brains; 2) the sensor
location differences during MEG recordings across subjects; 3) the different
structural-function mappings in different subjects.

The output of the M-CCA analysis can be used in multiple ways. For
example, one might want to find the time windows over which the differences
between conditions are detectable in the neural signal (Norman et al., 2006).
M-CCA allows one to go from intra-subject classification to inter-subject
classification where one group of subjects can be used to predict another. M-
CCA may also be used to build a group model that studies the sequence of
temporal mental stages in a task (Anderson et al., 2016). Although temporal
data from individual subjects are too sparse to be analyzed separately, once
the data from all subjects are aligned, they can be combined to improve model
parameter estimation. Once important time windows of activity modulation
have been identified in such a group model, it is possible to go back to
individual subjects and observe the corresponding localized signals.

M-CCA has been applied previously in fMRI studies. Rustandi et al.
(2009) demonstrated an application of the M-CCA method to achieve suc-
cessful prediction across multiple fMRI subjects. Li et al. (2012) also re-
ported an application of M-CCA in integrating multiple-subject datasets in
a visuomotor fMRI study, where meaningful CCA components were recov-
ered with high inter-subject consistency. Correa et al. (2010) provided a
detailed review of the range of neuroimaging applications that would ben-
efit from the use of M-CCA. This includes not only a group fMRI anal-
ysis pooling multiple subjects, but also fusion of data from different neu-
roimaging modalities (i.e. fMRI, sMRI and EEG). The generalization of
M-CCA to MEG data is not straightforward given the very different tem-
poral resolutions of the two imaging modalities. In this paper, we outlined
the approach of applying M-CCA on MEG data, and then evaluated it using
a synthetic dataset (where we had ground truth). We demonstrated that
M-CCA performs better on an MEG dataset than a method that assumes
perfect sensor correspondence and a method that applies source localiza-
tion. We also showed how the standard M-CCA algorithm could be further
modified to take into account the similarity of M-CCA sensor mappings of
different subjects. A documented package has been made available to pre-
process data and apply M-CCA to combine data from different MEG subjects
(https://github.com/21zhangqiong/MEG_Alignment).
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2. Materials and Methods

2.1. MEG Experiment

Twenty individuals from the Carnegie Mellon University community com-
pleted the experiment, which was originally reported in Borst et al. (2016).
Two subjects were excluded from analysis (one fell asleep and one performed
subpar). All were right-handed and none reported a history of neurological
impairment. The experiment consisted of two phases: a training phase in
which subjects learned word pairs and a test phase in which subjects com-
pleted an associative recognition task. The test phase was scheduled the day
after the training phase and took place in the MEG scanner. During the test
phase subjects had to distinguish between targets which were learned word
pairs, and foils which were alternative pairings of the learned words. There-
fore, subjects needed to learn both the words and the associative information
of the words. Subjects were instructed to respond quickly and accurately.
There were four binary experimental factors: probe type (targets or foils),
word length (short or long), associative fan (one or two associates), and re-
sponse hand (left or right hand). Subjects completed a total of 14 blocks (7
with left-handed responses, 7 right-handed), with 64 trials per block. MEG
data were recorded with a 306-channel Elekta Neuromag (Elekta Oy) whole-
head scanner, which was digitized at 1 kHz, and later down-sampled to 100
Hz. More details of the experiment can be found in the original report of
this MEG dataset (Borst et al., 2016).

2.2. Alignment by Correspondence of Brain Sources

We compare M-CCA with two other methods. The first method assumes
that the same sensors correspond across subjects. The second method is to
perform source localization first, and then assume that the same sources cor-
respond across subjects. In MEG recordings, the measured magnetic signal
does not directly indicate the location and magnitude of cortical currents,
which can be found by projecting the sensor data onto the cortical surface
with minimum norm estimates (MNE). The MNE method attempts to find
the distribution of currents on the cortical surface with the minimum overall
power that can explain the MEG sensor data (Gramfort et al., 2014). This
is done by first constructing 3D cortical surface models from the subjects’
structural MRIs using FreeSurfer which are then manually co-registered with
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the MEG data (Dale et al., 1999; Fischl, 2012). A linear inverse operator
is used to project sensor data onto the source dipoles placed on the cortical
surface. These source estimates are then morphed onto the standard MNI
brain using MNE’s surface-based normalization procedure. Source estimates
on the standard MNI brain are thought to correspond across subjects. More
detailed for obtaining source localization with MNE over the current MEG
dataset can be found in the original report (Borst et al., 2016).

2.3. Alignment at the Neural Representational Space

This section outlines the method this paper proposes to align MEG subjects
using functional information. M-CCA is used to find the optimal transforma-
tion for each subject from the activity of 306 sensors to a common neural rep-
resentational space, where the inter-subject correlations of the transformed
data are maximized across subjects.

2.3.1. M-CCA

We first illustrate the simplest case where we look for correspondence over
datasets from two subjects instead of many subjects. Let X1 ∈ RT×m1 and
X2 ∈ RT×m2 be datasets from two subjects, with the same number of time
points T , and data dimensions m1 and m2, respectively. Both X1 and X2

have mean 0 for each column. The objective in canonical correlation analysis
(CCA) is to find two vectors h1 ∈ Rm1×1 and h2 ∈ Rm2×1 such that after the
projection y1 = X1h1 and y2 = X2h2, y1 and y2 are maximally correlated.
This is equivalent to:

argmax
h1,h2

ρ =
yT1 y2
‖y1‖‖y2‖

=
hT1R12h2√

hT1R11h1hT2R22h2
= hT1R12h2, where Rij = XT

i Xj.

There are N solutions to h(i) = [hT1 , h
T
2 ]

T obtained collectively in a gen-
eralized eigenvalue problem with i = 1, . . . , N , subject to the constraints
hT1R11h1 = hT2R22h2 = 1 (Borga, 1998). This results in N dimensions (each
referred as a CCA ‘component’, similar to a ‘component’ in principal compo-
nent analysis) in the common neural representational space with the trans-
formed data Y1 = [y

(1)
1 , y

(2)
1 , . . . , y

(N)
1 ] and Y2 = [y

(1)
2 , y

(2)
2 , . . . , y

(N)
2 ]. The

value of N does not exceed the smaller of m1 and m2. The resulting CCA
components in the common representational space are ranked in a decreas-
ing order of the between-subject correlations. The earlier CCA components

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/


are the more important ones and the later components can be removed. In
other words, canonical correlation analysis finds the shared low-dimensional
representation of data from different subjects.

M-CCA is an extension of CCA which considers more than 2 subjects.
The objective is similar to before, but now it needs to maximize the corre-
lations between every pair of subjects (i.e. inter-subject correlations) simul-
taneously. Let Xk ∈ RT×mk with k = 1, . . . ,M be datasets from M subjects
(M > 2), each with mean 0 for all columns. The objective in M-CCA is to
find M vectors hk ∈ Rmk×1, where k = 1, . . . ,M , such that after the projec-
tion yk = Xkhk, the canonical variates yk are maximally pairwise-correlated.
The objective function to maximize is formulated as:

arg max
h1,...,hM

ρ =
1

M(M − 1)

M∑
k,l=1,k 6=l

yTk yl

=
1

M(M − 1)

M∑
k,l=1,k 6=l

hTkRklhl,

where Rkl = XT
k Xl, and 1

M

∑M
k=1 h

T
kRkkhk = 1. The solution is given by

solving a generalized eigenvalue problem (Vía et al., 2007). This formulation
is an approximation but not an exact maximization of the pairwise corre-
lations, given the complexity of the problem when M > 2. It is equivalent
to the Maximum Variance (MAXVAR) generalization of CCA proposed by
Kettenring (1971). See the proof of this equivalence in (Vía et al., 2005).
Other ways of formulating the objective function in M-CCA yield similar
results (Li et al., 2009).

2.3.2. Using the Temporal Resolution of MEG

fMRI studies have limited temporal resolution within a single trial. To have
enough temporal information to align multiple datasets, M-CCA is typically
applied to either a long stream of continuous scans or a series of trials where
there is unique temporal information for each trial (Li et al., 2012; Rustandi
et al., 2009). In contrast to fMRI, MEG has rich temporal information with
millisecond resolution. This enables the application M-CCA over a much
briefer period of time, as inter-subject correlations can be calculated based
on temporal changes within a trial. When multiple trials are available, as
is typically the case for MEG experiments, one can average multiple trials
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Figure 1: An illustration to demonstrate an application of the M-CCA procedure to
an MEG dataset of 18 subjects. Sk is the averaged data (across all trials for each
condition) from 306 sensors for subject k, each with 1600 time points; Xk has 50
PCA components for subject k, each with 1600 time points; Yk has 10 CCA com-
ponents, each with 1600 time points; W1,W2, . . . ,W18 are PCA weights obtained
for each subject independently; and H1, H2, . . . ,H18 are CCA weights obtained
jointly from all subjects by maximizing all of the inter-subject correlations.

to obtain a highly reliable representation of the change in sensor activity.
This is similar to obtaining event-related potential waveforms in the EEG
literature (Picton et al., 2000). However, trials are also quite variable in
their duration, and temporal alignment is lost when a time sample is further
away from stimulus presentation or response emission. Therefore, we only
average the samples from the first half second (50 samples given the sampling
rate) and the last half second (another 50 samples) of a trial in our appli-
cation of M-CCA. This averaging process is repeated for each condition, as
we potentially have different latent components for different conditions after
averaging. With 4 binary factors (probe type, word length, associative fan,
response hand), we have 16 conditions. Essentially, over a MEG dataset,
the transformation of subject data in M-CCA is obtained by maximizing
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the consistency of different subjects both in response to different temporal
points in a trial, and in response to different experimental conditions. With
100 samples per condition after averaging over trials, we have a 1600x306
matrix Sk from 306 sensors for each of 18 subjects. To reduce dimensional-
ity and remove subject-specific noise, we perform a spatial PCA to obtain
the top 50 components on these matrices for each subject first, instead of
applying M-CCA directly to the sensor data Sk. This results in 18 matrices
of dimension 1600 x 50, which are the inputs Xk our M-CCA analysis for
subjects k = 1, 2..18. As is illustrated in Figure 1, Wk are PCA weights for
subject k which are obtained independently for each subject. Hk are CCA
weights for subject k which are obtained jointly from all subjects resulting in
common dimensions Yk = XkHk that are maximally correlated across sub-
jects. 10 CCA components are retained for each subject (see results session
for discussion of how to choose the number of CCA components).

2.3.3. M-CCA with a Regularization Term

To further improve the application of M-CCA on subject alignment, we also
take into consideration the spatial sensor information across different sub-
jects. Projection weights that map sensor data to a given CCA component
should be similar across different subjects, given that the misalignment po-
tentially resulted from small spatial shifts during MEG recordings or anatom-
ical variation across subjects. We enhance this similarity (captured as the
correlations of weights across subjects) by adding a regularization term in the
M-CCA algorithm. This term is useful in situations where there are multiple
projection weights that give rise to similar results at a given CCA dimen-
sion due to the highly correlated sensor activities. Adding a regularization
term makes sensor-to-CCA projection weights similar across subjects while si-
multaneously maximizing the inter-subject correlations of transformed data.
This leads to more interpretable and unique projection weights, and poten-
tially improves the resulted CCA dimensions under certain scenarios. Let
Xk ∈ RT×mk , where k = 1, . . . ,M , be PCA components obtained inde-
pendently for each of the M subjects (M > 2), T be the number of time
points, and mk be the number of PCA components. Let Wk ∈ RS×mk , where
k = 1, . . . ,M , be the subject-specific PCA weights (sensor-to-PCA projec-
tion) from M subjects, and S be the number of MEG sensors. The modified
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M-CCA is formulated as:

arg max
h1,...,hM

ρ =
1

M(M − 1)

M∑
k,l=1,k 6=l

(hTkRklhl + λhTkR
′
klhl)

=
1

M(M − 1)

M∑
k,l=1,k 6=l

hTk (Rkl + λR′kl)hl,

where Rkl = XT
k Xl, R′kl = W T

k Wl, and 1
M

∑M
k=1 h

T
k (Rkk + λR′kk)hk = 1.

Essentially, the inter-subject correlations of the transformed data Xkhk are
over T time points, whereas the inter-subject correlations of the sensor-to-
CCA mappingWkhk are over S sensors. That explains why the maximization
of the two components in the objective function takes a very similar format,
with only the weights differing. One can vary the emphasis given to the
regularization term via the weight λ. λ = 0 corresponds to the M-CCA
algorithm without regularization, and very large values of λ correspond to
using the same weight maps for all subjects. The solution to the M-CCA
problem with regularization can be obtained in the same way as the standard
M-CCA by solving a generalized eigenvalue problem.

3. Results

3.1. Synthetic Dataset

How well M-CCA recovers the common dimensions across subjects depends
on how noisy the data are and how consistent the individual subjects are.
Therefore, we test the robustness of the M-CCA algorithm by varying the
noise level and individual differences in a synthetic dataset. We also test the
improvement of the M-CCA algorithm when regularization is added. The
constructed synthetic dataset can be described as follows: assume that all
subjects share the same set of common underlying brain sources S0 ∈ RT×n0 ,
where T is the number of time points and n0 is the number of common
sources. Each subject also has a set of n1 sources S1 ∈ RT×n1 that is unique
to each individual. A concatenation of S0 and S1 gives the overall underlying
brain sources S ′ for each subject. Note that the number of common sources n0

is the same for every subject, but n1 can be set differently for each subject.
The diagram below describes the sequence of generating sensor data from

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/


these sources and then applying M-CCA:

S ′
Vk−→ sensor

Wk−−→ PCAs
Hk−→ CCAs

There is a unique mapping Vk ∈ R(n0+n1)×n2 for activity from source level to
sensor level for each subject k which introduces the dimension misalignment
across subjects, where (n0+n1) is the number of overall sources and n2 is the
number of sensors. Principal component analysis is done within each subject
k, which gives a unique weight matrix Wk ∈ Rn2×n3 for each subject. This
weight matrix transforms data from n2 sensors (S ′Vk) to n3 PCAs (S ′VkWk).
The subsequent step is M-CCA after which there is a unique weight matrix
Hk ∈ Rn3×n4 for each subject that transforms data from n3 PCAs (S ′VkWk) to
n4 CCAs (S ′VkWkHk). The obtained CCAs are not an exact recovery of S0,
but a linear transformation of S0. In this section, we measure the performance
of subject alignment by how well the obtained CCA components correlate
across subjects, and the performance of source recovery by how well S0 can
be expressed as a linear combination of the obtained CCA components.

3.1.1. Noiseless Scenarios

In this section, we demonstrate that M-CCA aligns data from individual sub-
jects in a simple and noiseless scenario. To investigate M-CCA in a situation
like the MEG dataset, we use the average of the first 10 CCA components
from the real MEG dataset as the common sources S0. These common sources
then map onto 306 sensors, using weight maps Vk that are smooth, and simi-
lar from subject to subject. Smoothness is created by randomly selecting one
of the sensors (called the origin sensor) to have the maximum weight (i.e. 1)
for a particular source. Then we assign sensors that are further away from the
origin sensor with smaller weights (given by a Gaussian distance function).
Similarity is created by having the origin sensor in each subject be a small
shift from those of other subjects. Figure 2 shows representative weight maps
Vk from the first five subjects (k = 1, 2, . . . , 5) for the first common source in
S0. There are 18 subjects, 1600 time points (T = 1600), 10 common sources
(n0 = 10), 0 individual sources (n1 = 0), 306 sensors (n2 = 306), 10 PCA
components (n3 = 10) and 10 CCA components (n4 = 10).

We can compare the averaged inter-subject correlations over the top 10
PCA components with the averaged inter-subject correlations over the top 10
CCA components. After the M-CCA step, the brain activity from different
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Figure 2: Weight maps Vk that map from the first common source in S0 to sensors
in the first five subjects k = 1, 2, . . . , 5.

subjects over CCA dimensions (0.9598) are more correlated across subjects
than the brain activity over PCA dimensions (0.4078) prior to the M-CCA
step. Obtained CCA components do not correspond exactly to the origi-
nal common sources S0, but we can examine how well the original common
sources are expressed as a linear combinations of the CCA components. A
least-squares solution toQ is obtained from the system of equations Y Q = S0,
where Q transforms the obtained CCA components from half of the subjects
Y to the original common sources S0 (the other half Y ′ is used to test for
overfitting). The correlation matrix between Y ′Q and S0 is calculated, with
the closest correspondence for each of the 10 components in S0 being the
component in Y ′Q with the largest absolute correlation. The mean of these
absolute correlations is 0.9980.

3.1.2. Sensor Noise and Individual Differences

The second scenario is built up upon the first one, but with sensor noise and
individual differences added. We look at how the performance of M-CCA in
aligning subjects is affected by sensor noise and individual differences. To
model trial-to-trial noise, we generate 50 trials for each subject (in the MEG
dataset around 50 trials are averaged per condition per subject prior to M-
CCA), and add white Gaussian noise to each sensor at each time point with a
signal-to-noise ratio (SNR) of -1dB, which is very conservative compared with
values in the literature (Gonzalez-Moreno et al., 2014). Individual differences
are introduced by having additional brain sources, S1, that are unique to
each subject besides the common sources S0 (which, again, are the obtained
CCA components from the real MEG dataset). The unique sources, S1, are
each modeled as a sum of 10 sinusoidal waves with their frequencies and
powers sampled randomly. Weight maps Vk are generated to be smooth, and
similar from subject to subject. There are 18 subjects, 1600 time points
(T = 1600), 10 common sources (n0 = 10), 40 individual sources per subject
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Figure 3: Averaged inter-subject correlations for each of the 15 CCA components
(a); averaged inter-subject correlations averaged over the first 10 CCA components
while increasing levels of SNR (b), the number of individual brain sources n0 (c), or
when T = 60 the amount of regularization (d). Whenever not specified, T = 1600.
SNR = −1.30dB. n0 = 10. n1 = 40. n2 = 306. n3 = 50. n4 = 15. Each data
point was averaged over 10 simulations.

(n1 = 40), 306 sensors (n2 = 306), 50 PCA components (n3 = 50) and 15
CCA components (n4 = 15). Figure 3a shows that, with noise and individual
differences added, reasonable inter-subject correlations can be recovered up
to the 9th CCA component. Additionally, inter-subject correlations beyond
10 CCA components are no longer significant, which reflects the fact that
there are only 10 underlying common sources simulated in the first place.

The M-CCA algorithm is designed to recover only the common sources
across subjects, and leaves the remaining signal that is unique to each subject
in the late CCA components with very low inter-subject correlations. We
can again examine how well the original common sources are expressed as
a linear combinations of the CCA components. A least-squares solution to
Q is obtained from the system of equations Y Q = S0, where Y stores the
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CCA components averaged across half of the subjects (the other half Y ′ is
used to test for overfitting). The correlation matrix between Y ′Q and S0 is
calculated, with the closest correspondence for each of the 10 components in
S0 being the component in Y ′Q with the largest absolute correlation. The
mean of these absolute correlations is 0.8767, compared with 0.9980 obtained
previously without sensor noises nor individual differences.

To further test the robustness of the M-CCA algorithm, we vary the level
of SNR while fixing the rest of the parameters (Figure 3b), and vary the num-
ber of additional individual sources n1 while fixing the rest of the parameters
(Figure 3c). As SNR increases, the averaged inter-subject correlations of the
first 10 CCA components also increases. The SNR threshold beyond which
CCA components can be reasonably recovered falls into the range -2dB to
-1dB. On the other hand, the addition of brain sources that are unique to
individuals does not affect the recovery of the shared components during
M-CCA. It can be observed that as the number of the additional individual
sources grows, the averaged inter-subject correlations over the CCA compo-
nents stay the same on the testing data, even though there is slightly more
overfitting over the training data.

3.1.3. The effect of regularization

The synthetic data considers the case where subjects share similar weight
maps. Under this assumption, we test if adding regularization to M-CCA
improves its performance. In particular, we are interested in the situations
where data is limited to 60 samples (T = 60) with small signal-to-noise ra-
tio (SNR = −1.30dB), and where M-CCA has difficulty recovering unique
weight maps. While the inter-subject correlations decrease with increasing
regularization for the training data, this is not the case for the testing data.
Rather, it increases first before decreasing (Figure 3d). Putting some em-
phasis to consider the similarity between sensor weight maps helps improve
the inter-subject correlations of the resulted CCA components.

3.2. MEG Dataset

3.2.1. Application of M-CCA

The M-CCA procedure described earlier (Figure 1) is applied to the MEG
dataset. To test for overfitting, M-CCA is applied to half of the data (even
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trials for each subject) as the training data to obtain the projection weights
Hk for each subject k. The same projection weights are then applied to the
other half of the data (odd trials for each subject) as the testing data. Inter-
subject correlations in the testing data reflect how well the CCA components
truly capture the underlying data. Figure 4 shows the averaged inter-subject
correlations for each of the first 20 CCA components in training data (solid)
and testing data (dashed). The obtained CCA weights generalize well from
the training data to the testing data up to around 10 CCA components. As
a result, 10 CCA components are retained for the rest of the analysis.
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Figure 4: Averaged inter-subject correlations of the first 10 CCA components over
training data (solid) and testing data (dashed) for the MEG dataset.

Figure 5 plots the first 10 CCA components over the 100 samples (the
first 50 are stimulus-locked, and the last 50 are response-locked) for one con-
dition. There is a considerable match between the CCA components over
the training data (blue) and testing data (magenta). Since the obtained
CCA components are in the order of decreasing averaged inter-subject cor-
relations, the earlier CCA components are more important than the later
ones. Intuitively, the CCA components can be taken as the basis functions
of which every sensor is a linear combination. The more important CCA
components capture low-frequency temporal information, and the later CCA
components capture patterns of high-frequency oscillations (mostly in the
first 50 samples).
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Figure 5: The first 10 CCA components over the first 100 samples (1 sec) averaged across
all 18 subjects, with the first 50 stimulus-locked and the last 50 response-locked (separated
by the red dashed line) over the training data (blue) and testing data (magenta)

3.2.2. Evaluation by Inter-subject Classification

To further evaluate subject alignment using M-CCA, we investigate how well
we could use the transformed data to classify different experimental condi-
tions of the data from one subject given the data from other subjects. Such
inter-subject classification typically has lower accuracy than intra-subject
classification, which is to use a classifier trained from a subset of data from
the same subject. There are at least two factors that contribute to this. The
first is mis-alignment of sensors across subjects and individual differences in
brain anatomy. The second is functional differences in how subjects per-
form the task, including differences in the brain regions that are involved
in the task, and the speed with which they perform the task. The goal of
M-CCA is to correct the first issue. M-CCA is also robust to functional
differences in cases where there are additional unique brain regions involved
for each individual subject, as demonstrated in the synthetic dataset. The
effect of differences across subjects in speed is minimized by using only the
very early/late portions of the trial in M-CCA, which are associated with
encoding and motor response, respectively.

We compare inter-subject classification using M-CCA with three other
alternatives. The first alternative is intra-subject classification using a
PCA on the subjects’ sensor data, which is similar to the method used in
Borst et al. (2016). This method just forgoes the challenge of finding a
correspondence across subjects. Second, we consider inter-subject clas-
sification using a PCA on the subjects’ sensor data. Third, we consider

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Intra-subject classification results of fan condition over PCA components
of sensor data (red). Inter-subject classification results of fan condition over PCA
components of sensor data (magenta), CCA components (blue), and PCA compo-
nents of ROIs (red). Times on the x axis are relative to the stimulus (left) or the
response (right). SEMs are shown in shaded error bars with n = 18.

inter-subject classification using a PCA performed on source data, which
has been localized using MNE and aligned based on the subjects’ anatomy.
For each classification, we perform M-CCA on 100 time points for each com-
bination of conditions excluding the condition to classify (i.e. 800 x 306
matrices instead of the 1600 x 306 matrices in Figure 1). Averaging over
the dimension to be classified in M-CCA makes sure that the obtained CCA
dimensions are only for maximizing the alignment across subjects, but have
not learned any specific representations about the condition to classify. Clas-
sification of fan and word length are considered in the evaluation3.

Figure 6 and 7 show the intra-subject classification accuracy over 10 PCA
components of sensor data (intraPCA: red), the inter-subject classification
accuracy over 10 PCA components of the sensor data (interPCA: magenta),
the inter-subject classification accuracy over 10 CCA components (interCCA:
blue), and the inter-subject classification accuracy over 10 PCA components
of the source data (interROI: green). Linear discriminant analysis is used for

3Probe type condition is not included due to inferior intra-subject classification per-
formance. Trials responded by left hand and right hand are so different that they have to
be distinguished in the CCA step in order to have reasonable functional alignment. As a
result, left and right hand condition cannot be taken as the condition to classify.
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Figure 7: Intra-subject classification results of word length condition over PCA com-
ponents of sensor data (red). Inter-subject classification results of word length con-
dition over PCA components of sensor data (magenta), CCA components (blue),
and PCA components of ROIs (green). Times on the x axis are relative to the
stimulus (left) or the response (right). SEMs are shown in shaded error bars with
n = 18.

classifying data averaged over a sliding window of 5 samples, over instances
each averaged over 10 trials4. In both Figure 6 and 7, application of M-CCA
improves inter-subject classification. In fan condition (Figure 6), using CCA
components has comparable classification accuracy to that of intra-subject
classification, both over the stimulus-locked data and the response-locked
data. Inter-subject classification accuracy using CCA components is also
consistently superior to that of PCA components over the sensor data or
source data. In the stimulus locked data, accuracy is above chance only after
350 ms when encoding of the words has been completed. In the response-
locked data, accuracy is above chance throughout but reaches a peak about
200 ms before response generation. In word length condition (Figure 7), using
CCA components is the only inter-subject method to achieve above-chance
accuracy even if it is inferior to intra-subject PCA. Both the intra-subject
PCA and the inter-subject M-CCA find the period of high classifiability to
be early when the words are being encoded.

4None of the classifiers have satisfactory performance over single trials, thus an effective
comparison among the classifiers is not possible.
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3.2.3. Regularization
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Figure 8: Inter-subject classification accuracies of fan condition over selected time
windows of response-locked data with increasing λ values.

A regularization term in the M-CCA algorithm incorporates spatial sen-
sor information by assuming similar projection weights across different sub-
jects. Increasing λ corresponds to putting more emphasis on obtaining simi-
lar weight maps, compared with obtaining more correlated CCA components
across subjects. Regularization has the potential to further improve subject
alignment. We evaluate this by examining the performance of inter-subject
classification when λ is increasing. Focusing on the most classifiable period,
Figure 8 shows the effect of the λ on inter-subject classification of fan con-
dition during response-locked period. Each curve represents classification
accuracy in a 50 millisecond time window centered around different times
(e.g. the line marked as −100 ms refers to the inter-subject classification
results during the window −125 to −75 ms). On each curve, λ = 0 corre-
sponds to the same classification performance using CCA components as in
Figure 6. With increasing regularization, accuracy does not decrease right
away and even shows a slight improvement.

The best λ value is one that is as large as possible, but does not decrease
the classification accuracy much. Large λ values will give rise to more inter-
pretable sensor weight maps. From Figure 8 we can tell that the best range
of λ values is around 100–200. Figure 9 shows the sensor weights that map
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Figure 9: Projection weights from sensors to the first CCA component for the first
five subjects with different degrees of regularization (λ = 0, 50, 100, 150, 200).

sensor data of the first 5 subjects to the first CCA component. Different
columns correspond to different λ values ranging from 0–200. With increas-
ing regularization, projection weight maps become more consistent across
subjects.

4. Discussion
We evaluated M-CCA as a method for pooling MEG data from different
subjects together. It successfully produced dimensions in the common rep-
resentational space over which brain activities from different subjects were
well correlated, the patterns of which also generalized well over the unseen
half of the data.
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Subject alignment was evaluated in an inter-subject classification task,
where different conditions of the data in one subject were classified based
on a classifier trained on the rest of the subjects. Inter-subject classification
performance using M-CCA was close to that of intra-subject classification
performance over sensor data, supporting the conclusion that MCCA suc-
ceeds in finding meaningful common dimensions. Inter-subject classification
based directly on the sensors never did much better than chance even though
intra-subject classification based on sensors did well. This is in accordance
with our knowledge that sensors do not align identically with respect to the
recording device in MEG data. Inter-subject classification based on source
activity also performed poorly. It is likely that the quality of subject align-
ment using source localization was compromised by the strong assumptions
that went into solving the inverse problem of source localization. M-CCA
eliminates the need to make those assumptions by directly producing dimen-
sions that align across subjects.

We also examined the performance of M-CCA in aligning data from mul-
tiple subjects in a synthetic dataset. Reasonable inter-subject correlations
were obtained when the SNR was larger than -1 dB. Individual differences
were introduced by adding additional unique brain sources for each subject in
the task. M-CCA successfully recovered dimensions that were shared across
subjects. As a result, the addition of brain sources that were unique to indi-
viduals did not affect the recovery of the shared components during M-CCA.

In addition to the standard M-CCA algorithm, we added a regulariza-
tion term to give better alignment and more interpretable results. M-CCA
involves finding a unique mapping for each subject from the sensors to the
common dimensions. The regularization term introduces a spatial constraint
to impose inter-subject similarity on these sensor weight maps. This adds an
appropriate constraint if the subject mis-alignment is a result of small amount
of spatial shifts in either sensor positions or anatomical brain regions from
subject to subject. In a synthetic dataset where this kind of misalignment was
present, we showed that regularization improved the recovery of the underly-
ing sources. Over the real MEG dataset, adding the regularization term also
improved the inter-subject classification performance, and produced more
consistent and interpretable sensor weight maps across subjects.

The use of M-CCA in pooling data from different subjects is not restricted
to only one neural imaging modality. We demonstrated in this study how
M-CCA can be applied to align subjects in MEG that comes in at a fine
temporal grain size. In this aspect, EEG (Electroencephalogram) and ECoG
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(Electrocorticography) datasets share very similar temporal characteristics
as MEG, and can utilize M-CCA to pool subjects together in the same way.
In addition, it is possible to pool subjects recorded from different imaging
modalities, as long as there are corresponding time points across subjects and
that brain responses over that period of the time are considered consistent
across subjects.

5. Acknowledgement
This research was supported by the National Science Foundation grant 1420009,
the James S. McDonnell Foundation Scholar Award 220020162, and the Of-
fice of Naval Research Grant N00014-15-1-2151 to J.R.A. We thank Matthew
M. Walsh and Aryn Pyke for their helpful comments on a draft of the paper.

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
Anderson, J. R., Zhang, Q., Borst, J. P., & Walsh, M. M. (2016). The discov-

ery of processing stages: Extension of sternberg’s method. Psychological
review , 123 , 481–509.

Borga, M. (1998). Learning Multidimensional Signal Processing . Ph.D. thesis
Linkoping University.

Borst, J. P., Ghuman, A. S., & Anderson, J. R. (2016). Tracking cogni-
tive processing stages with meg: A spatio-temporal model of associative
recognition in the brain. NeuroImage, 141 , 416 – 430.

Correa, N. M., Adali, T., Li, Y.-O., & Calhoun, V. D. (2010). Canonical
correlation analysis for data fusion and group inferences: Examining ap-
plications of medical imaging data. IEEE signal processing magazine, 27 ,
39–50.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based anal-
ysis: I. segmentation and surface reconstruction. NeuroImage, 9 , 179 –
194.

Fischl, B. (2012). Freesurfer. NeuroImage, 62 , 774 – 781.

Gonzalez-Moreno, A., Aurtenetxe, S., Lopez-Garcia, M.-E., del Pozo, F.,
Maestu, F., & Nevado, A. (2014). Signal-to-noise ratio of the MEG signal
after preprocessing. Journal of Neuroscience Methods , 222 , 56 – 61.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D.,
Brodbeck, C., Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software
for processing MEG and EEG data. NeuroImage, 86 , 446 – 460.

Kettenring, J. R. (1971). Canonical analysis of several sets of variables.
Biometrika, 58 , 433–451.

Li, Y.-O., AdalÄś, T., Wang, W., & Calhoun, V. D. (2009). Joint blind source
separation by Multi-set Canonical Correlation analysis. IEEE transactions
on signal processing : a publication of the IEEE Signal Processing Society ,
57 , 3918–3929.

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li, Y.-O., Eichele, T., Calhoun, V. D., & Adali, T. (2012). Group study
of simulated driving fMRI data by multiset canonical correlation analysis.
Journal of Signal Processing Systems , 68 , 31–48.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Be-
yond mind-reading: multi-voxel pattern analysis of fmri data. Trends in
Cognitive Sciences , 10 , 424 – 430.

Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson, R., Miller,
G., Ritter, W., Ruchkin, D., Rugg, M., & Taylor, M. (2000). Guidelines
for using human event-related potentials to study cognition: Recording
standards and publication criteria. Psychophysiology , 37 , 127–152.

Rustandi, I., A., J. M., & Mitchell, T. M. (2009). Integrating multiple-study
multiple-subject fMRI datasets using canonical correlation analysis.

Vía, J., Santamaría, I., & Pérez, J. (2005). Canonical correlation analy-
sis (CCA) algorithms for multiple data sets: Application to blind simo
equalization.

Vía, J., Santamaría, I., & Pérez, J. (2007). A learning algorithm for adaptive
canonical correlation analysis of several data sets. Neural Networks , 20 ,
139 – 152.

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/096040doi: bioRxiv preprint 

https://doi.org/10.1101/096040
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and Methods
	MEG Experiment
	Alignment by Correspondence of Brain Sources
	Alignment at the Neural Representational Space
	M-CCA
	Using the Temporal Resolution of MEG
	M-CCA with a Regularization Term


	Results
	Synthetic Dataset
	Noiseless Scenarios
	Sensor Noise and Individual Differences
	The effect of regularization

	MEG Dataset
	Application of M-CCA
	Evaluation by Inter-subject Classification
	Regularization


	Discussion
	Acknowledgement

