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Abstract

DNA methylation is involved in regulation of gene expression. Although modern methods
profile DNA methylation at single CpG sites, methylation levels are usually averaged
over genomic regions in the downstream analyses. In this study we demonstrate that
single CpG methylation can serve as a more accurate predictor of gene expression
compared to average promoter / gene body methylation. CpG positions with significant
correlation between methylation and expression of a gene nearby (called CpG traffic
lights) are evolutionary conserved and enriched for exact TSS positions and active
enhancers. Among all promoter types, CpG traffic lights are especially enriched in poised
promoters. Genes that harbor CpG traffic lights are associated with development and
signal transduction. Methylation levels of individual CpG traffic lights vary between
cell types dramatically with the increased frequency of intermediate methylation levels,
indicating cell population heterogeneity in CpG methylation levels Being in line with the
concept of the inherited stochastic epigenetic variation, methylation of such CpG positions
might contribute to transcriptional regulation. Alternatively, one can hypothesize that
traffic lights are markers of absent gene expression resulting from inactivation of their
regulatory elements. In any case, CpG traffic light mechanism provide a promising
insight into enhancer activity and gene expression, important from both fundamental
and practical points of view.
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Introduction 1

Epigenetic regulation of gene expression attracts a lot of research attention over the 2

last decade with cytosine methylation being probably the most well-investigated mecha- 3

nism. DNA methylation is linked to many normal and pathological biological processes: 4

organism development, cell differentiation, cell identity and pluripotency maintenance 5

(reviewed in [20,31,45]), aging [4], memory formation [12,32], responses to environmental 6

exposures, stress and diet [22,27,33] There is an increasing evidence of abnormalities 7

in DNA methylation present in various diseases, including metabolic [7], cardiovascu- 8

lar [50], neurodegenerative [39, 48] diseases and cancers (reviewed in [2]. For about a 9

decade, DNA demethylating drugs (Decitabine, Azacytidine) are used in clinic for the 10

treatment of acute myeloid leukemia and myelodysplastic syndrome [6]. Recent advances 11

in site-specific editing of DNA methylation [40] suggest the possibility of exploring DNA 12

methylation as a promising target for non-invasive therapies against many diseases linked 13

with aberrant methylation. 14

Functionally, DNA methylation of promoter regions is tightly associated with the 15

repression of transcription initiation, while methylation of the gene body is proportional 16

to expression intensity (reviewed in [23]). Enhancers, distant regulatory regions that 17

contribute to the establishment of the correct temporal and cell-type-specific gene 18

expression pattern, have been shown to initiate transcription of short RNAs by PolII [24]. 19

Therefore, it is no surprise that DNA methylation might also regulate the enhancer 20

function as well [16,25,34]. Recent studies support the role of DNA methyltransferase 21

in enhancer-associated transcription [36]. The enhancers locations are more difficult 22

to determine genome-wide than those of genes. Some progress in this direction has 23

been made with the use of histone modifications profiles, transcription factor binding 24

or DNase I hypersensitive sites (DHSs) (reviewed in [41]) or the presence of balanced 25

bidirectional capped transcripts (CAGE) [1]. Yet, due to the difficulties in localization 26

of enhancers, the role of their methylation is not completely clear. 27

It is important to emphasize that epigenetic profiles vary between cells that belong 28

to the same organism and therefore share the same genetic background. The majority of 29

these epigenetic differences are established during development and can be explained 30

by cell types and tissues in a multicellular organism. Yet, an epigenetic heterogeneity 31

has been observed in the normal tissues of inbred laboratory mice [19] and at the level 32

of single cells [10], suggesting stochasticity in the epigenetic profiles intrinsic to some 33

genome loci but not others [11]. The effect of genome-wide epigenetic stochasticity for 34

gene expression has not been addressed so far in details [10]. 35

Contemporary methods to study DNA methylation based on bisulfite sequencing allow 36

detection of single cytosine methylation. Yet, at the step of downstream bioinformatic 37

analysis, methylation levels of several dozens of cytosines are usually averaged with the 38

aim to increase statistical power [3]. However, several examples show that changes in 39

methylation of a single CpG affect gene transcription [29]. Recently, we have shown 40

that methylation levels of particular single CpGs are tightly linked to expression for 41

specific cases [30]. We have called such positions CpG traffic lights (TL) and have 42

demonstrated a strong negative selection against them in transcriptional factor binding 43

sites. In this study we show enrichment of TLs in transcriptional start sites (TSS), in 44

particular, in poised promoters, enhancers and regions with active chromatin marks, 45

suggesting another mechanism of transcriptional regulation. Also, a study of methylation 46

at the level of a single CpG dinucleotide allows one to address the issue of methylation 47

heterogeneity. Although, allele-specific methylation has been reported to affect up 48

to 10% of human genes [49] it is usually linked to genetic polymorphisms [42, 49], 49

therefore reducing the contribution of allele-specific methylation when samples from 50

different individuals are investigated. So technical errors aside, intermediate values of 51

methylation, if observed in the same location but in different samples, show regions 52
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of high cell population heterogeneity. Here, we report a high level of cell population 53

heterogeneity of methylation levels in TLs suggesting a novel flexible yet abundant 54

mechanism of transcriptional regulation. 55

Results 56

CpG traffic lights determination 57

As has been shown many times, DNA methylation of a promoter can repress expression of 58

a corresponding gene. Nevertheless, correlation between gene expression and methylation 59

of its promoter or body is not straightforward, suggesting the need to deconvolute DNA 60

methylation profiles into the regions smaller than promoters. For this purpose, we focus 61

on a methylation level of particular CpGs to investigate the link between methylation 62

and expression. Following the logic previously reported in our work [30] where we used 63

the reduced set of CpGs in the RRBS data, we expanded our previous approach and 64

use whole-genome DNA methylation data (bisulfite sequencing, WGBS) and expression 65

(RNA-seq) levels for 40 normal human primary cells and tissues from the Roadmap 66

Epigenomics Project. We define CpG traffic lights as CpG dinucleotides with significant 67

Spearman correlation coefficient (SCC) between DNA methylation and expression levels 68

of a neighbouring gene (FDR <0.1, Fig. 1). 69

Figure 1. Schematic representation of a CpG traffic light determination.
Left panel. Suppose we analyze a particular genomic region (chr1:123..11654), which
contains for simplicity one gene, for 6 cell lines. For each CpG in this region and the gene
we have methylation and expression vectors, respectively. CpG positions are represented
by dark blue lollipops (filled: methylated CpG, empty: unmethylated CpG). First three
CpGs are located within the promoter region, while the last three are located in gene
body. Gene expression or lack of it is represented by green arrows. Right panel. A
yellow column shows methylation of a random CpG (used as a background), methylation
vector of this CpG demonstrates low correlation with gene expression (green box on
the right, in RPKM). Correlation between an average promoter/gene body methylation
(shown in light blue and light purple columns, respectively) and the corresponding gene
expression is also low. However, for TLs (shown in red), methylation level significantly
correlates with gene expression.

Here we state that the average methylation of promoter/gene body region has weaker 70
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correlation with gene expression genome wide, as compared to the methylation of TLs. 71

In particular, at the level of FDR<0.1 we find only 44/58 genes for which average 72

promoter/gene body methylation vectors correlate with expression vectors, while at the 73

same level of significance we observe 6,153 genes to correlate well with methylation levels 74

of TLs. Other levels of significance demonstrate similar tendency (Table 1). 75

Table 1. Number of genes which have significant correlation between expres-
sion and methylation. Note: for multiplicity testing correction the number of genes
was used in (1) and (2), while number of all CpG positions in each studied gene was
used for the same purpose in (3). The (TTS) refers to the Transcript Termination Site.

FDR-corrected p-value
(significance level)

Total number of genes, which have signifi-
cant correlations between gene expression
and methylation
average methy-
lation of pro-
moter region (-
1000..500) (1)

average methy-
lation of
gene body
(+500..TTS) (2)

methylation of
CpG traffic light
(3)

0.05 0 11 2,706
0.1 44 58 6,153
0.2 300 406 12,040

Among TLs, defined above (FDR<0.1), the majority of those located in promoters 76

demonstrate negative SCC, while the majority of those located in intron demonstrate 77

positive SCC, and TLs in exons demonstrate similar number of both positive and 78

negative SCC (Fig. 2). TL are uniformly distributed along the genome (Manhattan plot, 79

Supplementary Figure S1). 80

Figure 2. The distribution of SCC in the TLs. The total number of TLs in
promoters, exons and introns are present at the bottom. Green (left) / pink (right) parts
of the violin plots show the distribution of positive and negative SCC, respectively.
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CpG traffic lights are associated with highly heterogeneous ge- 81

nomic regions 82

A single CpG position can be either methylated or not, resulting in a 0 or 1 methylation 83

levels, in a diploid cell, allele specific methylation for some CpG positions can result 84

in the methylation levels of 0.5. Since the allele specific methylation is usually linked 85

to SNPs, intermediate methylation levels reported at the same genomic locations for 86

several genetically unrelated samples usually means heterogeneity of methylation levels 87

among individual cells at a given CpG position. For the majority of CpG positions 88

not detected as TLs (background CpGs, see Methods section for details), the levels of 89

methylation were close either to 0 or 1 in all studied cell types (Fig. 3a,b), demonstrating 90

homogeneity of the methylation levels in the cell population. At the same time the TLs 91

with negative SCC between expression and methylation, both located in promoters and 92

gene body, are intermediately methylated in many cell types (Fig. 3c,d). The similar 93

tendency was observed for TLs with positive SCC (Supplementary figure S2). 94

Figure 3. The distribution of CpG methylation and corresponding gene
expression for TLs and background (negative SCC). The color represents the
density of points in logarithmic scale. The distribution is shown for (a) random
background CpG (BG) in promoters (the number is equal to the number of TL points),
(b) random background CpG (BG) in gene bodies, (c) TL in promoters (-1000. . . +500),
(d) TL in gene bodies (+500...TTS), (e) levels of 5hmC in TL and BG, (f) levels of
5hmC for TL with positive and (g) negative causality score between DNA methylation
and gene expression. Whiskers represent minimum/maximum out of the 10 random
background samples.

Since methylation levels of TLs are clearly more heterogeneous than that of back- 95

ground CpGs, we decided to test whether methylation of these positions is also more 96

dynamic in time. As a proxy of methylation dynamics we used levels of hydroxymethyl- 97

cytosine (5hmC). Although the functional role of 5hmC is not fully elucidated, one 98

of the most supported hypothesis is that 5hmC is an intermediate product of active 99

DNA demethylation [14]. In standard bisulfite conversion experiments 5hmC cannot 100

be distinguished from its precursor 5mC [21]. To compensate for that we used Illumina 101

450K oxBS-array data [13]. We report that TLs are enriched for 5hmC as compared to 102

the background CpG, supporting the idea of dynamic methylation in TLs (Fig 3e). This 103
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dynamic methylation of the TLs supports the heterogeneity observed among them. 104

As a next step we divided TLs into subgroups based on causality scores, which allows 105

one to computationally determine which of the vectors (methylation or expression) is 106

the causal variable (see the Methods section for details). In our case, positive causality 107

scores reflect cases where changes in DNA methylation cause the change in expression, 108

whereas negative values of causality score correspond to CpG positions for which levels 109

of methylation are a consequence of expression level. Surprisingly, it is mostly TLs with 110

negative causality scores that demonstrate enrichment of high concentrations of 5hmC 111

per site (Fig. 3g), which may suggest a positive feedback loop of the active transcription 112

that activates DNA demethylation. 113

CpG traffic lights are conserved across mammals and primates 114

To address functionality of TLs, we first investigate their evolutionary conservation. By 115

comparing TLs with negative SCC with ten random CpG background sets of the same 116

size and of the same GC/CpG content (see Methods) we demonstrate that the TLs are 117

enriched with conserved positions both in mammals and in primates, estimated by GERP 118

RS and PhyloP conservation scores, respectively (Fig. 4ab). Also, TLs are depleted 119

in polymorphisms from ExAC (Fig 4c), as well as in repetitive sequences determined 120

by both chromatin states (chromHMM, Fig. 4e) and repeatMasker (Fig 5a). This is 121

in agreement with Eigen non-coding scores being significantly higher for TLs (Fig 4d). 122

Moreover, gene enrichment analysis (Table 2) for GO terms shows that TLs are linked to 123

genes involved in development, cell-to-cell communication and apoptosis. Taken together, 124

these results clearly suggest the functional role of TLs in the genome. 125

Figure 4. Number of TL and BG sites demonstrating evolutionary conser-
vation (a) in mammals and (b) in primates, (c) polymorphisms from ExAC, (d) Eigen
non-coding functionality score, (e) averaged across 127 cell types ratio of TL / BG
in chromatin states determined by chromHMM. Whiskers (abc) represent minimum /
maximum out of the 10 random background samples. The color (e) reflects absolute
number of TL located in the given chromatin state.
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Table 2. Enrichment of TLs in biological processes (www.pantherdb.org)

PANTHER GO-
Slim Biological
Process

Homo
sapi-
ens
(REF)

#
genes
with
TL

#
genes
ex-
pected

Fold
Enrichment

+/-
P value

developmental pro-
cess

1938 627 451.14 1.39 + 2.11E-14

cellular process 8199 2160 1908.62 1.13 + 3.24E-11
cell communication 2674 787 622.47 1.26 + 1.21E-09
cell adhesion 481 190 111.97 1.7 + 1.57E-09
biological adhesion 481 190 111.97 1.7 + 1.57E-09
system development 1065 358 247.92 1.44 + 2.05E-09
signal transduction 2390 702 556.36 1.26 + 3.16E-08
nervous system de-
velopment

668 238 155.5 1.53 + 5.81E-08

cell-cell adhesion 305 124 71 1.75 + 1.43E-06
intracellular signal
transduction

991 312 230.69 1.35 + 2.46E-05

mesoderm develop-
ment

447 159 104.06 1.53 + 5.96E-05

ectoderm develop-
ment

405 142 94.28 1.51 + 5.32E-04

heart development 143 62 33.29 1.86 + 1.23E-03
cellular component
movement

413 137 96.14 1.42 + 1.03E-02

mitosis 372 122 86.6 1.41 + 4.05E-02
induction of apopto-
sis

85 38 19.79 1.92 + 4.12E-02

CpG traffic lights are enriched in transcription start sites, pro- 126

moters and enhancers 127

To specify the functional role of TLs we tested various different genomic markups for the 128

overrepresentation. We observe that TL are enriched in all promoter types, determined 129

by chromHMM, including active, bivalent and poised promoters (Fig. 4e). Interestingly, 130

the strongest enrichment was observed in poised promoters (¿3.5 times). Since poised or 131

bivalent chromatin is thought to be able to easily switch between active and repressed 132

states [28], such enrichment may suggest TLs as a possible mechanism contributing to 133

maintenance of the bivalent state of chromatin. 134
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Figure 5. Frequency of TL and BG CpGs in repeats (a), TSS determined by
CAGE (b), enhancers (c) and DNase hypersensitive sites (d). Whiskers represent
minimum/maximum out of the 10 random background samples. All differences are
significant (p-value <5E-5).

We also notice that TL are highly enriched in the chromatin state, corresponding 135

to transcriptional start site (TSS) per se. To dig deeper, we use TSS, determined by 136

CAGE (Cap Analysis of Gene Expression), currently the most accurate technique to 137

determine exact locations of TSS [9]. We determine 3.5-fold overrepresentation of TL 138

in the exact TSS position (Fig 5b). It should be noted that among all groups of TL 139

located in TSS, the biggest group with the most pronounced overrepresentation over 140

the background, has negative correlation and causality scores (Supplementary Figure 141

S3). Negative causality score represents that levels of expression are the cause of the 142

methylation levels, suggesting that for TSS regions methylation of a TL is a marker, not 143

the cause of expression. 144

Our data also show that TL are enriched in various regulatory regions, yet the 145

strongest enrichment is observed in enhancers, determined by CAGE bi-directional 146

transcription (Fig 5a) and chromatin states (Fig 4). Although all the enhancers are 147

enriched for TLs, some types of enhancers are more prone to harbour them. We detect 148

that among all enhancer categories the most enriched are hematopoietic and stem cell 149

enhancers (Supplementary table 1). All open chromatin regions determined as regions 150

sensitive to DNaseI are also enriched for TL (Fig 4e, 5d). On the other hand, as we 151

reported before [30], TL are not enriched in TFBS if TFBS prediction is performed in 152

the DNaseI sensitive regions (Supplementary figure S4). 153

Discussion 154

DNA methylation is tightly involved in regulation of gene expression in various normal 155

and pathological processes. Therefore, it is an attractive target for therapies of the 156

diseases with epigenetic abnormalities (reviewed in [38]). Modern technologies based 157

on bisulfite sequencing allow for detection of DNA methylation with a single CpG 158

dinucleotide resolution. Yet, at the stage of the downstream analysis methylation levels 159

are averaged over the large regions. In this work we demonstrate that methylation 160
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profiles of particular single CpG dinucleotides (TLs) are stronger correlated with gene 161

expression as compared to average promoter / gene body methylation even if for the 162

multiplicity testing total number of CpG-gene pairs is used. It is a surprising observation, 163

since it is widely accepted that DNA methyltransferases once bound to DNA move 164

along [15] it or multimerize [43]methylating all neighbouring CpGs unless a boundary 165

protein, such as Sp1, is in their way (reviewed in [46]. Yet, only a small fraction of TLs 166

are located within the promoter and body of the same gene. We speculate that local 167

change in DNA methylation can be achieved rather through active DNA demethylation, 168

probably with the help of TET proteins, since byproduct of active demethylation, 5hmC 169

is found to be overrepresented in TLs. However, a direct experiment, probably with the 170

use of CRISPR/TALEN-based technology, is required to validate this hypothesis. 171

TLs are evolutionary conserved in both mammal and primate lineage, suggesting 172

possible selection constraint, as well as depleted in SNPs, repeats and heterochromatin 173

regions, supporting the hypothesis of TL functionality. Genes that harbor TLs are 174

associated with fundamental biological processes, such as development and signal trans- 175

duction. TLs are also enriched in open chromatin and various regulatory regions, in 176

particular in the exact TSS positions and active enhancers, especially those detected 177

by bi-directional CAGE transcription [1]. This observation is in line with the recent 178

reports that DNMT3a/b are associated with enhancers and are important regulators of 179

enhancer RNA production in hematopoietic stem cells [36] 180

In the light of overrepresentation in regulatory regions, depletion of TLs within TFBS 181

is puzzling. One possible explanation would be that TLs are CpG dinucleotides located 182

within the enhancers but outside the sites of regulatory protein binding. In this case, 183

cytosine methylation accumulates as a consequence of the absence of TF binding [44,47], 184

which makes methylation of TL not a primary cause, but just a ”passive” marker of 185

absent gene expression resulting from inactivation of its regulatory element. Still, CpG 186

traffic light methylation is a reliable marker of enhancer activity and gene expression, 187

and can be used for practical applications. 188

Methylation levels of TLs vary between cell types dramatically and are characterized 189

by increased frequency of intermediate methylation levels, indicating that only a fraction 190

of cells within the same tissue have a certain CpG traffic light methylated. This variation 191

cannot be attributed to genetic polymorphisms, since for our study we used samples 192

from genetically different subjects, so it would be highly unlikely to have the same allele 193

in a given position in the huge fraction of samples in the study. The more probable 194

explanation is heterogeneity at the cell population level, which is indirectly supported 195

by methylation dynamics in the form of increased levels of 5hmC. This heterogeneity is 196

most likely stochastic, suggesting the ”active” role for TLs as a novel highly dynamic 197

yet abundant mechanism of transcriptional regulation. This hypothesis is supported by 198

the observation that the TLs are highly overrepresented in poised promoters, suggesting 199

their contribution into dynamics of expression. 200

Methods 201

DNA methylation and expression data processing 202

We selected 40 tissues and cell types (see Supplementary table 2) for which both WGBS 203

and RNA-seq data were available in Roadmap Epigenomics Project (NCBI). For WGBS 204

data for each cell type we used three replicates with the highest number of reads and the 205

best genome-mapping ratio. For 28 cell types 3 RNA-seq replicates were available, while 206

for 7/5 cell types only 2/1 replicate were available respectively. All WGBS data and 207

the majority (95 out of 103) RNA-seq files were obtained by Illumina, while 8 RNA-seq 208

files were obtained by SOLiD. The quality of all files were checked with FASTQC 209
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(bioinformatics.bbsrc.ac.uk/projects/fastqc). For all files sequenced by Illumina read 210

trimming and adapter removal were performed by Trimmomatic (adapters from NCBI; 211

up to 2 mismatches between an adapter and a read sequence; 5bp sliding window; quality 212

threshold of 20; removing sequences if their length after trimming becomes less than 20 213

bp) For the SOLiD samples we used Cutadapt (adapters from NCBI, up to 10% error 214

rate relative to the length of the matching region; quality threshold of 20; removing 215

sequences if their length after trimming becomes less than 20 bp). 216

We mapped WGBS data to the genome (assembly GRCh38-Ensembl 78) with Bismark 217

(zero mismatches permitted in the seed, 20bp seed length, 0/500bp the min/max insert 218

size for valid paired-end alignments). We used only methylated cytosines in CpG context, 219

covered with not less than 4 reads. For each CpG position in each of the 40 samples, the 220

methylation values were averaged from the three replicates per sample. We removed a 221

CpG position if it has values in less than 20 samples. We also removed a CpG position 222

if it had the same value for all the samples (i.e. all zeros, all ones, etc.), as this position 223

did not vary across samples . 224

We mapped RNA-seq data to the genome (assembly GRCh38-Ensembl 78) with 225

Tophat v2.0.13 (allowing for up to 2 mismatches and 2 gaps per read, reporting read 226

alignments for paired-end reads only if both reads in a pair can be mapped). We 227

generated expression matrix using the FeatureCount tool, while the expression profiles 228

were normalized to RPKM values. Genes with zero reads in all samples were removed. 229

The expression profiles were normalized to a range [0, 1] [y = (x-xmin)/(xmax-xmin)] to 230

match the range with the one of the methylation profile. 231

CpG traffic lights detection 232

To determine TLs we considered all pairs of genes and CpGs located within 1000 bp 233

upstream of gene’s TSS to its 3’ end (genome assembly GRCh38-Ensembl 78). One CpG 234

might be associated with multiple genes, similarly, one gene might be associated with 235

multiple CpGs. For each CpG-gene pair we created two 20-40-dimensional vectors of 236

methylation levels [0, 1] and normalized gene expression [0, 1], we further refer to each 237

of the two vectors as a methylation and expression profiles. In total we had 1,774,602 238

CpGs associated with 46,692 genes (which gives 1,963,205 pairs). 239

For each CpG position, we calculated SCC between the methylation and expression 240

profiles for all available samples. FDR was performed by Benjamini-Hochberg procedure 241

for correction for multiplicity testing for the total number of position-gene pairs. We 242

called a CpG position a CpG traffic light (TL) if it had a significant correlation coefficient 243

between methylation and expression profiles at the level of FDR<0.1 (unless explicitly 244

mentioned otherwise). We found 16,178 such TLs (0.9% of the original number of CpGs) 245

that correspond to 6,153 genes. 246

We also calculated a causality score between methylation and expression profiles 247

to computationally assess the pairwise causal direction between these two variables. 248

We used a pairwise linear non-Gaussian acyclic model, LINGAM [17] to calculate the 249

likelihood ratio defined as follows: 250

R(Meth,Expr) = logL(Meth→ Expr)− logL(Expr →Meth) 251

The positive causality means that the change in methylation is expected to cause the 252

expression change, and vice versa for the negative causality values: expression determines 253

methylation. It should be noted that the range for possible causality scores depends on 254

the number of samples. Since for different CpG positions we used various numbers of 255

samples (20-40), we normalized causality scores to the normal distribution N(0, 1). To 256

make the causality scores directly comparable between CpG positions, we performed this 257

normalization independently for each group of CpGs that have the same profile length. 258
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To avoid noise in the causality scores, we did not consider values close to 0 (between 259

-1 and +1) and for simplicity we call “positive” the values that are higher than 1 and 260

“negative” the values that were smaller than -1. 261

Construction of background datasets 262

We aimed to explore enrichment with TLs inside various genomic regions. For this 263

purpose we needed to have an equal size background set. For every TL position we 264

selected a random background CpG position with not more than 5% difference for both 265

GC- and CpG contents in 200bp window, as some genomic annotations are sensitive to 266

GC- and CpG- content. We repeated the selection process 10 times to obtain 10 different 267

independent background sets. 268

For heatmaps (Fig 2) we selected TL with negative SCC and an equal size random 269

background set, split all the CpGs into promoter regions [TSS - 1000, TSS + 500] and 270

gene body [TSS + 500, end of the gene] and created density plots using gaussian kde 271

from scipy.stats. 272

Genomic annotations 273

We annotated all CpG positions with overlapping genomic features. For each feature we 274

calculated the number of TL and background positions located within the annotation. To 275

test the significance of the overrepresentation we used the exact Fisher test. Additionally, 276

we calculated the overrepresentation for TL with positive/negative SCC/causality scores 277

separately. 278

For 5-hydroxymethylcytosine in human cerebellum we used oxidative-bisulfite (oxBS) 279

assay data from GEO (GSE63179). We converted the coordinates to genomic ranges 280

with the help of R Bioconductor ‘minfi’ package and to hg38 with liftOver. Four oxBS 281

replicates were averaged. 282

We use repeats obtained by RepeatMasker for hg38 track from USCS Genome Browser 283

hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz 284

We obtained the robust CAGE clusters [9] from fantom.gsc.riken.jp/5/data/ and the 285

robust hg19 enhancers [1] from FANTOM5 from (enhancer.binf.ku.dk/presets/ 286

robust enhancers.bed) and mapped them to hg38 with the liftOver. 287

The DNaseI hypersensitivity clusters were downloaded from UCSC Genome Browser 288

(hgdownload.soe.ucsc.edu/goldenPath/hg38/database/wgEncodeRegDnaseClustered.txt.gz).289

Conservation and Eigen scores 290

Conservation of TL and background sites in mammalian and primate lineages was 291

assessed with UCSC Genome Browser GERP RS [5] and PhyloP [35] hg19 tracks, 292

respectively. We calculated how many sites in each dataset have GERP RS score greater 293

than 2, which we considered as conserved in mammals and PhyloP score greater than 294

0.5, which we considered conserved in primates. Overall functional scores for each site 295

were calculated with Eigen, an approach to predict functionality of non-coding variants 296

using different annotations [18]. Higher Eigen scores imply more likely functionality of 297

respective genome sites. 298

TFBS 299

For transcriptional factor binding site (TFBS) prediction we used models provided in 300

HOCOMOCO v10 [26]. PWM thresholds were selected according to the pre-calculated 301

the P-value <0.0005 (i.e., when 5 of 10,000 random words had scores no less than the 302

thresholds). Out of all predicted TFBS we considered only those present in DNaseI 303

hypersensitivity regions. 304
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ChromHMM 305

The Roadmap Epigenomics Consortium 25-state segmentation of 127 epigenomes pre- 306

dicted with ChromHMM [8, 37] was used to assess chromatin location of TL. The 307

annotation in based on the imputed data for 12 chromatin marks (H3K4me1, H3K4me2, 308

H3K4me3, H3K9ac, H3K27ac, H4K20me1, H3K79me2, H3K36me3, H3K9me3, H3K27me3, 309

H2A.Z, and DNaseI). The annotations were downloaded from egg2.wustl.edu/roadmap/ 310

web portal/imputed.html#chr imp. 311

Each of the TL/background datasets was characterized by an average frequency of a 312

CpG from a dataset to be located in one of the 25 chromatine stated. 313
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