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Abstract 
Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools to 
model biological processes and disease mechanisms, particularly in cell types such as neurons 
that are difficult to access from living donors. Here, we present the first map of regulatory variants 
in an iPSC-derived cell type. To investigate genetic contributions to human sensory function, we 
performed 123 differentiations of iPSCs from 103 unique donors to a sensory neuronal fate, and 
measured gene expression, chromatin accessibility, and neuronal excitability. Compared with 
primary dorsal root ganglion, where sensory nerves collect near the spinal cord, gene expression 
was more variable across iPSC-derived neuronal cultures, particularly in genes related to 
differentiation and nervous system development. Single cell RNA-sequencing revealed that 
although the majority of cells are neuronal and express the expected marker genes, a substantial 
fraction have a fibroblast-like expression profile. By applying an allele-specific method we identify 
3,778 quantitative trait loci influencing gene expression, 6,318 for chromatin accessibility, and 
2,097 for RNA splicing at FDR 10%. A number of these overlap with common disease 
associations, and suggest candidate causal variants and target genes. These include known 
causal variants at SNCA for Parkinson’s disease and TNFRSF1A for multiple sclerosis, as well as 
new candidates for migraine, Parkinson’s disease, and schizophrenia. 
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Introduction 
Cellular disease models are critical for understanding the molecular mechanisms of disease and 
for the development of novel therapeutics. Advancements in induced pluripotent stem cell (iPSC) 
technology are enabling the development of these models in many human cell types. Initial uses 
of iPSCs for disease modeling have focused mostly on highly penetrant, rare coding variants with 
large phenotypic effects, such as mutations of IKBKAP in familial dysautonomia (Lee et al. 2009), 
mutations of SCN9A in chronic pain due to erythromelalgia (Cao et al. 2016), and others (Itzhaki 
et al. 2011; Liu et al. 2011; Wainger et al. 2014). However, there is growing interest in using 
iPSCs to model the effects of common genetic variants that drive complex disease. Regulatory 
genetic variants have been identified for gene expression (The GTEx Consortium et al. 2015), 
chromatin accessibility (Degner et al. 2012), and transcription factor binding (Ding et al. 2014; 
Tehranchi et al. 2016) in both primary tissues and immortalized cell lines. However, for many 
tissues, pure cultures of individual cell types are either unavailable or are too scarce to enable a 
variety of molecular assays to be performed. iPSC-derived cells are a renewable source of cells 
which can be genetically manipulated to investigate causal genetic effects.  
 
A key question is to what extent variability in directed differentiation, whether due to stochastic 
factors or cell line differentiation capacity, is a barrier to studying the effects of common disease-
associated variants in iPSC-derived cells (Rouhani et al. 2014; Kajiwara et al. 2012). Common 
traits and diseases are influenced by hundreds of genetic variants, each typically of modest effect 
size (Manolio et al. 2009). Observing the molecular phenotypes associated with a disease depends 
on having the relevant cell type, and on the genetic effects of interest being observable in those cells. 
Because cultured cells are imperfect models of primary tissues, it is critical to understand which 
common disease-associated genetic variants also alter cell phenotypes in iPSC-derived systems.  
 
Whereas pain sensation has largely been studied in rodent models, the development of efficient 
protocols to differentiate iPSCs into nociceptive (pain-sensing) neurons (Young et al. 2014) 
provides the opportunity to model common genetic effects on human sensory neuron function, 
which may underlie individual differences in pain sensitivity and chronic pain. Chronic pain is a 
common complex disease with moderate heritability of ~38% (McIntosh et al. 2016), which is a 
significant cause of disability globally (Murray et al. 2015). The relevant human tissues for 
studying pain are the peripheral sensory nerve fibers that innervate the skin and other organs and 
which are brought together at the dorsal root ganglia (DRG) before synapsing with the spinal cord 
around the dorsal horn. Because obtaining such tissue is only possible post-mortem, iPSC-
derived models will be useful tools in revealing pain biology in humans. 
 
Here, we present the first large-scale study of common genetic effects in a cell type differentiated 
from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Using single-cell RNA 
sequencing we characterize the heterogeneity in individual cells produced by directed 
differentiation. We compare variability in gene expression across IPSDSN samples with that seen 
in primary DRG and in other tissues from the genotype-tissue expression project (GTEx) (The 
GTEx Consortium et al. 2015). We identify quantitative trait loci (QTLs) where genetic variants 
influence gene expression, RNA splicing, and chromatin accessibility in these cells and identify a 
number of overlaps between molecular QTLs and common disease associations, including 
Parkinson’s disease, migraine, multiple sclerosis, and schizophrenia. In generating this gene 
regulatory map we establish effective techniques for using IPSDSN cells to model molecular 
phenotypes relevant to common diseases. 
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Results 

Sensory neuron differentiation and characterization 
We obtained 103 IPS cell lines derived from unrelated apparently healthy individuals by the 
HIPSCI resource (Kilpinen et al. 2016), and followed an established small molecule protocol 
(Young et al. 2014) to differentiate these into sensory neurons of a nociceptor phenotype. We 
performed a total of 123 differentiations; 16 of these were done with an early version of the 
protocol (P1) which was subsequently refined (P2) to yield a higher proportion of neuronal cells in 
the final cultures. Gene expression was measured by RNA-sequencing for all samples; ATAC-
sequencing was done to measure accessible chromatin for 31 samples; and neuron 
electrophysiology was measured by patch clamp and pharmacological modulation for between 31 
and 55 samples (Figure 1a). One RNA-seq sample failed sequencing, and four others were 
outliers based on principal components analysis and were excluded (Supplementary Figure 1). 
This left a set of 119 differentiations with gene expression data from 100 unique IPS donors for 
further analysis. 
 
We first examined the reproducibility of genome-wide gene expression by considering 
correlations between: replicates of the RNA extraction process within a single differentiation 
(n=7); replicates of the differentiation process within a single line (n=6 donors, 3 replicates each); 
and replicates of differentiation across lines (n=94). RNA extraction replicates were highly 
repeatable (spearman ρ of 0.97 - 0.98). Differentiation replicates within a donor cell line were 
more variable (median ρ=0.96, range 0.93 - 0.98), but were more highly correlated than 
differentiations across donors (median ρ=0.93, range 0.80 - 0.98) (Supplementary Figure 2). The 
variability in gene expression we observed between donor lines could arise from a number of 
sources, including donor genetic background, effects of clonal selection that occurred during 
establishment of the line and effects of the cell culture environment during and post 
reprogramming. 
 
To put the IPSDSN transcriptome in context, we clustered our gene expression data with 200 
iPSC samples from many of the same donors, as well as 28 DRG tissue samples from different 
donors, and 44 primary tissues from the GTEx project (Mele et al. 2015) (Figure 1b). Gene 
expression was quantified as RNA-seq fragments per kilobase per million reads (FPKM). In 
hierarchical clustering, IPSDSN samples clustered nearest to DRG, followed by brain samples 
from GTEx, regardless of clustering method. Marker genes specific to sensory neurons and 
nociceptors were expressed (FPKM > 1) in nearly all samples (Figure 1c). However, we observed 
a high degree of heterogeneity in the level of expression of these genes, sometimes over two 
orders of magnitude (Figure 1c). This contrasted with DRG, where expression of marker genes 
varied by 3- to 5-fold across samples, despite the fact that a cell culture system is theoretically 
more pure in cell type composition than a tissue such as DRG. These observations echo 
difficulties reported elsewhere in using IPS-derived cells to characterize gene expression 
differences between samples (Soldner et al. 2016; Raghavan et al. 2016). 
 
We examined between-sample variability in global gene expression by computing the coefficient 
of variation (CV; standard deviation divided by the mean) for each expressed gene (FPKM > 1) 
among IPSDSN samples (P2 protocol only), and compared this with the same metric for GTEx 
tissues, DRG, and iPSCs (Figure 1d; Supplementary Figure 3). Whole blood was the most 
variable tissue, with most genes showing more sample-to-sample variability than the same genes 
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in other tissues, whereas DRG was the least variable tissue. Most genes in IPSDSNs were not 
highly variable, with the overall distribution of gene expression variability falling within the range 
of GTEx tissues. However, the median CV of gene expression in IPSDSNs (0.38) was nearly 
double that in DRG (0.20), indicating that most genes in IPSDSNs have greater sample to sample 
variability in expression than the primary tissue they are intended to model. Among the technical 
factors that might explain these differences we saw no effect of sample size or sample RNA 
integrity on gene expression variability (Supplementary Figures 4,5). 
 

 
 

Figure 1  Characterization of molecular phenotypes in IPS-derived sensory neurons. 
(a) Schematic of IPSDSN differentiation and assays. (b) Sample and tissue similarity based on gene 
expression in IPSDSN, iPSC, DRG, and GTEx tissues. Left: Multidimensional scaling, Right: hierarchical 
clustering. (c) Distribution of expression levels for selected sensory neuronal marker genes in IPSDSN, 
DRG, GTEx tibial nerve, GTEx brain, and all other GTEx tissues. (d) Density plot of CVRatio across all 
genes, separately for each GTEx tissue, IPSDSN samples (n=106, P2 protocol only), iPSC (n=200), and 
DRG (n=28). CVRatio is the ratio of a gene’s coefficient of variation (CV) across samples in a tissue to the 
mean CV for that gene in all other tissues. 
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In addition to generally increased expression variability relative to DRGs, we observed a long tail 
of genes with higher variability in IPSDNs than in nearly all other tissues (Supplementary Table 
1). GO enrichment of the top 1000 highly variable genes (CV > 1.28) revealed enrichment for 
processes relating to cell differentiation and development (Supplementary Table 2), including 
sensory organ development (4.3x enrichment, p=2x10-30), positive regulation of cell differentiation 
(3.0x enrichment, p=3x10-24), and central nervous system development (2.9x enrichment, p=2x10-

22), although the most highly enriched category was extracellular matrix organization (6.8x 
enrichment, p=2x10-54). Developmental processes were not enriched among the most highly 
variable genes in DRG, iPSCs, or other GTEx tissues. The iPSCs from which our neurons were 
derived had gene expression variability within the range seen in GTEx tissues, without a long tail 
of highly variable genes. 

Single-cell RNA-seq 
In previous work we showed that not all individual cells express neuronal marker genes after 
differentiation (Young et al. 2014). Samples also appeared to differ visually in the fraction of cells 
with a neuronal morphology (Figure 2b). To further characterize this heterogeneity, we used the 
Fluidigm C1 with Illumina NextSeq500 to sequence 186 cells from a single IPSDSN sample. After 
excluding 9 cells expressing fewer than 20% of the ~56,000 quantified genes and noncoding 
RNAs, we used SC3 (Kiselev et al. 2016) to cluster the remaining 177 cells based on global gene 
expression. SC3 determines a “consensus” clustering solution by evaluating a range of data 
transformations and parameter combinations, followed by k-means clustering. The data were 
best explained by two clusters (Fig 2a and Supplementary Figure 6), with 63% of cells forming a 
tight cluster expressing sensory-neuronal genes (e.g. SCN9A, CHRNB2), and the remaining 37% 
of cells forming a looser cluster expressing genes typical of a fibroblastic cell type (e.g. MSN, 
VIM). The fibroblast-like cells had ~2.3-fold more RNA-seq reads than sensory-neuronal cells 
(Supplementary Figure 7), yet expressed fewer genes (>0 fragments overlapping transcript, 
median 9938 vs. 12750). Although this may indicate greater RNA content in the fibroblast-like 
cells, it could also reflect differential efficiency in lysing and capturing RNA from these cells 
relative to the sensory-neuronal cells. 
 
The two cell types also separate cleanly in a principal components plot (Supplementary Figure 8), 
indicating that the cells do not fall on a smooth gradient from more neuronal to less, but rather 
have differentiated to distinct cell states. Comparing quantile-normalized gene expression from 
each single cell cluster to other tissues showed that the neuronal cluster is most similar to DRG 
(Spearman’s ⍴=0.751), followed by GTEx brain (mean ⍴=0.701) (Supplementary Figure 9). In 
contrast, the fibroblast-like cluster is most similar to GTEx transformed fibroblasts (⍴=0.768), 
followed closely by DRG (⍴=0.759). The similarity of the these cells to GTEx fibroblasts could 
indicate an overall similarity of adherent cultured cells, although the neuronal single cell cluster 
had lower similarity to GTEx fibroblasts (⍴=0.671) than to a number of other tissues. We 
proceeded on the basis that single IPSDSN cells can be categorized as either neuronal or 
fibroblast-like, and that the fraction of neuronal cells may differ between differentiations. We used 
Cibersort (Newman et al. 2015) to estimate the fraction of RNA from neuronal cells in our bulk 
RNA-seq samples, using the single cell gene expression counts with their 2-cluster labels as 
signatures of neuronal vs. fibroblast-like expression. The estimated neuronal content showed a 
strong correlation with the first principal component of gene expression, and this corresponded 
well with a visual assessment of neuronal content from microscopy images (Figure 2b, 
Supplementary Figure 10). 
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We note that although a large majority of samples appeared by microscopy to have high neuronal 
content, Cibersort estimated relatively high fibroblast-like content for many samples (median 
43%), and as high as 100% for some samples that visually appeared neuronal. A factor 
contributing to this may be that our scRNA-seq sample was matured for 8 weeks, whereas our 
bulk RNA-seq samples were matured for 4 weeks. While previous work showed only minor 
changes in gene expression between 4 and 8 weeks maturation (Young et al. 2014), this 
difference in maturity means that our single cell reference profiles do not perfectly represent cells 
in our bulk samples. IPSDSN samples estimated to have high fibroblast content still show greater 
similarity in genome-wide gene expression with DRG than with any GTEx tissue, including 
fibroblast cell lines (Supplementary Figures 11,12). We thus take relative differences between 
samples in estimated fibroblast-like content as informative, but treat the absolute estimates as 
uncertain. 
 

 
 
Figure 2  Single-cell sequencing of IPSDSN cells. (a) Most cells express markers of sensory neurons, but 
a significant fraction have fibroblast-like gene expression. (b) A PCA plot of RNA-seq samples shows that 
PC1 separates samples with high fibroblast-like cell content (light blue) from more pure samples with low 
fibroblast-like cell content (dark blue), based on Cibersort estimates. 

IPSDSN gene expression correlates with functional measurements 
We used Ca2+ flux measurements on a subset of differentiated cultures (n=31) to confirm that the 
cells consistently responded to veratridine (a sodium ion channel agonist) and tetrodotoxin (a 
selective sodium ion channel antagonist), as expected (Supplementary Figure 14). We 
also performed patch-clamp electrophysiology recordings for 616 individual neurons from 31 
donors, with a median of 21 cells measured per line (examples in Supplementary Figures 15,16). 
For each neuron we measured the resting membrane potential, capacitance and rheobase. The 
rheobase is the minimum current input that will cause an individual neuron to fire an action 
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potential, and we used this as a measure of the overall membrane excitability. The distribution of 
rheobases was comparable to those obtained from primary DRG cells, but also showed 
differences between donors (Figure 3a). 
 
We next investigated whether variation in excitability was reflected in differences in gene 
expression of cells derived from the same donor. We examined the correlation between 
expression of individual genes and mean rheobase measured in sister cultures from the same 
donor and differentiation batch. After correcting for multiple testing, no individual genes were 
significantly correlated with rheobase at FDR < 0.1. However, we found a weak but significant 
correlation between the second principal component of gene expression, which accounted for 
20.4% of expression variation, and rheobase (p=0.007, Pearson r2=0.22; Figure 3b), suggesting 
that there is a gene expression signature associated with variation in sensory neuronal 
excitability. That such an association was seen at all is striking, considering that the 
measurements were from separate flasks differentiated from IPSCs of a given donor, and one is 
a collection of single-cell measurements done after 6 weeks of differentiation while the other is a 
bulk sequencing assay done after 4 weeks of differentiation. Gene ontology analysis of genes 
with the top 500 positive and 500 negative PC2 loadings showed that samples with higher 
excitability (lower mean rheobase) were enriched for processes including neurogenesis and 
nervous system development, whereas samples with lower excitability were enriched for genes 
involved in extracellular matrix organization. For example, among the top three PC2 genes, 
TTYH1 and PTPRZ1 have known functions in nervous system development (Kleinman et al. 
2014; Halleran et al. 2015; Kuboyama et al. 2015), while NMU encodes a multifunctional 
neuropeptide with a role in nociception (Martinez and O’Driscoll 2015). Among the bottom three 
PC2 genes (most negative loadings), COL1A1 and COL6A3 encode connective tissue collagen 
proteins, while SERPINE1 is an inhibitor of fibrinolysis, and all three genes are more highly 
expressed in GTEx fibroblasts than any other GTEx tissue. Note that although PC1 accounts for 
34% of the variation in gene expression and correlates with the fibroblast content of the samples, 
it did not correlate with rheobase (Supplementary Figure 17, p = 0.12). This is expected because 
only neuronal cells were measured by patch clamp, but it confirms that the presence of fibroblast-
like cells did not significantly alter excitability of the sensory neurons. 
 

 
 
Figure 3  Functional profile and associations of IPSDSNs. (a) The distribution of rheobase values for the 
31 samples with electrophysiology recordings. (b) Linear regression of principal component 2 of gene 
expression across samples with rheobase. 
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Genetic variants influence gene expression, splicing and chromatin 
accessibility in sensory neurons 
We wished to discover expression quantitative trait loci (eQTLs) in sensory neurons, as these are 
candidate loci that may influence sensory neuron excitability and related complex traits such as 
pain sensation. However, variability in gene expression that is induced by the differentiation 
process could obscure genetic effects that are present. To address this, we used a recently 
developed method, RASQUAL (Kumasaka, Knights, and Gaffney 2016), which models both 
allele-specific and total expression to improve power for detecting cis-eQTLs. Allele-specific 
effects due to cis-acting genetic variants are robust to changes in a gene’s total expression due 
to trans-acting or non-genetic factors. After merging replicates and removing samples where we 
lacked genotype data, we had expression data for 97 unique donors. We tested the association 
of expression with all SNPs and indels with minor allele frequency >= 5% and within 500 kb of the 
transcription start site for 19796 protein-coding genes and 15237 noncoding RNAs. We adjusted 
for multiple testing at the gene level using Bonferroni correction based on the estimated number 
of independent tests for each gene as determined by EigenMT (Davis et al. 2016), and across 
genes by comparing with a single permutation of sample labels (see Methods). 
 
At a genome-wide false discovery rate of 10% RASQUAL identified 3,778 genes with expression-
modifying genetic variants, termed eGenes (Supplementary Table 3). In contrast, when using the 
linear model FastQTL with 10,000 permutations we identified only 1403 eGenes. The 
improvement in power was more striking when considering only significantly expressed genes 
(FPKM > 1), with RASQUAL and FastQTL discovering 2607 and 774 eGenes, respectively. 
Power gains relative to a linear model were greatest among genes with high variability across 
samples, and this was true for both novel associations and those reported previously in GTEx 
(Supplementary Figures 18,19). This illustrates the value of using an allele-specific model in the 
context of iPSC-derived cell types, where differentiation can lead to a mixture of cell types, 
causing increased gene expression variation as well as diluting signals of cell type-specific 
eQTLs. 
 
Also of interest is whether we identify associations not already reported in GTEx (v6), the largest 
sequencing-based eQTL mapping study to date. For this we used a protocol described previously 
for the HIPSCI project (Kilpinen et al. 2016): we stringently designated an eQTL as tissue-specific 
when our lead SNP for a gene (or any of its high-LD proxies) did not have p < 2.2x10-4 for the 
same gene in any GTEx tissue (representing Bonferroni-corrected p < 0.01 for 44 tissues). 
Notably, we did not observe significant eQTL sharing between IPSDSNs and the IPSCs they 
were derived from (Supplementary Figure 20a). Of all 3,778 eGenes, 954 had tissue-specific 
associations (Supplementary Table 6), including genes with known involvement in pain or 
neuropathies, such as SCN9A, GRIN3A, P2RX7, CACNA1H/Cav3.2, and NTRK2. The 
tetrodotoxin-sensitive fast voltage gated ion channel SCN9A in particular has been linked to both 
extreme pain disorders due to gain of function mutations in primary erythromelalgia (Cao et al. 
2016), and congenital insensitivity to pain due to loss of function mutations (Cox et al. 2006). 
Because these eQTLs were not seen in any GTEx tissue, this suggests that these are regulatory 
variants with IPSDSN-specific function. In total we find eQTLs for 84 genes out of a set of 617 
genes associated with pain from the literature (see Methods), of which 11 are IPSDSN-specific. 
 
Variants affecting gene splicing (sQTLs) often change either protein structure or context-
dependent gene regulation, and may be more enriched for complex trait loci than are eQTLs (Li 
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et al. 2016). To detect sQTLs we used the annotation-free method LeafCutter (Li, Knowles, and 
Pritchard 2016) to define 59,736 clusters of alternatively spliced introns. After filtering to remove 
lowly-used intron junctions and clusters, we retained 30,591 clusters with on average 3.1 intron 
junctions per cluster. We then ran FastQTL (Ongen et al. 2016) with 10,000 permutations to 
associate intron usage levels with SNPs and indels within 15 kb of each intron’s midpoint. This 
yielded QTLs for 2,079 alternative splicing clusters at FDR 10% (Supplementary Table 4; see 
Methods). Notably, only 538 (26%) of the lead variants for these splicing associations were in 
linkage disequilibrium (LD) r2 >= 0.5 with a lead eQTL variant in our dataset, indicating that the 
sQTLs we identified further extend our catalog of expression-altering variants and are not merely 
proxies for gene-level eQTLs (or vice versa). In this regard, we found sQTLs for several pain-
associated genes including TRPV1, SCN3A, TAC1 and P2RX4, of which only P2RX4 has an 
eQTL in our dataset. 

 

 Number Pain 
associated 

GWAS 
overlap 

eQTLs 3778 84 156 

sQTLs 2079 45 129 

ATAC QTLs 6318 N/A 172 

Joint ATAC/eQTLs 177 1 14 

 
Table 1  QTL associations. Columns show the number of associations, the number for genes associated 
with pain in the OpenTargets database, and the number of unique overlaps (r2 > 0.8) between lead QTL 
SNPs and GWAS catalog SNPs after removing duplicates for each GWAS trait. 
 
Causal variants affecting gene expression and complex traits are highly enriched in regions of 
accessible chromatin (Degner et al. 2012), which can now be readily measured using ATAC-seq 
(Buenrostro et al. 2013). Moreover, these variants are often thought to act by altering binding of 
transcription factors to DNA, in turn affecting chromatin accessibility, looping of DNA to a gene 
promoter, and ultimately gene expression. Thus, causal variants altering chromatin accessibility 
(caQTLs) are expected to be found within the peaks themselves, which are typically small (< 1 
kb). With ATAC-seq data for 31 samples and considering a small window of 2 kb centered on 
each peak (~380,000 peaks), we detected 6,318 caQTLs at FDR 10% in IPSDSNs (median of 6 
variants tested per peak). 
 
Although caQTLs do not themselves directly implicate a target gene, caQTLs overlapping eQTLs 
provide a hypothesis as to the causal regulatory variant altering a specific gene’s expression. We 
therefore considered all overlaps within 500 kb between lead variants for caQTLs and eQTLs. 
Surprisingly, of our 3778 eQTLs, only 410 were in LD (r2 >= 0.5) with a caQTL, with about half 
that number being in high LD (194 with r2 >= 0.8). We expected a larger overlap, as a recent 
estimate suggested that 50% of histone acetylation QTLs for H3K27ac affect expression of at 
least one gene within 500 kb (Li et al. 2016). Our lower overlap is likely due primarily to our 
requirement for both eQTL and caQTL to be independently genome-wide significant, as well as to 
our limited ATAC-seq sample size (31 samples). An alternative approach would be to test each 
caQTL for association with nearby genes, with the tradeoff that this would be much less stringent. 
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We sought to identify transcription factors in IPSDSNs whose binding is altered by the regulatory 
variants we identified. We used the LOLA Bioconductor package (Sheffield and Bock 2015) to 
test for enrichment of our lead QTL SNPs, relative to GTEx lead SNPs, in ENCODE ChIP-seq 
peaks and JASPAR transcription factor motifs. Considering first only our tissue-specific eQTLs, 
we found high enrichment within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and 14.1, 
respectively; p < 5x10-5), which are both members of the neuron-specific chromatin remodeling 
(nBAF) complex (Lessard et al. 2007). Also enriched were REST/NRSF (OR=5.7, p=1.1x10-4) 
and SIN3A (OR=3.9, p=1.0x10-4), which bind neuron-restrictive silencer elements during 
development, but have suggested roles in the development and maintenance of neuropathic pain 
(Willis et al. 2016). Extending the enrichment test to all IPSDSN eQTLs, we also found 
enrichments for ELK1 (OR=7.5, p=1.4x10-13) and ELK4 (OR=5.8, p=6.1x10-16), which are 
transcriptional activators with alternative splice isoforms expressed in neurons, and which co-bind 
DNA along with SRF (Kerr et al. 2010; Vanhoutte et al. 2001). Also enriched is c-Fos (OR=11.3, 
p=4.1x10-14), a target of ELK1 and ELK4, which is widely expressed but is known to have specific 
functions in sensory neurons (Hunt, Pini, and Evan 1987; Kohno et al. 2003). Notably, DNA 
sequence motifs for REST, ELK1 and ELK4 are also among the most highly enriched motifs in 
our ATAC-seq peaks. All enrichments are available in Supplementary Tables 7-9. 

Sensory neuron eQTLs and sQTLs overlap with complex trait loci 
While we were interested in comparing our set of QTLs with GWAS for pain, the largest GWAS 
for pain to date included just 1,308 samples and found no associations at genome-wide 
significance (Peters et al. 2013). We therefore considered all GWAS catalog associations with p < 
5x10-8 that were in high LD (r2 > 0.8) with a QTL in our dataset, with two purposes in mind: to 
determine whether any GWAS traits are enriched overall for overlap with sensory neuron QTLs, 
and to find individual cases where a QTL is a strong candidate as a causal association for the 
GWAS trait. IPSDSN eQTLs were significantly enriched for overlap with GWAS catalog SNPs (p 
< 0.001) relative to 1000 random sets of SNPs matched for minor allele frequency (MAF), 
distance to nearest gene, gene density, and LD (Pers, Timshel, and Hirschhorn 2014), and the 
overlap was consistent with that seen for eQTL studies in other tissues (Supplementary Figure 
21). Although nociceptive neurons are specialized for sensing and relaying pain signals, they 
share characteristics with other neurons; thus, we might expect enrichment for traits known to 
involve the nervous system more generally. We restricted our analysis to the 41 traits with at 
least 40 GWAS catalog associations and then considered the binomial probability of overlap, with 
the expected overlap frequency being the proportion of QTL overlaps among all trait associations 
(6.2%). No traits showed significantly greater overlap with our QTL catalog than other traits after 
correcting for multiple testing (Supplementary Table 10). 
 
Across all traits, we found 156 genes with an eQTL overlapping at least one GWAS association 
(Table 1), and similarly 129 sQTLs and 172 caQTLs with GWAS overlap; the full catalog of 
overlaps is reported in Supplementary Tables 11-13. We examined these associations, in 
conjunction with ATAC-seq peaks and LD information, to identify candidate causal variants 
influencing both a molecular phenotype and a complex trait. 
 
Among overlapping associations we find a number that relate to neuronal diseases, such as 
Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease. One striking overlap is between 
an eQTL for SNCA, encoding alpha synuclein, and Parkinson’s disease, for which a likely causal 
variant has recently been identified (Soldner et al. 2016). The lead GWAS SNP and our lead 



11 
 

eQTL are both in perfect LD with rs356168 (1000 genomes MAF 0.39), which lies in an ATAC-
seq peak in an intron of SNCA. Soldner et al. used CRISPR/Cas9 genome editing in iPSC-
derived neurons to show that rs356168 alters both SNCA expression and binding of brain-specific 
transcription factors (Soldner et al. 2016). In IPSDSN cells we find that the G allele of rs356168 
increases SNCA expression 1.14-fold, in line with Soldner et al. who reported 1.06- to 1.18-fold 
increases in neurons and neural precursors. However, despite residing in a visible ATAC-seq 
peak in our data, rs356168 is not detected as a caQTL (SNP p value = 0.22). eQTLs for SNCA 
have recently been reported in the latest GTEx release (v6p), but none of the tissue lead SNPs 
are in LD (r2 > 0.2) with rs356168, suggesting that the effect of this SNP can be more readily 
detected in specific cell and tissue types, including IPSDSNs and the frontal cortex tissue and 
iPSC derived neurons studied by Soldner et al.  
 
A pain related trait of interest in this study is migraine. We find two QTLs overlapping GWAS 
associations from a recently reported meta-analysis of 375,000 individuals with migraine 
(Gormley et al. 2015). An eQTL for ADAMTSL4 (rs1260387) is in high LD (r2 = 0.9) with a 
chromatin accessibility QTL at rs6693567, 11 kb upstream of the ADAMTSL4 promoter. A 
number of lines of evidence suggest that of the two rs6693567 (MAF 0.30) is likely to be the 
causal variant in this region, although the causal gene is less certain. First, rs6693567 is the lead 
SNP for the migraine association, and is the only one among 8 SNPs in LD (r2 > 0.6, 1000 
genomes phase 3 Europeans) which has substantial biochemical activity reported in ENCODE, 
where it sits in a peak of DNAse hypersensitivity in multiple cell types. It alters a conserved 
nucleotide (GERP score 4.75) in a TEAD4 ChIP-seq peak in H1-ES cells, 6 base pairs from a 
sequence motif for TEAD4. An eQTL at the same SNP is reported across many tissues in GTEx, 
and affects a number of genes in the region, including ECM1, RP11-54A4.2, MRPS21, 
HORMAD1, GOLPH3L, and TARS2, and in many cases rs6693567 is the lead SNP for those 
associations. It is not clear which of these genes is most relevant, although ECM1 is reported to 
have roles in angiogenesis (Han et al. 2001) and has been associated with psoriasis (Niu et al. 
2016) and inflammatory bowel disease (Fisher et al. 2008). The most highly expressed of these 
genes in IPSDSNs is the mitochondrial ribosomal subunit MRPS21 consistent with reports of a 
link between mitochondrial dysfunction and migraine (Yorns and Hardison 2013). 
 
We also find multiple compelling overlaps between splice QTLs and GWAS associations (Figure 
4). One known example is a strong sQTL for TNFRSF1A (p=9.9x10-29) with the same lead SNP 
(rs1800693, MAF 0.30) as a multiple sclerosis association. This likely causal SNP is located 10 
base pairs from the donor splice site downstream of exon 6, and has been experimentally shown 
to cause skipping of exon 6, resulting in a frameshift and a premature stop codon (Gregory et al. 
2012). While TNFRSF1A is lowly expressed in neurons of the brain, it is highly expressed in 
many other tissues profiled by GTEx, including tibial nerve. We do not see an effect of this variant 
on total expression levels in our cells (p > 0.5), but we observe skipping of exon 6 in about 12% 
of transcripts from individuals homozygous for rs1800693 (Figure 4a). Since these transcripts 
undergo nonsense-mediated decay (Gregory et al. 2012), the actual rate of exon skipping is likely 
to be higher. 
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Figure 4  Splicing QTLs overlapping GWAS. (a) An sQTL for TNFRSF1A leads to skipping of exon 6, and 
overlaps with a multiple sclerosis association. (b) An sQTL for SIPA1L2 leads to increased skipping of an 
unannotated exon between alternative promoters, and overlaps with a Parkinson’s disease association. (c) 
An sQTL for APOPT1 alters skipping of exons 2 and 3, and overlaps with a schizophrenia association. P 
values are from the beta approximation based on 10,000 permutations as reported by FastQTL. 
 
An sQTL for SIPA1L2 (rs16857578, MAF 0.23) is in LD with associations for both Parkinson’s 
disease (rs10797576, r2=0.93) and blood pressure (rs11589828, r2=0.94). An unannotated 
noncoding exon (chr1:232533490-232533583) between alternative SIPA1L2 promoters is 
included in nearly 50% of transcripts in individuals with the reference genotype, but splicing in of 
the exon is abolished by the variant (Figure 4b). SIPA1L2, also known as SPAR2, is a Rap 
GTPase-activating protein expressed in the brain and enriched at synaptic spines (Spilker and 
Kreutz 2010). Although its function is not yet clear, expression is seen in many tissues profiled by 
GTEx, with highest expression in the peripheral tibial nerve. Interestingly, the related protein 
SIPA1L1 exhibits an alternative protein isoform with an N-terminal extension that is regulated 
post-translationally to influence neurite outgrowth (Jordan et al. 2005). 
 
A complex sQTL for APOPT1 (rs4906337, MAF 0.22) is in near-perfect LD with a schizophrenia 
association (rs12887734). The splicing events involve skipping either of exon 3 only or both 
exons 2 and 3 (Figure 4c). At least 20 variants are in high LD (r2 > 0.9), including rs4906337 
which is 40 bp from the exon 3 acceptor splice site, and rs2403197 which is 63 bp from the exon 
4 donor splice site. No sQTL is reported in GTEx, and although eQTLs are reported for APOPT1, 
only the thyroid-specific eQTL (rs35496194) is in LD (r2 = 0.94) with the schizophrenia-associated 
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SNP rs12887734. APOPT1 is localized to mitochondria and is broadly expressed. Homozygous 
loss-of-function mutations in this gene lead to Cytochrome c oxidase deficiency and a distinctive 
brain MRI pattern showing cavitating leukodystrophy in the posterior region of the cerebral 
hemispheres, with affected individuals having variable motor and cognitive impairments and 
peripheral neuropathy (Melchionda et al. 2014). 
 

Discussion 
iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant human 
cell types, including those which are inaccessible as primary tissue samples. Because the effect 
sizes of common disease-associated risk alleles tend to be small, observing their effects in 
cellular models is challenging (Raghavan et al. 2016; Soldner et al. 2016). In an iPSC-based 
system, this difficulty is compounded by variability between samples in the success of 
differentiation, as described for hepatocytes (Dianat et al. 2013), hematopoietic progenitors 
(Smith et al. 2013), and neurons (Handel et al. 2016; Hu et al. 2010). Thus, for iPSC models of 
common disease associated variants to be meaningful, it is critical to know which candidate 
disease associated variants exhibit a cellular phenotype in an in vitro model.  
 
Our study is the first that we are aware of to attempt iPSC differentiation at scale, from healthy 
individuals, and to functionally characterize the resulting differentiated cells and map the effects 
of common genetic variants genome-wide in an iPSC-derived cell type. We observed that, 
broadly, gene expression in our differentiated cells matched that observed in the closest primary 
tissue type we could obtain, dorsal root ganglia. However, we also observed that sample-to-
sample variability in gene expression in the iPSC-derived cells was greater than that observed in 
DRGs. These highly variable genes were enriched in processes relating to neuronal 
differentiation and development. While this is unsurprising, it highlights that genes likely to be of 
particular interest and relevance for the function of these cells are also among the most variable, 
a challenge which may be broadly true of iPSC-derived cells. A portion of this variability is likely 
to be due to the imperfect process of in vitro differentiation, which produces a mixture of cell 
types. 
 
Our single-cell RNA-seq data, which came from a single differentiation, could be cleanly clustered 
into neuronal cells and cells with more fibroblast-like gene expression. Using reference profiles 
from the two single-cell clusters enabled us to estimate the fraction of neuronal cells in our bulk 
RNA-seq samples, and these estimates qualitatively agreed with the neuronal content in images 
from the cell cultures. However, we do not have an independent quantitative measure of neuronal 
fraction, and we are mindful that no fixed clustering can fully represent the heterogeneity present 
in a cell population, whether iPSC-derived or from primary tissue. Our estimates of neuronal 
content in our bulk RNA-seq are thus dependent on the clusters we defined. The similarity that 
the fibroblast-like single cells also had with DRG raises the important question of whether these 
cells are immature sensory neurons, or are in a “confused” state that may not reflect any actual 
cells in the body. This question, which is relevant to all IPSC-derived cell types, could be 
addressed by single-cell sequencing done at multiple time points during differentiation. 
Alternatively, in neurons one can perform deep electrophysiological phenotyping followed by 
sequencing in the same single cells, known as Patch-seq (Cadwell et al. 2015) to enable 
classifying single neurons into functional categories and/or maturity levels. By establishing 
multiple reference profiles, these approaches could enable in silico sorting of cells based on their 
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transcriptome, and better characterization of the sources of variation within a differentiated 
population of cells.  
 
Neuronal excitability in IPSDSNs was correlated with the second principal component of gene 
expression, measured in separate cell cultures for a given donor and differentiation batch. 
Although this was a modest association (r2=0.224), it indicates that measurable differences in 
gene expression are recapitulated in higher-level neuronal phenotypes. Because neurons could 
be visually distinguished in our cultures, we were able to perform single-cell electrophysiology 
measurements only on apparently mature cells. Distinguishing mature differentiated cells from 
contaminating or immature cells might be more difficult in other derived cell types, in which case 
subsequent steps to isolate mature cells may be necessary (Choudhary et al. 2016). We did not 
detect a correlation between individual genes and neuronal excitability, likely due in part to the 
heterogeneity between individual neurons observed in each culture. When Patch-seq was 
recently used match transcriptional profiles and electrophysiology recordings in the same single 
cells, correlation between neuronal functional state and individual genes could be detected 
(Bardy et al. 2016). 
 
Despite the observed sample-to-sample variability in gene expression, we detected thousands of 
eQTLs and caQTLs in IPSDSNs, boosting our power by incorporation of allele-specific 
information. Many of these overlap known expression-modifying variants that are associated with 
disease, including the eQTL for SNCA and Parkinson’s disease. Notably, many associations, 
including for SNCA, were discovered only with a model that statistically combines both allele-
specific and between individual differences in expression to improve power for association 
mapping. Our results suggest that this approach is particularly useful in cases where there is 
significant sample-to-sample variability. We also discovered numerous QTLs for RNA splicing, 
using a method based on reads mapping across splice junctions (Li et al. 2016). Our catalog of 
QTLs includes a large number that overlap with complex trait associations, and for most of these 
the causal variants are not known. This QTL map is thus a starting point for in-depth dissection of 
individual loci in iPSC-derived cells where we have shown that a genetic effect is present. 
 
In summary, we have measured multiple molecular phenotypes in the largest panel of iPSC-
derived cells to date. The catalog of QTLs we provide reveals a large set of common variants with 
detectable effects in IPSDSNs, suggesting promising targets for functional studies to fine-map 
causal disease-associated alleles in this cell type, such as by allelic replacement using CRISPR-
Cas9. 
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Online methods 

IPS cell lines and neuron differentiation 
Human induced pluripotent stem cells (iPSCs) from 103 healthy donors were obtained from the 
HIPSCI resource (Kilpinen et al. 2016). All samples for HIPSCI were collected from consented 
research volunteers recruited from the NIHR Cambridge BioResource 
(http://www.cambridgebioresource.org.uk). Samples were collected initially under existing 
Cambridge BioResource ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with 
later samples collected under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013). All cell 
lines were reprogrammed to pluripotency using an identical protocol, as described for the HIPSCI 
resource. Of the 103 lines, 38 were initially grown in feeder-dependent medium and the 
remainder were grown in feeder-free E8 medium. Clump passaged iPSCs were single cell 
seeded in mTeSR1 (StemCell Technologies, Vancouver) media on hES-qualified Matrigel (BD 
Biosciences, San Jose, CA) 48 hours prior to neural induction (day 0). KSR media containing 
small molecule inhibitors LDN193189 (1µmol/l) and SB- 431542 (10 µmol/l) were added to cells 
from day 0 to 4 to drive anterior neuroectoderm specification. KSR Media was prepared as 500ml 
DMEM-KO (Life Technologies 10829-018), 130ml KSR-XF (Life Technologies 12618-013), 1x 
NEAA (Life Technologies 11140-068), 1x Glutamax (Life Technologies 35050-087), 0.01 mM β-
mercaptoethanol (Sigma M6250-100ml). From day 3, CHIR99021 (3 µmol/l), DAPT (10 µmol/l) 
and SU5402 (10 µmol/l) were added to further enable the emergence of neural crest phenotypes. 
N2B27 media was used incrementally every two days from D3. N2B27 Media was prepared as 
500ml Neurobasal medium (Life Technologies 21103-049), 5ml N2 supplement (Life 
Technologies 17502-048), 10ml B27 supplement without vitamin A (Life Technologies 12587-
010), 0.01mM β-mercaptoethanol (Sigma M6250-100ml) and 1x Glutamax (Life Technologies 
35050-087). On day 11 maturation media containing N2B27 media with human-b-NGF (25ng/ml), 
BDNF (25 ng/ml), NT3 (25ng/ml) and GDNF (25ng/ml) was and used for long term culture. AraC 
treatment (4µM) was used once at day 14 to reduce the non-neuronal population when 
necessary. Cells were differentiated in T25 flasks for RNA and nuclei isolation and replated at 
day 14 onto coverslips and 96 well plates for electrophysiology and Ca2+ flux assays. 

Single-cell RNA sequencing 
Single cells were sequenced from a single sample. Although this sample used the same 
differentiation protocol, it was not derived from a HIPSCI donor and it was matured for 8 weeks, 
whereas the RNA-seq samples were matured 4 weeks. Previous work showed only minor 
changes in gene expression between 4 and 8 weeks maturation (Young et al. 2014). Dissociated 
cells were loaded onto a Fluidigm C1 system for automatic cell separation, reverse transcription 
and amplification.  Libraries were only prepared from C1 chambers that contained single cells, 
using the Illumina Nextera XT kit as per the Fluidigm C1 protocol.  These were quantified with the 
Qubit dsDNA HS assay (Thermo Fisher) and KAPA Library Quantification Kit (KAPA Biosystems) 
and size-checked with the Agilent Bioanalyser DNA 1000 assay (Agilent), as per manufacturers’ 
recommendations.  Libraries were 96-way multiplexed and sequenced paired end on an Illumina 
Nextseq500 (75bp reads). Reads for each cell were aligned to GRCh38 and Ensembl 80 
transcript annotations using STAR v2.4.0d with default parameters. 
 
We had gene expression counts for ~56,000 genes (including noncoding RNAs) for 186 cells, 
although many of these were zeros. We excluded 9 cells expressing fewer than 20% of the 
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quantified genes, and then used SC3 (Kiselev et al. 2016) to cluster the remaining 177 cells 
based on expression counts. Note that when clustering cells from complex tissues there is often a 
hierarchy of clusters, and no specific number of clusters can be considered correct. Allowing that 
the same could be true of IPS-derived cells, we examined alternative numbers of clusters from 
k=2 to 5 (Supplementary Figure 6), specifying k (the number of clusters) ranging from 2 to 5. With 
two clusters, the marker genes reported by SC3 clearly identified one cluster (111 cells) as 
neuronal, whereas the other cluster (66 cells) had high expression of extracellular matrix genes 
reminiscent of fibroblasts.  
 
To display marker gene expression we selected 5 neuronal and 5 fibroblast marker genes based 
on the literature. After DESeq2’s variance stabilizing transformation, we used R’s “scale” function 
to mean-center and normalize expression values across cells for these genes, and plotted the 
result using the pheatmap R package. 
 
With 3 and 4 clusters, the sensory-neuronal cell cluster remained unchanged, and the fibroblast-
like cluster became further subdivided. This suggests that a majority of the cells in this sample 
were terminally differentiated into sensory neurons, whereas the remaining cells were more 
heterogeneous in their gene expression. With 5 clusters, the neuronal cluster split in two, while 
the fibroblast-like clusters remained unchanged. 

Genotypes 
We obtained imputed genotypes for all of the samples from the HIPSCI project. We used 
CrossMap (http://crossmap.sourceforge.net/) to convert variant coordinates from GRCh37 
reference genome to GRCh38. We then used bcftools (http://samtools.github.io/bcftools/) to 
retain only bi-allelic variants (SNPs and indels) with INFO score > 0.8 and MAF > 0.05 in the 97 
samples used for QTL calling. This filtered VCF file was used for all subsequent analyses. 

RNA sequencing 
Cells growing in T25 flasks were washed twice with PBS followed by addition of 600 mL of 
RLTPlus buffer. Cells were gently lifted from the flask and transferred to 1.5 ml tubes. Lysates 
were transferred to 1.5 mL tubes. RNA and gDNA were isolated using AllPrep DNA/RNA Minikit 
(Qiagen). RNA was eluted in 33 uL of DNAse free water and DNA eluted in 53 uL EB buffer. 
 
RNA libraries were prepared using the Illumina TruSeq strand-specific protocol, and were 
sequenced with paired-end reads (2x75) on Illumina HiSeq with V4 chemistry. There were 131 
RNA samples, which corresponded with 103 unique HIPSCI cell lines, as some of the samples 
were differentiation replicates or RNA-extraction replicates. One sample failed in sequencing and 
was excluded. Reads for each sample were aligned to GRCh38 and Ensembl 79 transcript 
annotations using STAR v2.4.0j with default parameters. We used VerifyBamID v1.1.2 (Jun et al. 
2012) to check that RNA-seq sample BAM files matched the corresponding sample genotypes in 
the core HIPSCI VCF files. This revealed 5 mislabeled RNA samples, for which the correctly 
matching sample genotypes could be easily determined and corrected, as well as two samples 
for which no match could be found in HIPSCI genotype data and which were thus excluded 
(these had been labeled as problematic samples in HIPSCI). 

ATAC library preparation and sequencing 
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Nuclei isolation 
Media was removed from T25 flasks and washed twice with 10 mL of room temperature D-PBS 
without calcium and magnesium. The adherent neuronal cultures were lifted by treating with 3 mL 
of Accutase (Millipore – SCR005) at room temperature for four minutes. The Accutase was 
quenched by adding 6 mL of 2 % foetal bovine serum in D-PBS. The cells were transferred to a 
15 mL conical tube and centrifuged at 300 g for 5 minutes at 4 °C. The cell pellet was 
resuspended in 1 mL of ice-cold sucrose buffer (10 mM tris-Cl pH 7.5, 3 mM CaCl2, 2 mM MgCl2 
and 320 mM sucrose) and pipetted briefly to break up the large clumps before incubating on ice 
for 12 minutes. 50 µL of 10% Triton-X 100 was added to the sucrose-treated cells and mixed 
briefly before incubating on ice for a further 6 minutes. Nuclei were released by performing 30 
strokes with a tight dounce homogeniser on ice. Approximately 1 x 105 nuclei were transferred to 
a 1.5 mL microfuge tube and centrifuged at 300 g for 5 minutes at 4 °C. All traces of the lysis 
buffer were removed from the nuclei pellet.  
 
Tagmentation, PCR amplification and size selection 
The tagmentation and PCR methods used here are in principle the same as that described in 
Buenrostro et al., 2013, but with some modifications as described in Kumasaka et al., 2016. The 
nuclei pellet was resuspended in 50 µL of Nextera tagmentation master mix (Illumina FC-121-
1030) (25 µL 2x Tagment DNA buffer, 20 µL nuclease-free water and 5 µL Tagment DNA 
Enzyme 1) and incubated at 37 °C for 30 minutes. The tagmentation reaction was stopped by the 
addition of 500 µL Buffer PB (Qiagen) and purified using the MinElute PCR purification kit 
(Qiagen 28004), according to the manufacturer’s instructions and eluting in 10 µL of Buffer EB 
(Qiagen). 10 µL of the tagmented chromatin was mixed with 2.5 µL Nextera PCR primer cocktail 
and 7.5 µL Nextera PCR mastermix (Illumina FC-121-1030) in a 0.2 mL low-bind PCR tube. The 
indexing primers used for amplification were from the Nextera Index kit (Illumina FC-121-1011), 
using 2.5 µL of an i5 primer and 2.5 µL of an i7 primer per PCR, totalling 25 µL. PCR 
amplification was performed as follows: 72 °C for 3 minutes and 98 °C for 30 seconds, followed 
by 12 cycles of 98°C for 10 seconds, 63 °C for 30 seconds and 72 °C for 3 minutes.  To remove 
the excess of unincorporated primers, dNTPS and primer dimers, Agencourt AMPure XP 
magnetic beads (Beckman Coulter A63880) were used at a ratio of 1.2 AMPure beads:1 PCR 
sample (v/v), according the manufacturer’s instructions, eluting in 20 µL of Buffer EB (Qiagen). 
Finally, size selection was performed by 1% agarose TAE gel electrophoresis, selecting library 
fragments from 120 bp to 1 kb. Gel slices were extracted with the MinElute Gel Extraction kit 
(Qiagen 28604), eluting in 20 µL of Buffer EB. 
 
Illumina sequencing 
A total of 31 ATAC-seq libraries each prepared with a unique Nextera i5 and i7 tag combination 
were pooled. Index tag ratios were assessed by a single MiSeq run and were balanced before 
being sequenced at two per lane with paired-end reads (2x75) on a HiSeq with V4 chemistry. 
However, rebalancing did not appear to work correctly, as the number of reads varied greatly 
between samples, from a minimum of 17 million to a maximum of 987 million. However, 22 
samples had over 100 million reads, and 30 samples had over 40 million reads. Across samples, 
a median of 56% of reads mapped to mitochondrial DNA. For calling ATAC QTLs we used all 
sample counts as-is. 
 
Read alignment 
We aligned reads to GRCh38 human reference genome using bwa mem v0.7.12 . Reads 
mapping to the mitochondrial genome and alternative contigs were excluded from all downstream 
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analysis. As for RNA-seq data, we used VerifyBamID v1.1.2 (Jun et al. 2012) to detect sample 
swaps. This revealed one mislabeled sample, which we then corrected. We used Picard v1.134 
MarkDuplicates (https://broadinstitute.github.io/picard/) to mark duplicate fragments. We 
constructed fragment coverage BigWig files using bedtools v2.21.0 (Quinlan and Hall 2010). 
 
Peak calling 
We used MACS2 v2.1.1 (Zhang et al. 2008) to call ATAC-seq peaks individually on sample BAM 
files with parameters ‘--nomodel --shift -25 --extsize 50 -q 0.01’. We then constructed a 
consensus set of peaks by determining regions in which peaks overlapped in at least 3 samples. 
At regions of overlap, the consensus peak was defined as the union of overlapping peaks. This 
resulted in 381,323 peaks, with 98% of peaks ranging in size from 82 - 1191 base pairs.  

Gene expression quantification, quality control and exclusions 
GTF files for the Gencode Basic transcript annotations, GRCh38 release 79, were downloaded 
from www.gencodegenes.org. We excluded short RNAs, pseudogenes, and genes not mapping 
to chromosomes 1-22, X, Y, or MT, leaving 35,033 unique genes. Gene expression counts were 
determined using the featureCounts tool of the subread package v1.5.0 (Liao, Smyth, and Shi 
2014) with options (-s 2 -p -C -D 2000 -d 25). A median of 45 million reads were generated per 
sample, with median 32.8 million reads (72%) uniquely mapping and assigned to genes. 
Expression counts were normalized using conditional quantile normalization with the R package 
cqn v5.0.2 (Hansen, Irizarry, and Wu 2012). We defined expressed genes as the 14,215 genes 
with mean CQN-normalized expression across samples > 1.  
 
We determined pairwise correlation between samples using normalized counts for expressed 
genes and plotted these as a heatmap. We also plotted the first five principal components of 
gene expression against each other. These plots identified four outlier samples, which were 
excluded from subsequent analyses (Supplementary Figure 1). After all exclusions and corrected 
sample labels, we retained 126 samples from 99 unique donors. For gene expression 
quantification and QTL calling (both eQTL and sQTL), replicate BAM files from same donor were 
merged together using samtools. Although this meant that some samples had about three times 
as many reads as other samples, neither of the QTL calling methods we used is strongly 
sensitive to this difference. Because genotypes were not available from HIPSCI for two donors, 
we retained gene expression data for 97 donors for QTL calling. 
 
Assessing gene expression replicability 
We used R with ggplot2 to plot the CQN-normalized expression for pairs of sample replicates. 
We excluded 16 samples differentiated using the first version protocol (P1), as most samples 
(110) were differentiated with the second version (P2), which gave us sufficient samples to 
consider variability between differentiations without including protocol effects. We determined the 
spearman correlation coefficient across all genes for (a) extraction replicates, (b) differentiation 
replicates, and (c) all possible pairs of samples from different donors. The histogram of 
correlation coefficients for these 3 categories is shown in Supplementary Figure 2. 

Dorsal root ganglion samples and sequencing 
Human tissue acquisition and handling was performed at Pfizer Neuroscience in accordance with 
regulatory guidelines and ethical board approval. Postmortem human dorsal root ganglia (DRG) 



20 
 

were obtained in dissected form from Anabios or as an encapsulated sheath together with 
sensory/afferent axons from National Disease Research Interchange which were subsequently 
dissected to isolate the cell-body rich ganglion. The tissue was homogenized in an appropriate 
volume QIAzol Lysis Reagent according to weight and processed according to the manufacturer's 
instructions for the Qiagen RNeasy Plus lipid-rich kit. RNAseq library preparation and sequencing 
was performed using the Illumina TruSeq Stranded mRNA Library Prep Kit and an Illumina HiSeq 
2500 generating 2 x 100 bp reads by Aros Inc. according to the manufacturer's instructions. 
Sequencing reads were aligned to the GRCh37 reference human genome using STAR and gene 
counts and FPKMs obtained using featureCounts and Ensembl v80 gene annotations. 

Multidimensional scaling plot clustering samples with GTEx tissues 
We downloaded the GTEx v6 gene RPKM file (GTEx_Analysis_v6_RNA-seq_RNA-
SeQCv1.1.8_gene_rpkm.gct.gz) as well as sample metadata 
(GTEx_Data_V6_Annotations_SampleAttributesDS.txt) from the GTEx web portal 
(http://www.gtexportal.org/home/datasets). We computed RPKMs for all genes for the 28 DRG 
samples, the 119 sensory neuron samples (5 outliers removed), and all HIPSCI IPS samples. We 
used all genes that were quantified in all of these sample sets. We determined pairwise sample 
distances in R (d = 1 - cor(rpkm.matrix)), then computed MDS locations (isoMDS(d, k=2)) with 
MASS package and plotted the results with ggplot2. 

Highly variable genes in IPSDSNs and GTEx 
We obtained GTEx v6 RPKM files for all genes as described above. For each of the 44 tissues, 
as well as IPSDSNs, DRG, and HIPSCI IPSCs, we calculated the coefficient of variation (CV) of 
each gene among samples with the same detailed tissue type (SMTSD in GTEx sample 
metadata). We then subsetted the genes considered in each tissue to those expressed at RPKM 
> 1 in that tissue. We plotted the distribution of CVs across all genes for each tissue as a density 
plot (Supplementary Figure 3). We also calculated “CVRatio” for each gene in each tissue, which 
is the ratio of the gene’s CV to the mean CV for the gene in all other tissues where the gene is 
expressed. As an example, suppose that gene A has a CV of 0.6 in tissue X, and is expressed in 
three other tissues where it has CVs of 0.2, 0.3, and 0.7. The CVRatio for gene A in tissue X 
would be 0.6 / ((0.2 + 0.3 + 0.7) / 3) = 1.5. This is meant to indicate how variable gene A’s 
expression is in tissue X relative to its variability in other tissues, i.e. to identify “unusually 
variable” genes. In practice, the difference in gene rankings between CV and CVRatio for 
IPSDSNs was not large, although slightly more genes could be considered outliers in IPSDSNs 
with CVRatio. 
 
We used the GOSummaries R package (Kolde and Vilo 2015) to compute gene ontology 
enrichments for the top 1000 most highly variable genes in IPSDSNs by CVRatio, which are 
reported in Supplementary Table 2. GOSummaries uses the g:Profiler web tool for enrichments 
(http://biit.cs.ut.ee/gprofiler/) (Reimand, Arak, and Vilo 2011). GO enrichments were similar 
whether considering the top 1000 genes by CV or by CVRatio. 

Estimation of neuronal purity 
We used Cibersort (Newman et al. 2015) to estimate the fraction of RNA from neuronal cells in 
our bulk RNA-seq samples. We used the 14,786 genes whose CQN expression in bulk RNA 
samples was greater than zero, and retrieved raw counts for these genes in our single cell RNA-
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seq data. We labeled the single cells as “neuron” or “fibroblast-like” as determined based on the 
SC3 clustering, and specified these single cell counts as the reference samples for Cibersort to 
generate a custom signature genes file during its analysis. We used raw expression counts for 
the same genes for our 126 bulk RNA-seq samples as the mixture file for Cibersort to use in 
estimating the relative fractions of neuron and fibroblast-like cell RNA. 

Electrophysiological recordings 
Six coverslips per line were placed singularly into a 12-well plate and washed 1x with 1 ml DPBS 
(+/+).  After removal of DPBS, the coverslips were coated with 1 ml of 0.33 mg/ml growth factor 
reduced matrigel for > 3 hr at room temperature. D14 cells were prepared at a suspension of 
1.6x106/ml in 15 ml media. The cells were then diluted in NB media to create a 0.3e6/ml 
suspension. The coverslips were transferred into a clean 12-well plate and 1 ml of the cell 
suspension was added. Plates were incubated at 37°C (5% CO2) in a cell culture incubator for 
24hrs, after which the coverslips were transferred into a clean 12-well plate containing 2 ml 
media. Cells were then treated with Mitomycin C (0.001 mg/ml for 2hr hours at 37°C) post plating 
on day 4 and day 10. Media was changed twice weekly. 
 
Patch-clamp experiments were performed in whole-cell configuration using a patch-clamp 
amplifier 200B for voltage clamp and Multiclamp 700A or 700B for current clamp controlled by 
Pclamp 10 software (Molecular Devices). Experiments were performed at 35°C or 40°C as noted 
controlled by an in-line solution heating system (CL-100 from Warner Instruments). Temperature 
was calibrated at the outlet of the in-line heater daily before the experiments. Patch pipettes had 
resistances between 1.5 and 2 MΩ. Basic extracellular solution contained (mM) 135 NaCl, 4.7 
KCl, 1 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose; pH was adjusted to 7.4 with NaOH. The 
intracellular (pipette) solution for voltage clamp contained (mM) 100 CsF, 45 CsCl, 10 NaCl, 1 
MgCl2, 10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with CsOH. For current clamp the 
intracellular (pipette) solution contained (mM) 130 KCl, 1 MgCl2, 5 MgATP, 10 HEPES, and 5 
EGTA; pH was adjusted to 7.3 with KOH. The osmolarity of solutions was maintained at 320 
mOsm/L for extracellular solution and 300 mOsm/L for intracellular solutions. All chemicals were 
purchased from Sigma. Currents were sampled at 20 kHz and filtered at 5 kHz. Between 80% 
and 90% of the series resistance was compensated to reduce voltage errors. The voltage 
protocol used for the compounds testing on voltage gated sodium channels consisted of steps 
from a holding potential of -110 mV to -70 mV for 5 seconds, followed by step to -110 mV for 100 
millisecond then currents were measured at step to 0 mV for 20 milliseconds. Intersweep 
intervals were 15 seconds. Rheobase was measured in current clamp mode by injecting 
increasing 30 milliseconds current steps until a single action potential was evoked. Intersweep 
intervals were 2 seconds. Membrane potential was set at either free-resting or held at -70 mV as 
noted.  Current clamp data was analyzed using Spike2 software (Cambridge Electronic Device, 
UK) and Origin 9.1 software (Originlab). 

Correlation of gene expression with electrophysiological phenotypes 
To avoid double-counting samples, we selected the first sample from each differentiation 
replicate to include in the gene expression table (104 samples). We then used DESeq2’s 
variance stabilizing transformation on the raw gene expression counts. We computed the first 10 
principal components (PCs) with Bioconductor’s pcaMethods package. The first 3 PCs accounted 
for 34%, 20%, and 7% of expression variability, respectively, whereas subsequent PCs explained 



22 
 

<= 3% of variability each. We therefore considered only the first 3 PCs in subsequent analyses. 
For the 31 samples with rheobase measurements, we examined the Pearson correlation between 
samples’ mean rheobase values and their PC loadings. Only PC2 showed a significant 
correlation upon linear regression (p=0.0072, Pearson r2=0.22). 
 
We also examined correlation of individual genes with rheobase. We used DESeq2 with PC1 and 
mean rheobase in the design formula, and excluded genes with a maximum Cook’s outlier score 
above 5. At FDR 10%, DESeq2 reported 19 genes whose expression correlated with rheobase. 
However, on further examination these associations still appeared to be driven by outlier 
samples. We did a similar analysis considering spearman correlation between mean rheobase 
and each gene’s expression across samples, but no genes had a significant correlation at any 
FDR threshold when considering the number of tests done. 

QTL calling 
Expression QTLs 
To call cis-eQTLs we used RASQUAL (Kumasaka, Knights, and Gaffney 2016), which leverages 
allele-specific reads in heterozygous individuals to improve power for QTL discovery, while 
accounting for reference mapping bias and a number of other potential artifacts. With RASQUAL 
a feature is defined by a set of start and end coordinates; for calling a gene eQTL these are the 
start and end coordinates for exons, whereas for an ATAC-seq peak these are the peak 
coordinates. RASQUAL requires as input the allele-specific read counts at each SNP within a 
feature. We used the Genome Analysis Toolkit (GATK) program ASEReadCounter (Castel et al. 
2015) with options ‘-U ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10 -rf 
MateSameStrand’ to count allele-specific reads at SNPs (and not indels). We then annotated the 
AS read counts in the INFO field of the VCF used as input for RASQUAL. We used custom 
scripts to determine the number of feature SNPs in gene exons. 
 
We used RASQUAL’s makeCovariates.R script to determine principal components (PCs) to use 
as covariates, which determined 12 PCs as appropriate from the expression count data. We ran 
RASQUAL separately for each of 35,033 genes, passing in VCF lines for all SNPs and indels 
(MAF > 0.05, INFO > 0.8) within 500 kb of the gene transcription start site. To correct for multiple 
testing we used permutations; however, because RASQUAL is computationally intensive, it would 
not be possible to run a thousand or more permutations for every gene. Therefore we used an 
approach to balance power and computational time. To correct for the number of SNPs tested 
per gene, we used EigenMT (Davis et al. 2016) to estimate the number of independent tests per 
gene, and then performed Bonferroni correction on a gene-by-gene basis. To estimate the false 
discovery rate (FDR) across genes, we used the --random-permutation option of RASQUAL and 
re-ran it once for every gene, saving the minimum p value (after EigenMT correction) of the SNPs 
tested for each gene. This gave a distribution of minimum p values across genes for the 
permuted data. To determine the FDR for eQTL discovery at a given gene, we use R to compute 
(#permuted data min pvalues < p) / (#real data min p values < p), where p is the minimum p value 
among SNPs for the gene in question. With this procedure we obtained 3,586 genes with a cis-
eQTL at FDR 10% (2,628 at FDR 5%). 
 
ATAC QTLs 
As we did for gene expression, we used featureCounts v1.5.0 to count fragments overlapping 
consensus ATAC-seq peaks and ASEReadCounter to count allele-specific reads at SNPs (and 
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not indels) within peaks. We ran RASQUAL separately for each of 381,323 peaks, passing in 
VCF lines for SNPs and indels (MAF > 0.05, INFO > 0.8) within 1 kb of the center of the peak. 
Since >99.9% of peaks were less than 2 kb in size, this meant that we tested effectively all SNPs 
within peaks. As we did when calling eQTLs, we ran RASQUAL with the --random-permutation 
option for every gene, and determined FDR as described above. Note that in this case we used 
Bonferroni correction based on the number of SNPs tested, without using EigenMT, due to the 
small size of the windows tested. With this procedure we obtained 6,318 ATAC peaks with a cis-
QTL at FDR 10%. 
 
Splice QTLs 
We downloaded LeafCutter from Github (https://github.com/davidaknowles/leafcutter) on April 17, 
2016. We used the LeafCutter bam2junc.sh script to determine junction counts for each sample, 
followed by leafcutter_cluster.py. This resulted in 254,057 junctions in 59,736 clusters. To focus 
on splicing events likely to be significant, we applied a number of filters, including: (a) removing 
junctions accounting for less than 2% of the cluster reads, (b) removing introns used (i.e. having 
at least 1 supporting read) in fewer than 5 samples, (c) retaining only clusters where at least 10 
samples had 20 or more reads in the cluster. This yielded a filtered set of 95,786 junctions in 
30,591 clusters. We first determined the read proportions for all junctions within alternatively 
excised clusters. We then Z-score standardized each junction read proportion across samples, 
and then quantile-normalized across introns. We used this as our phenotype matrix for input to 
FastQTL to test for associations between intron usage and variants within 15 kb of the center of 
each intron. We chose a cis-window size of 30 kb (2 x 15 kb) because >91% of introns are < 30 
kb in size, and so this tests variants near exon/intron boundaries for the great majority of introns, 
while maximizing power. 
 
We ran FastQTL in nominal pass mode 31 times specifying the first 0 to 30 principal components 
as covariates, and examined the number of intron QTLs with minimum SNP p value < 10-5. This 
showed that the number of QTLs plateaued when 5 PCs were used, and so we used 5 PCs in 
subsequent runs. We next ran FastQTL with 10,000 permutations to determine empirical p values 
for each alternatively excised intron. To correct for the number of introns tested per cluster, we 
used Bonferroni correction on the most significant intron p value per cluster. We then used the 
Benjamini-Hochberg method to estimate FDR across tested clusters. This yielded 2,079 
significant SNP associations for intron usage (sQTLs) at FDR 10%. 
 
For significant sQTLs we used bedtools closest with GRCh38 release 84 to annotate the gene(s) 
nearest the lead SNP for the association. To ensure we had relevant genes, we filtered the 
annotation to include only genes where one of the exon boundaries matched the intron boundary 
for the sQTL. 

Identifying tissue-specific eQTLs 
We determined the set of tissue-specific eQTLs using the same procedure and code as in the 
HIPSCI project (Kilpinen et al. 2016). Briefly, we considered the full cis eQTL output of sensory 
neuron eQTLs and 44 tissues analyzed by the GTEx Project (Mele et al. 2015). For each 
discovery tissue (including sensory neurons), we tested for the replication of all lead eQTL - 
target eGene pairs reported at FDR 5%. If the lead eQTL variant was not reported in the 
comparison tissue, then the best high-LD proxy of the lead variant (r2 > 0.8 in the UK10k 
European reference panel) was used as the query variant. Replication was defined as the query 
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variant having a nominal eQTL p < 2.2x10-4 (corresponding to p = 0.01 / 45, where 45 refers to 
the total number of tissues tested) for the same eGene. We then extracted eGenes for which the 
lead eQTL did not show evidence of replication in any other tissue (p > 2.2x10-4) or could not be 
tested (i.e. was not measured or reported as expressed in any other tissue). 
 
This analysis gave 954 eGenes where the eQTL is specific to sensory neurons (Supplementary 
Table 6). We note that some of these “tissue-specific” eGenes could be due to the difference in 
QTL-calling methods used, notably that we used RASQUAL, a method incorporating both allele-
specific and population-level expression variation. Therefore, some of the tissue-specific eGenes 
we report may actually be present more broadly in GTEx tissues but missed by the linear QTL 
model used in GTEx. Among the 1403 eGenes called by FastQTL, 208 were tissue-specific to 
IPSDSNs. 

Pain-associated genes 
We identified a set of pain-associated genes by searching for the term “pain” in the OpenTargets 
web site (https://www.targetvalidation.org/) on August 22, 2016, and downloading the reported 
gene associations and scores. We chose a score cutoff of 0.05 to designate a gene as pain-
associated, which resulted in 617 genes. 

Motif enrichment analyses 
We used the R Bioconductor package LOLA (Sheffield and Bock 2015) to identify enrichments in 
transcription factor binding sites (TFBS) and motifs. We defined three sets of loci to consider for 
enrichment: 1) tissue-specific eQTL SNPs with a window of 50 bp (+/- 25) around the SNP 
position, 2) all eQTL SNPs (50 bp window), and 3) all ATAC-seq peaks. For the QTLs we used all 
GTEx eQTL lead SNPs as the “universe” set against which we were testing TFBS for enrichment. 
For this we downloaded all GTEx QTL files (*_Analysis.snpgenes), loaded them in R and used 
the liftOver function from the rtracklayer package to convert their coordinates to the GRCh38 
genome version. We tested for enrichment against the LOLA core database but considered only 
ENCODE TFBS enrichments. These enrichments are reported in Supplementary Tables 7 and 8. 
We also tested for enrichment against the LOLA extension database and considered JASPAR 
motif enrichments. No motif enrichments were found for IPSDSN eQTLs relative to GTEx eQTLs. 
We also tested ATAC-seq peaks for enrichment relative to DNase hypersensitive sites for many 
tissues from Sheffield et al. (Sheffield et al. 2013), which are available in the LOLA catalog. Many 
of the same TFBS enrichments were seen for ATAC-seq peaks as for eQTLs (data not shown), 
although with a skew towards general transcription factors (e.g. CTCF, ATF3, MYC, JUN) as 
might be expected. Motif enrichments in ATAC-seq peaks are reported in Supplementary Table 
9. 

QTL overlap with GWAS catalog 
The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ on 2016-5-08. To 
determine overlap between variants in the GWAS catalog and our lead QTLs, we first extracted 
all lead variants (both QTLs and GWAS catalog variants) from the full VCF file. We used vcftools 
v0.1.14 (Danecek et al. 2011) to compute the correlation R2 between all lead variants within 500 
kb of each other among our samples. We determined overlap separately for eQTLs, sQTLs, and 
ATAC QTLs, and retained only overlaps with R2 > 0.8 between lead variants. Note that a given 
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GWAS variant may be in LD with an eQTL for more than one gene, and vice versa, an eQTL for a 
single gene may be in LD with more than one GWAS catalog entry. 
 
We used QTL-GWAS overlap for two purposes: first, to find individual cases where a QTL is a 
strong candidate as a causal association for the GWAS trait, and second, to determine whether 
any GWAS catalog traits are enriched overall for overlap with sensory neuron QTLs. For the first 
goal, we considered all overlaps with GWAS catalog associations having p < 5x10-8, i.e. did not 
filter any redundant overlaps. These overlaps are reported in Supplementary Tables 11 (for 
eQTLs), 12 (for sQTLs), and 13 (for ATAC QTLs). 
 
To determine whether our QTL overlaps were enriched in any specific GWAS catalog traits 
relative to other traits, we computed overlap with all GWAS catalog SNPs (p < 5x10-8) but sought 
to eliminate redundant overlaps. For traits that were reported with differing names (e.g. 
“Alzheimer's disease (cognitive decline)” and “Alzheimer's disease in APOE e4- carriers”), we 
grouped these into a single trait name (e.g. “Alzheimer's disease”). We then sorted overlaps by 
decreasing LD R2, and kept the single overlapping QTL with the highest R2 for each GWAS 
catalog entry. Similarly, we removed duplicates with the same reported GWAS catalog SNP and 
trait, such as when successive GWAS of the same trait report the same SNP association. We 
counted the number of such unique GWAS-QTL overlaps separately for eQTLs, sQTLs, and 
caQTLs, and we report these in Table 1. 
 
To test for overall enrichment of QTL overlapping with GWAS catalog SNPs, we downloaded the 
1000 genomes VCF files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and 
subsetted these to the EUR samples. We used vcftools to identify all SNPs in LD R2 > 0.8 with a 
GWAS catalog SNP and removed duplicate SNPs. We used our IPSDSN eQTL lead SNPs as 
input to SNPsnap (https://data.broadinstitute.org/mpg/snpsnap/), and computed 1000 random 
sets of SNPs using default parameters to match for LD partners, MAF, gene density, and 
distance to nearest gene. We determined the number of occurrences of eQTL lead SNPs in the 
GWAS catalog SNP + LD partners, and did the same for the 1000 matched SNP sets. The 
IPSDSN eQTL lead SNPs had more overlaps (92) than any of the matched sets (median: 58, 
range 37-87). Note that this number of overlaps is fewer than the number we report in 
Supplementary Table 11; this is because we detect more overlaps when using LD from our own 
samples than when using 1000 genomes LD patterns, which is expected since 1000 genomes 
EUR LD does not perfectly reflect LD in our data. We performed the same overlapping process 
for lead eQTL SNPs from each GTEx tissue, and plotted the number of overlaps per tissue in 
Supplementary Figure 21. 
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