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Abstract

Despite its popularity, characterization of subpopulations with transcript abundance is subject to a significant
amount of noise. We propose to use effective and expressed nucleotide variations (eeSNV's) from scRNA-seq as
alternative features for tumor subpopulation identification. We devel oped a linear modeling framework SSrGE to
link eeSNV s associated with gene expression. In all the cancer datasets tested, eeSNV s achieve better accuracies
than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are aso highly
ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq
and RNA-seq data from the same single cells, demonstrating its power in the cutting-edge single-cell genomics
techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification
and linkage of genotype-phenotype relationship. Themethod SSIGE is avalable at

https://qgithub.com/lanagarmire/SSrGE.
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Introduction
Characterization of phenotypic diversity is a key chalenge in the emerging field of single-cell RNA-sequencing

(scRNA-seq). In scRNA-seq data, patterns of gene expression (GE) are conventionally used as features to
explore the heterogeneity among single cells'™. However, GE features are subject to a significant amount of
noises®. For example, GE might be affected with batch effect, where results obtained from two different runs of
experiments may present substantial variations’, even when the input materials are identical. Additionally, the
expression of particular genes varies with cell cycle®, increasing the heterogeneity observed in single cells. To
cope with these sources of variations, normalization of GE is usually a mandatory step before downstream

functional analysis. Even with these procedures, other sources of biases till exist, e.g. dependent on read depth,


https://doi.org/10.1101/095810

bioRxiv preprint doi: https://doi.org/10.1101/095810; this version posted March 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

cell capture efficiency and experimental protocols etc.

Single nuclectide variations (SNVs) are genetic alterations of one single base occurring in specific cells as
compared to the population background. SNVs may manifest their effects on gene expression per cis and/or
trans effect’®. The disruption of the genetic stability, e.g. increasing number of new SNV, is known to be linked
with cancer evolution®*°. A cell may become the precursor of a subpopulation (clone) upon gaining a set of
SNVs. Considerable heterogeneity exists not only between tumors but also within the same tumor***2. Therefore,

investigating the patterns of SNV's provides means to understand tumor heterogeneity.

In single cells, SNVs are conventionally obtained from the single-cell exome-sequencing and whole genome
sequencing approaches™. The resulting SNVs can then be used to infer cancer cell subpopulations**. In this
study, we propose to obtain useful SNV-based genetic information from scRNA-seq data, in addition to the GE
information. Rather than being considered the “by-products’ of scRNA-seq, the SNVs not only have the
potential to improve the accuracy of identifying subpopulations compared to GE, but aso offer unique
opportunities to study the genetic events (genotype) associated with gene expression (phenotype)'®*’. Moreover,
when the coupled DNA- and RNA- based single-cell sequencing techniques become mature, the computational
methodol ogy proposed in this report can be adopted as well.

Here we first built a computational pipeline to identify SNVs from scRNA-seq raw reads directly. We then
constructed a linear modeling framework to obtain filtered, effective and expressed SNV's (eeSNV's) associated
with gene expression profiles. In al the datasets tested, these eeSNV's show better accuracies at retrieving cell
subpopulation identities, compared to those from gene expression (GE). Moreover, when combined with cell
entities into bipartite graphs, they demonstrate improved visua representation of the cell subpopulations. We
ranked eeSNV s and genes according to their overall significance in the linear models and discovered that several
top-ranked genes (e.g. HLA genes) appear commonly in all cancer scRNA-seq data. In summary, we emphasize
that extracting SNV from scRNA-seq analysis can successfully identify subpopulation complexities and

highlight genotype-phenotype relationships.
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Results

SNV calling from scRNA-seq data

We implemented a pipeline to identify SNV s directly from FASTQ files of ScCRNA-seq data, following the SNV
guideline of GATK (Suppl. Figure S1). We applied this pipeline to five scRNA-seq cancer datasets (Kim'®,
Ting™, Miyamoto®, Patel®* and Chung® see Methods), and tested the efficiency of SNV features on retrieving
single cell groups of interest. These datasets vary in tissue types, origins (Mouse or Human), read lengths and
map-ability (Table 1). They al have pre-defined cell types (subclasses), providing useful references for

assessing the performance of avariety of clustering methods used in this study.

We evaluated the GATK SNV calling pipeline using severa approaches. First we estimated the true positive
rates of the SNV calling pipeline at different depths of sSCRNA-Seq reads. For this we performed a simulation
experiment by artificially introducing 50,000 random SNVs in the exonic regions of hgl9. The true positive
rates monotonically increase with read depth. For as few as 4 read-depth, the pipeline achieves on average over
50% true positive rate, and increases to 68% true positive rate when read depth is more than 6 (Figure 1A). This
accuracy is in line with what was reported from bulk cell RNA-Seq %. We compared the SNV call results from
GATK to those from another SNV caller FreeBayes™, and found the results are very similar (Suppl. Figure S2).
The Kendall Tau scores™, metrics that evaluate the similarities between the two sets of SNP calli ng results, have
p-values =0 in all data sets, suggesting no statistical difference in the results obtained from the two methods.

Given the popularity of GATK pipeline, we opted to use it for the remaining of the report.

Using SSr GE to detect eeSNVsin scRNA-seq data

To link the relationship between SNV and GE, we developed a method called “ Sparse SNV inference to reflect
Gene Expression” (SSrGE), as detailed in Materials and Methods. In addition to SNV, we aso optionally
considered the effect of CNV's on gene expression, since copy number variation (CNV) may contribute to gene
expression variation as well. Similar to gene-based association method PrediXscan'®, SSrGE uses SNVs and

additionally optionally CNVs as predictors to fit a linear model for gene expression, under LASSO
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regularization and feature selection®®. We choose LASSO rather than elasticNet for penalization, so that the list
of resulting eeSNVs is short. These eeSNV s serve as refined descriptive features for subsequent subpopulation
identification (Suppl. Figure S3). To directly pinpoint the contributions of SNVs relevant to protein-coding
genes, we used the SNV residing between transcription starting and ending sites of genes as the inputs. We
further assessed the relative contributions of eeSNVs and CNVs to gene expression, and found that the
coefficients of the CNVs with those of SNV are significantly lower (Figure 1C and D). The ranks of the top
genes with and without CNVs in the SSTGE models are not statistically different overall, as the Kendall-Tau
correlation scores are close to 1 with p-values=0.

Additionally, SNV genotypes and allelic specific level gene expression may also complicate the relationships
between eeSNVs and gene expression. Therefore, we further calibrated SSrGE model by considering SNV
genotype and allelic specific gene expression. We used QUASAR? to estimate the SNV genotypes (Suppl.
Table 1), and the allelic specific gene expression using the SNV genotype. We rebuilt individual SSrtGE models
using only the SNVs from a particular genotype and allelic-specific gene expression, and then merged the
eeSNV weights from related SSrGE models together to obtain a final ranking of eeSNVs. The new rankings are
not statistically different compared to the previous approach (Suppl. Table 1). The Kendall Tau scores, which

evaluate the similarities between the re-calibrated model and the original model have p-values=0in &l data sets.

Lastly, to quantitatively evaluate if the eeSNV's obtained from SSrGE are truly significant, we designed a
simulation pipeline (Suppl. Figure 4A). The pipeline creates random binary matrices of SNVs for n simulated
cells, which are connected to the matrices of gene expression (see Methods). The SNV's present in the simulated
cell have probabilities to modify gene expression of the genes positively or negatively. Additionally, we used
various levels of noise to perturb the GE and the SNV matrices. We compared the ranks of top genes identified
by SSrGE to the expected impact of each gene provided by the simulation. The inferred top ranked genes using
SSrGE have monotonic and positive correlations with those set by the simulation (Suppl. Figure 4B). These
correlations are all significant (p-value << 0.05), regardless of the alpha value and the level of noise. These

results confirm that SSrGE model does retrieve truly significant eeSNVs.
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eeSNVs ar e better featuresthan gene expression to identify subpopulations

We measured the performance of SNVs and gene expression (GE) to identify subpopulations on the five
datasets, using five clustering approaches (Figure 2). These clustering approaches include two dimension
reduction methods, namely Principal Component Analysis (PCA)?® and Factor Analysis (FA)®, followed by
either K-Means or the hierarchical agglomerative method (agglo) with WARD linkage®. We also used a recent
agorithm SIMLR designed explicitly for sScRNA-seq data clustering and visualization (Wang et al., 2016). To
evaluate the accuracy of obtained subpopulations in each dataset, we used the metric of Adjusted Mutua
Information (AMI) over 30 bootstrap runs, from the optimal a parameters (Suppl. Table S2). These optimal
parameters were estimated by testing different a values for each dataset and each clustering approach (Suppl.
Figure S5). As shown in Figure 2, eeSNV's are better features to retrieve cancer cell subpopulations compared to
GE, independent of the clustering methods used. Among the clustering algorithms, SIMLR tends to be a better
choice using eeSNV features.

Additionally, we also computed the Adjusted Rand index (ARI)* and V-measure®, two other metrics for
modularity measurements (Methods) and obtained similar trends (Suppl. Figure S6). Similar to AMI, ARl is a
normalized metric against random chance, and evaluates the number of correct pairs obtained. On the other
hand, V-measure combines the homogeneity score, which measures the homogeneity of reference classesin the
obtained clusters, and the completeness score, which measures the homogeneity of obtained clusters within the
reference classes. Due to the high number of small homogenous clusters obtained for the Miyamoto dataset, we

observed higher V-measure scores, compared to AMI and ARI results (Suppl. Figure S6).
Visualization of subpopulationswith bipartite graphs

Bipartite graphs are an efficient way to describe the binary relations between two different classes of objects. We
next represented the presence of the eeSNVs into single cell genomes with bipartite graphs using ForceAtlas2
agorithm®. We drew an edge (link) between a cell node and a given eeSNV node whenever an eeSNV is
detected. The results show that bipartite graph is a robust and more discriminative aternative (Figure 3),
comparing to PCA plots (using GE and eeSNV's) aswell as SIMLR (using GE). For Kim dataset, bipartite graph

separates the three classes perfectly. However, gene-based visualization approaches using either PCA or SIMLR
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have misclassifications. For Ting data, the eeSNV-cell bipartite graph gives a clear visualization of al six
different subgroups of single cells. Other three approaches have more exaggerated separations among the same
mouse circulating tumor cells (CTC) subgroup MP (orange color), but mix some other subpopulations (e.g. GM,
MP and TUGMP groups). Miyamoto dataset is the most difficult one to visualize among the four datasets, due to
its high number (24) of reference classes and heterogeneity among CTCs. Bipartite graphs are not only able to
condense the whole populations, but also separate subpopulations (e.g. the orange colored PC subpopulation)

much better than the other three methods.
Characteristics of eeSNVs

In SSrGE, regularization parameter a is the only tuning variable, controlling the sparsity of the linear models and
influences the number of eeSNVs. We next explored the relationship between eeSNVs and a (Figure 4). For
every dataset, increasing the value of a decreases the number of selected eeSNVs overall (Figure 4A), aswell as
the average number of eeSNV s associated with every expressed gene (Figure 4B). The optimal a depends on the
clustering algorithm and the dataset used (Suppl. Table S2 and Suppl. Figure S5). Increasing the value of a
increases the proportion of eeSNVs that have annotations in human doSNP138 database, indicating that these
eeSNVs are biologically valid (Figure 4C). Additionaly, increasing a increases the average number of cells
sharing the same eeSNV's, supporting the hypothesis that cancer cells differentiate with a growing number of
genetic mutations over time (Figure 4D). Note the dlight drop in the average number of cells sharing the same

eeSNVsin Kim datawhen a > 0.6, thisis due to over-penalization (eg. a =0.8 yields only 34 eeSNVs).
Cancer relevance of eeSNV's

Following the simulation results, we ranked the different eeSNV's and the genes for the five datasets, from
SSrGE models (Suppl. Tables S3). We found that eeSNV's from multiple genes in Human Leukocyte Antigen
(HLA) complex, such as HLA-A, HLA-B, HLA-C and HLA-DRA, are top ranked in al four human datasets
(Table 2 and Suppl. Tables S3). HLA is a family encoding the major histocompatibility complex (MHC)
proteins in human. Beta-2-microglobulin (B2M), on the other hand, is ranked 7" and 45" in Ting and Patel

datasets, respectively (Table 2). Unlike HLA that is present in human only, B2M encodes a serum protein
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involved in the histocompatibility complex MHC that is also present in mice. Other previously identified tumor
driver genes are a so ranked top by SSrGE, demonstrating the impact of mutations on cis-gene expression (Table
2 and Suppl. Tables S3). Notably, KRAS, previously linked to tumor heterogeneity by the original sScRNA-Seq
study (Kim et al., 2015), is ranked 13" among all eeSNV containing genes (Suppl. Tables S3). AR and KLK3,
two genes reported to show genomic heterogeneity in tumor development in the original study (Miyamoto et al.,
2015), are ranked 6™ and 19", respectively. EGFR, the therapeutic target in Patel study with an important
oncogenic variant EGFRVIII (Patel et al., 2014), is ranked 88™ out of 4,225 genes. Therefore, genes top-ranked
by their eeSNV's are empirically validated.

Next we conducted more systematic investigation to identify KEGG pathways enriched in each dataset, using

these genes as the input for DAVID annotation tool®*

(Figure 5A). The pathway-gene bipartite graph illustrates
the relationships between these genes and enriched pathways (Figure 5B). As expected, Antigen processing and
presentation pathway stands out as the most enriched pathway, with the sum -log10 (p-value) of 15.80 (Figure
5B). “Phagosome” is the second most enriched pathway in all four data sets, largely due its members in HLA
families (Figure 5B). Additionally, pathways related to cell junctions and adhesion (focal adhesion and cell

adhesion molecules CAMS), protein processing (protein processing in endoplasmic reticulum and proteasome),

and PI3K-AKT signaling pathway are also highly enriched with eeSNV's (Figure 5A).
Heter ogeneity markersusing eeSNVs

We exemplify the potential of eeSNV as heterogeneity markers using Kim dataset first. Rather than using GE as
the input to reconstruct the pseudo-time ordering of the single-cells, we used eeSNVs instead. We built a
Minimum Spanning Tree, similarly to the Monocle agorithm®, to reconstruct the pseudo-time ordering of the
single-cells. The graph beautifully captures the continuity among cells, from the primary to metastasized tumors
(Figure 6A). Moreover, it highlights ramifications inside each of the subgroups, demonstrating the intra-group
heterogeneity. On the contrary, pseudo-time reconstruction using GE showed much less complexity and more
singularity (Supplementary Figure S7). Next, we used our method to identify eeSNV's specific to each single-cell
subgroup and ranked the genes according to these eeSNVs. We compared the characteristics of the metastasis

cells to primary tumor cells. Two top-ranked genes identified by the method, CD44 (1) and LPP (2"), are
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known to promote cancer cell dissemination and metastasis growth after genomic alteration®° (Suppl. Table
S3). Other top-ranked genes related to metastasis are aso identified, including LAMPC2 (7"), HSP90B1 (14"™),
MET (44™) and FN1 (52"). As expected, “Pathways in Cancer” are the top-ranked pathway enriched with
mutations (Figure 6B). Additionally, “Focal Adhesion”, “Endocytosis’ pathways are among the other
significantly mutated pathways, providing new insights on the mechanistic difference between primary and

metastasized RCC tumors (Figure 6B).

Another application is to explore the potential of eeSNVs to separate different cell types within the same
individual. Towards this, we extended the same analysis on the two patients BC03 and BCO7 from the Chung
dataset, who have primary and metastasized tumor cells as well as infiltrating immune cells. Again bipartite
graphs and minimum spanning trees based visualization illustrate clear separations of tumor (primary and
metastasized) cells from immune cells (Suppl. Figure S8). Furthermore, the top-ranked genes relative to the
metastasis subgroups (BCO3M and BCO7M) present some similarities with those found in Kim dataset (Suppl.
Tables $4). Strikingly, CD44 is aso top-ranked (23™) among the significant genes of BCO7M. Similarly,

HSP90B1 is top-ranked as the 63" and 51" most important genes, in BCO3M and BCO7M respectively.
Integrating DNA- and RNA-Seq data measured in the same single cells

Coupled DNA-Seq and RNA-Seq measurements from the same single cell are the new horizon of single-cell
genomics. To demonstrate the potential of SSrGE in integrating DNA and RNA data, we downloaded a public
single cells data, which have DNA methylation and RNA-Seq records from the same hepatocellular carcinoma
(HCC) single cells (Hou dataset)™. We then inferred SNV's from the aligned reduced representation bisulfite
sequencing (RRBS) reads (see Methods), and used them to predict the sScRNA-Seq data from the same samples.
Given the fact that SNV s are heterozygous among tumor and normal cells, and that a small fraction of genes
harboring eeSNV s are subject to CNV, we included both the percentages of SNV's as well as CNV s as additional
predictive variables in the SSTGE model besides SNV features. Interestingly, the identified eeSNVs can clearly
separate normal hepatocellular cells from cancer cells and highlight the two cancer subtypesidentified in the
original study (Figure 7A). Pseudo-time ordering shows not only an early divergence between the two

previously assumed subtypes, but aso unveils significant ramifications amongst subtype type |1, indicating
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potential new subgroups (Figure 7B). A simplified version of SSrGE model, where only SNV features were
considered as predictors for gene expression, shared 92% eeSNVs asthose in Figure 7A, and achieved almost
identical separations between normal hepatocellular cells and cancer cells. This confirms the earlier observation
that eeSNV's are much more important predictive features, compared to CNVs (Figure 1C and D).

We postulated that a considerable part of bisulfite reads was aligned with methylation islands associated with
gene promoter regions. We thus annotated eeSNV's within 1500bp upstream of the transcription starting codon,
and obtained genes with these eeSNV's, which are significantly prevalent in certain groups. When comparing
HCC vs. normal control cells, two genes PRMT2, SULF2 show statistically significant mutations in HCC cells
(P-values < 0.05). Down-regulation of PRMT2 was previously associated with breast cancer*, SULF2 was

known to be up-regulated in HCC and promotes HCC growth*.

Discussion

Using GE to accurately analyze scRNA-seq data has many challenges, including technological biases such as the
choice of the sequencing platforms, the experimental protocols and conditions. These biases may lead to various
confounding factors in interpreting GE data®. SNV, on the other hand, are less prone to these issues given their
binary nature. In this report, we demonstrate that eeSNV's extracted from scRNA-seq data are ideal features to
characterize cell subpopulations. Moreover, they provide a means to examine the relationship between eeSNVs
and gene expression in the same scRNA-seq sample.

eeSNV's have improved accuracy on identifying tumor single-cell subpopulations

The process of selecting eeSNVs linked to GE allows us to identify representative genotype markers for cell
subpopulations. We speculate the following reasons attributed to the better accuracies of eeSNV's compared to
GE. First, eeSNVs are binary features rather than continuous features like GE. Thus, eeSNV's are more robust at
separating subpopulations. We have noticed that SNVs are less affected by batch effects (Suppl. Figure S9).
Secondly, LASSO penalization works as a feature selection method and minimizes the spurious SNVs (false
positive) from the filtered set of eeSNVs. Thirdly, since eeSNV s are obtained from the same samples as SCRNA-

seq data, they are more likely to have biological impacts, and this is supported the observation that they have
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high prevalence of dbSNP annotations.

A small number of eeSNV's can be used to discriminate distinct single-cell subpopulations, as compared to
thousands of genes that are normally used for scRNA-seq analyses. Taking advantage of the eeSNV-GE
relationship, a very small number of top eeSNVs still can clearly separate cell subpopulations of the different
datasets (eg. 8 eeSNV features have decent seperations for Kim dataset). Moreover, our SSrGE package can be
easily paralelized and process each gene independently. It has the potential to scale up to very large datasets,
well-poised for the new wave of scRNA-seq technologies that can generate thousands of cells at onetime*®. One
can also easily rank the eeSNV's and the genes harboring them, for the purpose of identifying robust eeSNVs as

genetic markersfor avariety of cancers.
eeSNVs highlight geneslinked to cancer phenotypes

SSrGE uses an accumulative ranking approach to select eeSNV's linked to the expression of a particular gene.
Mainly, HLA class | genes (HLA-A, HLA-B and HLA-C) are top-ranked for the three human datasets, and they
contribute to “antigen processing and presentation pathway”, the most enriched pathways of the four datasets.
HLA has amongst the highest polymorphic genes of the human genome™, and the somatic mutations of genesin
this family occurred in the development and progression of various cancers®™*. eeSNV's of HLA genes could be
used as fingerprints to identify the cellular state of the cancer cells, and lead to better separation between the
primary (pRCC, green) and metastatic cells (MRCC, red and blue) compared to GE of HLA genes (Suppl. Figure
10). B2M, another gene with top-scored eeSNVs in Ting and Patel datasets, is also known to be a mutational
hotspot*’. It is immediately linked to immune response as tumor cell proliferation®™*. Many other top-ranked
genes, such as KRAS and SPARC, were reported to be driver genes in the origina studies of the different dataset.
Thus, it is reasonable to speculate that SSrGE is capable of identifying some driver genes. Another possibility is
that some of the eeSNV s reflect aberrant splicing of genes such as the HLA family, which are regularly found in
deregulated cancer cells®®. Nevertheless, SSTGE may miss some driver mutations due to the incomplete DNA
coverage due to the use of scRNA-Seq reads. Also, its primary goal is to identify a minimal set of eeSNV
features by LASSO penalization but in case of correlated features, LASSO may select one of those highly

correlated SNV features that correspond to GE.
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eeSNVsreveal higher degree of single-cell heterogeneity than gene expression

We have showed with strong evidence that eeSNVs unveil inter- and intra- tumor cells heterogeneities better
than gene expression count data obtained from the same RNA-Seq reads. Reconstructing the pseudo-time
ordering of cancer cells from the same tumor (Kim dataset) displays branching even inside primary tumor and
metastasis subgroups, which gene expression data are unable to do. We identified genes enriched with SNVs
specific to the metastasis, which were not reported in the original HCC single cell study™. Most interestingly, we
showed that eeSNV's can also be retrieved from RRBS reads in a multi-omics single-cell HCC dataset, a twist
from their origina purpose of single-cell DNA methylation. Again, genes ranked by eeSNVs from RRBS reads
only differentiate normal from cancer cells but aso the different cancer subtypes. We identified several genes
that are significant in either HCC or HCC subgroup, whose promoters are highly impacted by eeSNVs. Thus, we
have demonstrated that our method is on the fore-front to analyze data generated by new single-cell technologies

extracting multi-omics from the same cells**.

Advantages of using bipartite graphsto represent sScRNA-seq data

Bipartite graphs are a natural way to visualize eeSNV-cell relationships. We have used force-directed graph
drawing algorithms involve spring-like attractive forces and electrical repulsions between nodes that are
connected by edges. This approach has the advantage to reveal “outlier” single cells, with a small set of eeSNVSs,
compared to those distance-based approaches. Moreover, the bipartite representation also reveals directly the
relationship between single cells and the eeSNV features. Contrary to dimension reduction approaches such as
PCA that requires linear transformation of features into principle components, bipartite graphs preserve al the
binary information between cell and eeSNV. Graph analysis software such as Gephi®* or Cytoscape™ can be

utilized to explore the bipartite relationships in an interactive manner.

Conclusion

We demonstrated the efficiency of using eeSNVs for cell subpopulation identification over multiple datasets.

eeSNV's are excellent genetic markers for intra-tumor heterogeneity and may serve as genetic candidates of new
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trestment options. We aso have developed SSrGE, alinear model framework that correlates genotype (eeSNV)
and phenotype (GE) information in scRNA-seq data. Moreover, we have showed the capacity of SSrGE in
analyzing multi-omics data from the same single cells, obtained from the most cutting-edge genomics
techniques®™ 2. Our method has the great promise as part of routine sScRNA-seq analyses, as well as multi-omics

single-cell integration projects.

Materials and M ethods

scRNA-seq datasets

All five datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) portal®.

Kim dataset (accession GSE73121): contains three cell populations from matched primary and metastasis tumor
from the same patient'®. Patient Derivated Xenographs (PDX) were constructed using cells from the primary
Clear Cell Renal Céell Carcinoma (PDX-pRCC) tumor and from the lung metastasic tumor (PDX-mRCC). Also,
metastatic cells from the patient (Pt-mRCC) were sequenced.

Patel dataset (accession GSE57872): contains five glioblastoma cell populations isolated from 5 individual
tumors from different patients (MGH26, MGH28, MGH29 MGH30 and MGH31) and two gliomasphere cell
lines, CSC6 and CSC8, used as control*.

Miyamoto dataset (accession GSE67980): contains 122 CTCs from Prostate cancer from 18 patients, 30 single
cells derived from 4 different cancer cell lines. VCaP, LNCaP, PC3 and DU145, and 5 leukocyte cells from a
healthy patient (HD1)®. A total of 23 classes (18 CTC classes + 4 cancer cell lines + 1 healthy leukocyte cell
lines) were obtained.

Ting dataset (subset of accession GSE51372): contains 75 CTCs from Pancresatic cancer from 5 different KPC
mice (MP2, MP3, MP4, MP6, MP7), 18 CTCs from two GFP-lineage traced mice (GMP1 and GMP2), 20 single
cells from one GFP-lineage traced mouse (TuGMP3), 12 single cells from a mouse embryonic fibroblast cell line
(MEF), 12 single cells from mouse white blood (WBC) and 16 single cells from the nb508 mouse pancreatic cell
line (Nb508)™. KPC mice have uniform genetic cancer drivers (Tp53, Kras). Due to their shared genotype, we

merged all the KPC CTCs into one single reference class. CTCs from GMP1 did not pass the QC test and were
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dismissed. CTCs from GMP2 mice were labeled as GMP. Finaly, 6 reference classes were used: MP, nb508,
GMP, TuGMP, MEF and WBC.

Hou dataset (accession GSE65364): contains 25 hepatocellular carcinoma single-cells (Ca) extracted from the
same patient and 6 norma liver cells (HepG2) obtained from the adjacent normal tissue of another HCC
patient®. The 32 cells were sequenced using scTrio-seq in order to obtain reads from both RNA-seq and reduced
representation bisulfate sequencing (RRBS). The authors highlighted that one of the Ca cells (Ca_26) was likely
to be anormal cell, based on CNV measurements, and thus we discarded this cell. We used the RRBS reads to
infer the SNVs. We use gene expression data provided by the authors to construct a GE matrix. For controls, we
used the bulk genome of all the RNA-Seq and RRBS reads of the HepG2 group.

Chung dataset (accession GSE75688): contains 549 single cells from primary breast cancer and lymph nodes
metastases, extracted from 11 patients (BCO1-11) of distinct molecular subtypes. BC01-02 are estrogen receptor
positive (ER+); BC04-06 are human epidermal growth factor receptor 2 positive (HER+); BCO3 is double
positive (ER+ and HER+); BCO7-11 are triple negative breast cancer (TNBC)?. Only BC03 and BCO7 presented
cells extracted from lymph nodes metastases (BCO3M and BCO7M). Additionally, the dataset contains a large
part of infiltrating tumor cells. Following the original analytical procedure of the original study?, we performed
an unsupervised clustering analysis to separate the cancer from the immune cells. We first reduced the dimension
with a PCA analysis and then used a Gaussian mixture model to infer the clusters. We obtained a total of 372

cancer cellsand 177 immune cells.
SNV detection using scRNA-seq data

The SNV detection pipeline usng scRNA-seq data follows the qguidelines of GATK

(http://gatkforums.broadinstitute.org/wdl/discussion/3891/calling-variants-in-rnaseq). It includes four steps:

aignment of spliced transcripts to the reference genome (hgl9 or mm10), BAM file preprocessing, read
realignment and recalibration, and variant calling and filtering (Suppl. Figure S1)*.

Specifically, FASTQ files were first aligned using STAR aligner®, using mm10 and hgl9 as reference genomes
for mouse and human datasets, respectively. The BAM file quality check was done by FastQC®®, and samples

with lower than 50% of unigue sequences were removed (default of FastQC). Also, samples with more than 20%
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of the duplicated reads were removed by STAR. Finally, samples with insufficient reads were also removed, if
their reads were below the mean minus two times the standard deviation of the entire single-cell population. The
summary of samples and reads filtered by these steps is listed in Table 1. Raw gene counts X; were estimated

using featureCounts>’, and normalized using the logarithmic transformation:

9

where X; is the raw expression of gene j, R is the total number of reads and G; is the length of the genej. BAM

files were pre-processed and reordered using Picard Tools (http://broadinstitute.github.io/picard/), before subject

to realignment and recalibration using GATK tools®. SNV are then calculated and filtered using the GATK
tools HaplotypeCaller and VariantFiltration using default parameters.

Additionally, we used Freebayes® with default parameters to infer the SNVs, as dternative to the
HaplotypeCaller and VariantFiltration softwares. The SNV calling results between the two callers are very

similar (Suppl. Figure 2).
SNV detection using RRBS data

We first aligned the RRBS reads on the hgl9 reference genome using the Bismark software *°. We then
processed the bam files using all the preprocessing steps as described in “SNV detection using sScRNA-seq data’
section (i.e. Picard Preprocessing, Order reads, Split reads and Realignments), except the base recalibration step.

Finally, we called the SNVs using the BS-SNPer software (default setting)®. The details are the following.

--minhetfreq 0.1 # Threshold of frequency for calling heterozygous SNP
--minhomfreq 0.85 # Threshold of frequency for calling homozygous SNP
--minquali 15 # Threshold of base quality

--mincover 10 # Threshold of minimum depth of covered reads
--maxcover 1000 # Threshold of maximum depth of covered reads
--minread2 2 # Minimum mutation reads number

--errorate 0.02 # Minimum mutation rate

--mapvalue 20 # Minimum read mapping value
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SNV simulation

We created a modified version of the hgl9 reference genome by introducing 50000 random mutations in the
exonic region of the genes. To introduce a new mutation, we weighted each exon depending on its base length
and selected one randomly and proportional to its weight. We realigned the scCRNA-seq reads from a subset of 20
cells from the Kim dataset with the introduced new mutations, using the same SNV detection pipelines described

earlier. We used BedTools* to compute the read depth of each mutation.
SNV annotation

To annotate human SNV datasets, dbSNP138 from the NCBI Single Nucleotide Polymorphism database®® and
reference INDELs from 1000 genomes (1000 phasel as Mills and 1000G_gold_standard)® were used. To
annotate the mouse SNV dataset, dbSNPv137 for SNPs and INDELs were downloaded from the Mouse

Genomes Project of the Sanger Institute, using the following link: ftp:/ftp-mouse.sanger.ac.uk/REL-1303-

SNPs_Indels-GRCm38/*. The mouse SNP databases were sorted using SortVcf command of Picard Tools in

order to be properly used by Picard Tools and GATK.
SSrGE packageto correlate eeSNVsto gene expression

For each dataset, we denote Mqy,, and Mgy as the SNV and gene expression matrices, respectively. Mqyy is

binary (MSNVC’S € {0,1}) indicating the presence/absence of SNV sin cell c. Mee is the log transformed gene

expression value of the gene g in cell c. Copy number variation (CNV) M.y, can be added as an additional
optiona predictor in SSrGE. We computed CNV for each gene g in each cell ¢ using the online platform
Ginkgo®. For the Hou dataset, we inferred CNV using the same approach described by the authors™. We
removed any SNV present in less than 3 cells, or associated with a gene having normalized expression value
below 2.0. We also discarded genes with normalized expressions below 2.0 and expressed in less than 10 cells
from SSrGE analysis. For each gene g, we applied a sparse linear regression using LASSO to identify W, , the
linear coefficient associated to SNV, as well as W, the coefficient associated to the CNV of g (if CNV was

considered). The objective function for SSrGE to minimizeis:
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. 1
My . oy (zllMSNV+CNVg'WTg+CNVg - MGE*,g 15+ a. ||Wg+CNVg||1)

where a is the regularization parameter, Mgyy . cnvg represents the Mgy, matrix with an additional column that
corresponds to the CNV of the gene g for each cell. In this configuration, W, cyy has one more column too,
corresponding to the weight associated with the CNV. An SNV was considered as eeSNV when W, (s) # 0.

When CNV is not considered in SSrGE, the objective function is simplified as:

1
(1 o 5
%n(znllMSNV-W g ~Mae, 4 Iz + . ||Wg||1>

Inference of SNV genotype and allele-specific SSr GE calibration

We used the package QUASAR (https://github.com/piquel ab/QUASAR) to identify the genotype of each SNV

For each dataset, we collected the SNVs and constructed an n x 3 matrix using the number of reads mapping to
the reference allele, the alternate allele, or neither of the alleles. We then fit this matrix with QUASAR to
estimate the true genotype of each SNV. We then estimated the alelic gene expression for each cell by
multiplying the normalized gene counts with the fraction of the SNV of a particular genotype. To calibrate
SSrGE model with alele expression, we first fit an SSrGE model for each genotype using the allele-specific
SNV's and gene expression as inputs. We then merged the eeSNV's and weights inferred for each model into a

final model.
Ranking of eeSNVs and genes

SSrGE generates coefficients of eeSNV's for each gene, as ametric for their contributions to the gene expression.

The score of an eeSNV is given by the sum of its weights over all genes:
SCOT€gesny = ZleT (5)|
g

Each gene also receives a score according to its associated eeSNVs:

SCOT€gene, = Z SCOT€posny
eeSNV € geneg
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In practice, we first obtained eeSNVs using a minimum filtering of @=0.1, before using these two scores above

to rank eeSNVs and the genes.
Ranking of eeSNVs and genesfor a subpopulation

For a given single-cell subpopulation p, an eeSNV is defined as specific to the subpopulation p when it has a
significantly higher frequency in p than in any other subpopulation. For each eeSNV we took only the subset of
cells expressing the gene g associated with the eeSNV. We then computed the Fisher’s exact test to compare the
presence of the eeSNV between single-cells inside and outside p. We considered an eeSNV significant for p-

value < 0.05. p’ designates the subset of cells from p expressing g. The score of an eeSNV for p is given by:

» _ |{cell with eeSNV|cell € p'}|

SCoTe o ony = | SCOT€eesny
The score of agiven geneg for p isthus given by:
P — P
SCOT€gene, = score, ony

eeSNV € geney
To rank eeSNVs from the promoter regions of the RRBS reads in Hou dataset, we applied a similar

methodol ogy: we annotated the eeSNV s within 1500bp upstream of genes’ starting codon regions.
Perturbation-model based simulation to quantitatively assess SSr GE

We first simulated an interaction table (Suppl. Figure 4A) which gives an “interaction score” (between -1 and 1)
for each gene-SNV pair, denoted as interaction gv for gene g and SNV wv. This interaction score follows a
mixed normal distribution, with two normal distribution components. These two distributions are named the
inhibiting component (centered at -0.5), and the enhancing component (centered at 0.5). The type of interaction
determines the weighting factor. We define a cis-interaction if the SNV is located within the gene and a trans-
interaction otherwise. A cis-interaction has equal weights on the inhibiting and enhancing components. A trans-
interaction has significantly larger weight on the inhibiting component, as previous studies found cis interaction

ismore likely to be inhibitive.

We then simulated the unperturbed expression matrix using Splatter®, with parameters estimated from the Kim
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dataset. We also simulated the SNV matrix using random shuffle of the SNV matrix extracted from the same
dataset. We then applied the interactions to the unperturbed expression. For a gene g in a sample s, the

expression level GEgs was perturbed to GE' 4 using the following formula:

(Zy sSnv, .interactiong,)

GE'ys = GEgsexp

This created the perturbed expression matrix. Then, we added drop-outs to the perturbed expression matrix using
Splatter, in order to create the final observed expression matrix. We also added random noises to the SNV matrix
(following a Bernoulli distribution) to generate the final observed SNV matrix. We used these two observed

matrices as the input for SSrGE, to assess its performance.
Pseudo-time ordering reconstruction

To estimate the trajectory of cell evolvement, we adopted the foll owing procedure, motivated by the method

described earlier®. We first constructed the following distance matrix to reflect the Pearson’s correl ation

between each pair of cells: D; ; = 1 — Correlation(Sample;, Sample;)

Subpopulation clustering algorithms

We combined two dimension reduction algorithms: Principal Component Analysis (PCA)® and Factor Analysis
(FA)® with two popular clustering approaches: the K-Means algorithm®” and agglomerative hierarchical
clustering (agglo) with WARD linkage®. We also used SIMLR, arecent algorithm specifically tailored to cluster
and visualize sScRNA-seq data, which learns the similarity matrix from subpopulations®. Similar to the original

SIMLR study, we used the embedding of the cells produced by the al gorithm to apply K-Means algorithm.

PCA and FA were performed using their corresponding implementation in Scikit-Learn (sklearn)®®. For PCA, FA
and SIMLR, we used various input dimensions D [2, 3, 5, 10, 15, 20, 25, 30] to project the data. To cluster the
data with K-Means or the hierarchical agglomerative procedure, we used a different cluster numbers N (2 to 80)
to obtain the best clustering results from each dataset. We computed accuracy metrics for each (D, N) pair and
chose the combination that gives the overall best score. Between the two clustering methods, K-Means was the

implementation of sklearn package with the default parameter, and hierarchical clustering was done by the
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Agglomer ativeClustering implementation of sklearn, using WARD linkage.

Validation metrics

To assess the accuracy of the obtained clusters, we used three metrics. Adjusted Mutua Information (AMI),
Adjusted Rand Index (ARI) and V-measure **2. These metrics compare the obtained clusters C to some
reference classes K and generate scores between 0 and 1 for AMI and V-measure, and between -1 and 1 for ARI.
A score of 1 means perfect match between the obtained clusters and the reference classes. For ARI, a score

below 0 indicates a random clustering.

AMI normalizes Mutual Information (M1) against chances®. The Mutua Information between two sets of

classes C and K is equal to: MI (C,K) = Z'iill leﬂlp(i,j) log (Pg)(i;{zi)), where P(i) is the probability that an

object from C belongs to the classi, P’(j) isthe probability that an object from K belongsto classj, and P(i, j) is

MI(C,K)-E(MI(C,K))
max({H(C),H (K)D)-E(MI(C,K))’

the probability that an object are in both classi andj. AMI isequal to: AMI(C,K) =

where H(C) and H(K) designates the entropy of C and K.

RI-E(RI)

31
W—E(RI) . Rand Index (Rl) was

Similar to AMI, ARI normalizes Rl against random chances: ARI =

computed by: Rl = —rl
C

Nsample’
2

where a is the number of con-concordant sample pairs in obtained clusters C and

reference classes K, whereas b is the number of dis-concordant samples.

V-measure, similar to F-measure, calculates the harmonic mean between homogeneity and completeness.

Homogeneity is defined as 1 — % where H(C|K) is the conditional entropy of C given K. Completenessis
the symmetrical of homogeneity: 1 — %

Graph visualization
The different datasets were transformed into GraphML files with Python scripts using iGraph library™. Graphs

were visualized using GePhi software® and spatialized using ForceAtlas2™, a specific graph layout implemented

into the GePhi software.

Pathway enrichment analysis
We used the KEGG pathway database to identify pathways related to specific genes’?. We selected genes scored
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with significant eeSNV'sfor the metastasis cells from Kim dataset and for the CTCs for the Ting dataset. We then
used DAVID 6.8 functional annotation tool to identify significant pathways amongst these genes®. We used the
default significance value (adjusted p-value threshold of 0.10). Significant pathways are then represented as a
bipartite graph using Gephi: Nodes are either genes or pathway and the size of each nodes represent the score of
the genes or, in the case of pathways, the sum of the scores of the genes linked to the pathways. We used the
same methodology to infer significant pathways of cancer cells, compared to normal cells, from Hou dataset.
However, we used all the genes ranked rather than only the significant genes, since only few genes are found to

be significant for cancer cells.

Code availability
The SNV cdling pipeline and SSrGE are avalable through the following GitHub project:

https://qgithub.com/lanagarmire/SSrGE.
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Figure legends

Figure 1: The performance measurements of GATK SNV calling and SSr GE pipelines.

(A-B) Performance measurement of GATK SNV calling pipeline. Box plots of true positive rate (A) and false
positive rate (B) with respect to the read depth at the called SNV position. The rates are calculated from GATK
SNV calling pipeline, using hgl9 reference genome to align modified sScCRNA-seq reads from a subset of 20 cells
from the Kim dataset, which were introduced 50000 random mutations the exonic region of the reads. (C-D)

Comparisons of importance the different types of features in SSrGE models, with respect to the ranking, in
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Miyamoto dataset (C) and Kim dataset (D). Blue: CNV feature; Red: eeSNV feature; Green: gene expression
feature.

Figure 2: Comparison of clustering accuracy using eeSNV and gene expression (GE) features.

(A-E) Bar plots comparing the clustering performance using eeSNV vs. gene expression (GE) as features, over
five different clustering strategies and five datasets. (A) Kim dataset (B) Ting dataset (C) Chung dataset (D)
Miyamoto dataset and (E) Patel dataset. Y-axis is the adjusted mutual information (AMI) obtained across 30
bootstrap runs (mean + s.d.). *: P<0.05, ** P<0.01 and *** P<0.001. (F) Heatmap of the rankings among
different methods and datasets as shown in (A-E).

Figure 3: Comparison of clustering visualization using eeSNV and gene expression (GE) features.

(A) Bipartite graphs using eeSNV's and cell representations. (B) Principle Component Analysis (PCA) results
using GE. (C) PCA resultsusing eeSNVs. (D) SIMILR results using GE.

Figure 4: Characteristics of the eeSNVs.

X-axis: the regularization parameter a values. And the Y-axes are: (A) Logl0 transformation of the number of
eeSNVs. (B) The average number of eeSNV's per gene. (C) The proportion of SNVs with dbSNP138 annotations
(human datasets). (D) The average number of cells sharing eeSNVs. Insert: Patel and Chung datasets.

Figure5: Geneand KEGG pathways enriched with eeSNVsin the five scRNA-seq datasets.

(A) KEGG pathways enriched with genes containing eeSNVs in the five datasets. Pathways are sorted by the
sum of the -log10 (p-value) of each dataset, in the descending order. (B) Bipartite graph for KEGG pathways and
genes enriched with eeSNVs. Pathways and genes in each dataset are colored as shown in the graph. The size of
nodes reflects the gene and the pathway scores.

Figure 6: Heterogeneity revealed by Kim dataset.

(A) Pseudo-time ordering reconstruction of the different subgroups. (B) Bipartite graph for KEGG pathways and
genes enriched with eeSNVs. The size of the nodes reflects the gene and the pathway scores. Lighter green
indicates genes with alower rank.

Figure 7: Heter ogeneity revealed by eeSNV's from multi-omics single cell HCC (Hou) dataset.

(A) Bipartite-graph representation of the single cells using eeSNV's from RRBS reads which measure single-cell

methylome. (B) Pseudo-time ordering reconstruction of the HCC cells, using eeSNVsin (A).
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Tables

Table 1: Summary of scRNA-seq datasets used in this study.

Data Description Organism | Sub- Cedl Reads M ap- Read Expresse [% samples| % reads
class | count Per cell ability length dgenes | removed | removed
after after
filtering | filtering
Kim Renal carcinoma Human 3 91 4.1M 82 % 100 18288 23 14
dataset™ cancer cell from
patient and PDX
Ting Pancreas Mouse 6 116 13.7M 39 % 50 15868 32 31
dataset Circulating Tumor
1 cells (CTC) Cancer
Miyamot Prostate CTCs Human 24 133 2.0M 44 % 50 18224 22 40
0 dataset Cancer
20
Patel Glioblastomatumor | Human 7 593 3.2M 63 % 25 25053 38 42
dataset cells
21
Chung Breast cancer Human 13 556 5.9M 81% 100 22121 1 15
dataset
22
Table 2: A list of interested genes highly ranked. Ranks with ‘*’ designate cancer driver genes reported in the
origina studies.
Chung Ting
Dataset Kim Patel Miyamoto (mouse)
HLA-A 32 8 2 6 -
HLA-B 3 105 1 4 -
HLA-C 1 98 4 2 -
HLA-DRA 71 771 200 18 -
B2M 1617 45 301 425 7
KRAS 13 2101 2254 72 235*
TRP53 NA NA NA NA 365*
SPARC 22 37 567 2070 79
EGFR 2231 88* NA NA NA
AR NA NA 6* 340 NA
KLK3 NA NA 19* NA NA
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Supplemental Materials

Supplementary Figure S1: The SNV calling pipeline based on GATK. It follows the “Best Practice” workflow
for SNP and INDEL calling as recommended, with four steps. Step 1: alignment. Step 2: preprocessing of BAM
files. Step 3: read realignment and recalibration. Step 4. variant calling.

Supplementary Figure S2: The performance comparison of GATK vs. FreeBayes SNV calling pipeline. Box
plots of true positive rate (A) and false positive rate (B) are shown with respect to the read depth at the called
SNV position. The rates are calculated from GATK SNV calling pipeline, using hgl9 reference genome to align
modified scCRNA-seg reads from a subset of 20 cells from the Kim dataset, which were introduced 50000
random mutations the exonic region of the reads.

Supplementary Figure S3: Sketch of Sparse SNV inference to Reflect Gene Expression (SSrGE) linear models.
The SNVs can be caculated from the GATK pipeline (Supplementary Figure S1) or another SNV calling
pipeline preferred by users. These SNV's are transformed into a predictor matrix Mgy, . AS an option, the users
can aso include a CNV matrix My as an additional predictor matrix. CNV's can be inferred from scRNA-Seq
data using programs such as the online platform Ginkgo®. Gene expression is the response matrix M. For each
gene, a LASSO regression is fitted to identify non-null coefficient matrix W. The output of the modelsis a set of
filtered eeSNVsand a set of corresponding genesin which eeSNV's are found.

Supplementary Figure $4: perturbation-model based simulation to evaluate SSrGE quantitatively. (A)
Flowchart of the perturbation-model based simulation method, as detailed in Methods. (B) Comparison between
the average expected ranks from top genes inferred by SSrGE (x-axis) vs. those set by the simulation (y-axis),
over different noise level.

Supplementary Figure Sb: Relationship between the best accuracy metrics and the LASSO regularization
parameter a, over the five datasets and five different clustering approaches. The accuracy metrics are: (A)
Adjusted Mutual Information (AMI), B: Adjusted Rand Index (ARI), and (C): V-measure.

Supplementary Figure S6: Bar plot comparing the clustering performance using eeSNV vs. gene expression

(GE) as features, over five datasets and five different clustering strategies. The metrics used are (A): Adjusted
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Rand Index (ARI), and (B): V-measure.

Supplementary Figure S7: Pseudo-time reconstruction using the Monocle algorithm with gene expression
features from genes having eeSNV's, as compared to the pseudo-time reconstruction using eeSNVs in the same
genes shown in Figure 6A.

Supplementary Figure S8: Immune (blue), primary (red) and metastatic (green) tumor cell subpopulations from
two breast cancer patients (BC03 and BCO7) using either bipartite graphs or minimum spanning trees (Chung
dataset).

Supplementary Figure S9: Comparison of the batch-effect on SNVs and gene expression, using scRNA-seq
data from glioblastoma patient MGH26.

Supplementary Figure S10: Minimum Spanning tree using either eeSNV's (A) or gene expression (B) of HLA
as features. Pearson correlation is used as the distance metric. Color labels; primary tumor (green), metastatic

cells from patients (blue) and metastatic cells from patient derived xenografts (red).

Supplementary Table S1: Genotype of SNV's and similarity testing results with and without allelic specific
expression. Average per-cell genotypes of the SNVs are detected and computed using QUASAR. g0, g1 and g2
correspond to the homozygous reference, heterozygous, and homozygous alter nate genotypes, respectively.

ranked genes ranked eeSNVs
(alpha=0.1) (alpha=0.1) Number of eeSNVs per genotype
Kendall Kendall go g2

Kendall Tau p- Kendall Tau p- (homo | g1 (homo | Without specific

Dataset | Tau score value Tau score value ref) |(heter)| alter) |allelicexpression
Kim 0.71 0 0.58 0 1994 | 4314 | 11876 13939
Patel 0.73 0 0.62 0 372 | 2020 | 6660 7168
Ting 0.64 0 0.53 0 248 | 2016 | 14214 15140
Miyamoto 0.68 0 0.58 0 101 | 1186 4981 5327
Chung 0.76 0 0.53 0 3026 | 6391 | 16093 18741

Supplementary Table S2: Regularization values (a) used for the clustering procedures along with the number
of eeSNV s features.

Supplementary Table S3: Ranked eeSNVs and genes for each dataset (with minimum regularization filtering
a=0.1).
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Supplementary Table S4: Ranked genes for the metastasis single-cells from the Kim dataset (MRCC) and from
BCO3M and BCO7M from Chung datasets.
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