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Abstract 

Despite its popularity, characterization of subpopulations with transcript abundance is subject to a significant 

amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as 

alternative features for tumor subpopulation identification. We developed a linear modeling framework SSrGE to 

link eeSNVs associated with gene expression. In all the cancer datasets tested, eeSNVs achieve better accuracies 

than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly 

ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq 

and RNA-seq data from the same single cells, demonstrating its power in the cutting-edge single-cell genomics 

techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification 

and linkage of genotype-phenotype relationship. The method SSrGE is available at 

https://github.com/lanagarmire/SSrGE.  
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Introduction 

Characterization of phenotypic diversity is a key challenge in the emerging field of single-cell RNA-sequencing 

(scRNA-seq). In scRNA-seq data, patterns of gene expression (GE) are conventionally used as features to 

explore the heterogeneity among single cells1–3. However, GE features are subject to a significant amount of 

noises4. For example, GE might be affected with batch effect, where results obtained from two different runs of 

experiments may present substantial variations5, even when the input materials are identical. Additionally, the 

expression of particular genes varies with cell cycle6, increasing the heterogeneity observed in single cells. To 

cope with these sources of variations, normalization of GE is usually a mandatory step before downstream 

functional analysis. Even with these procedures, other sources of biases still exist, e.g. dependent on read depth, 
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cell capture efficiency and experimental protocols etc.  

Single nucleotide variations (SNVs) are genetic alterations of one single base occurring in specific cells as 

compared to the population background. SNVs may manifest their effects on gene expression per cis and/or 

trans effect7,8.The disruption of the genetic stability, e.g. increasing number of new SNVs, is known to be linked 

with cancer evolution9,10. A cell may become the precursor of a subpopulation (clone) upon gaining a set of 

SNVs. Considerable heterogeneity exists not only between tumors but also within the same tumor11,12. Therefore, 

investigating the patterns of SNVs provides means to understand tumor heterogeneity.  

In single cells, SNVs are conventionally obtained from the single-cell exome-sequencing and whole genome 

sequencing approaches13. The resulting SNVs can then be used to infer cancer cell subpopulations14,15. In this 

study, we propose to obtain useful SNV-based genetic information from scRNA-seq data, in addition to the GE 

information. Rather than being considered the “by-products” of scRNA-seq, the SNVs not only have the 

potential to improve the accuracy of identifying subpopulations compared to GE, but also offer unique 

opportunities to study the genetic events (genotype) associated with gene expression (phenotype)16,17. Moreover, 

when the coupled DNA- and RNA- based single-cell sequencing techniques become mature, the computational 

methodology proposed in this report can be adopted as well. 

Here we first built a computational pipeline to identify SNVs from scRNA-seq raw reads directly. We then 

constructed a linear modeling framework to obtain filtered, effective and expressed SNVs (eeSNVs) associated 

with gene expression profiles. In all the datasets tested, these eeSNVs show better accuracies at retrieving cell 

subpopulation identities, compared to those from gene expression (GE). Moreover, when combined with cell 

entities into bipartite graphs, they demonstrate improved visual representation of the cell subpopulations. We 

ranked eeSNVs and genes according to their overall significance in the linear models and discovered that several 

top-ranked genes (e.g. HLA genes) appear commonly in all cancer scRNA-seq data. In summary, we emphasize 

that extracting SNV from scRNA-seq analysis can successfully identify subpopulation complexities and 

highlight genotype-phenotype relationships. 
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Results 

SNV calling from scRNA-seq data 

We implemented a pipeline to identify SNVs directly from FASTQ files of scRNA-seq data, following the SNV 

guideline of GATK (Suppl. Figure S1). We applied this pipeline to five scRNA-seq cancer datasets (Kim18, 

Ting19, Miyamoto20, Patel21 and Chung22 see Methods), and tested the efficiency of SNV features on retrieving 

single cell groups of interest. These datasets vary in tissue types, origins (Mouse or Human), read lengths and 

map-ability (Table 1). They all have pre-defined cell types (subclasses), providing useful references for 

assessing the performance of a variety of clustering methods used in this study.  

We evaluated the GATK SNV calling pipeline using several approaches. First we estimated the true positive 

rates of the SNV calling pipeline at different depths of scRNA-Seq reads. For this we performed a simulation 

experiment by artificially introducing 50,000 random SNVs in the exonic regions of hg19. The true positive 

rates monotonically increase with read depth. For as few as 4 read-depth, the pipeline achieves on average over 

50% true positive rate, and increases to 68% true positive rate when read depth is more than 6 (Figure 1A). This 

accuracy is in line with what was reported from bulk cell RNA-Seq 23. We compared the SNV call results from 

GATK to those from another SNV caller FreeBayes24, and found the results are very similar (Suppl. Figure S2). 

The Kendall Tau scores25, metrics that evaluate the similarities between the two sets of SNP calling results, have 

p-values =0 in all data sets, suggesting no statistical difference in the results obtained from the two methods. 

Given the popularity of GATK pipeline, we opted to use it for the remaining of the report. 

Using SSrGE to detect eeSNVs in scRNA-seq data 

To link the relationship between SNV and GE, we developed a method called “Sparse SNV inference to reflect 

Gene Expression” (SSrGE), as detailed in Materials and Methods. In addition to SNV, we also optionally 

considered the effect of CNVs on gene expression, since copy number variation (CNV) may contribute to gene 

expression variation as well. Similar to gene-based association method PrediXscan16, SSrGE uses SNVs and 

additionally optionally CNVs as predictors to fit a linear model for gene expression, under LASSO 
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regularization and feature selection26. We choose LASSO rather than elasticNet for penalization, so that the list 

of resulting eeSNVs is short. These eeSNVs serve as refined descriptive features for subsequent subpopulation 

identification (Suppl. Figure S3). To directly pinpoint the contributions of SNVs relevant to protein-coding 

genes, we used the SNVs residing between transcription starting and ending sites of genes as the inputs. We 

further assessed the relative contributions of eeSNVs and CNVs to gene expression, and found that the 

coefficients of the CNVs with those of SNV are significantly lower (Figure 1C and D). The ranks of the top 

genes with and without CNVs in the SSrGE models are not statistically different overall, as the Kendall-Tau 

correlation scores are close to 1 with p-values=0.  

Additionally, SNV genotypes and allelic specific level gene expression may also complicate the relationships 

between eeSNVs and gene expression. Therefore, we further calibrated SSrGE model by considering SNV 

genotype and allelic specific gene expression.  We used QUASAR27 to estimate the SNV genotypes (Suppl. 

Table 1), and the allelic specific gene expression using the SNV genotype. We rebuilt individual SSrGE models 

using only the SNVs from a particular genotype and allelic-specific gene expression, and then merged the 

eeSNV weights from related SSrGE models together to obtain a final ranking of eeSNVs. The new rankings are 

not statistically different compared to the previous approach (Suppl. Table 1). The Kendall Tau scores, which 

evaluate the similarities between the re-calibrated model and the original model have p-values =0 in all data sets. 

Lastly, to quantitatively evaluate if the eeSNVs obtained from SSrGE are truly significant, we designed a 

simulation pipeline (Suppl. Figure 4A).  The pipeline creates random binary matrices of SNVs for n simulated 

cells, which are connected to the matrices of gene expression (see Methods). The SNVs present in the simulated 

cell have probabilities to modify gene expression of the genes positively or negatively. Additionally, we used 

various levels of noise to perturb the GE and the SNV matrices. We compared the ranks of top genes identified 

by SSrGE to the expected impact of each gene provided by the simulation. The inferred top ranked genes using 

SSrGE have monotonic and positive correlations with those set by the simulation (Suppl. Figure 4B). These 

correlations are all significant (p-value << 0.05), regardless of the alpha value and the level of noise. These 

results confirm that SSrGE model does retrieve truly significant eeSNVs. 
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eeSNVs are better features than gene expression to identify subpopulations 

We measured the performance of SNVs and gene expression (GE) to identify subpopulations on the five 

datasets, using five clustering approaches (Figure 2). These clustering approaches include two dimension 

reduction methods, namely Principal Component Analysis (PCA)28 and Factor Analysis (FA)29, followed by 

either K-Means or the hierarchical agglomerative method (agglo) with WARD linkage30. We also used a recent 

algorithm SIMLR designed explicitly for scRNA-seq data clustering and visualization (Wang et al., 2016). To 

evaluate the accuracy of obtained subpopulations in each dataset, we used the metric of Adjusted Mutual 

Information (AMI) over 30 bootstrap runs, from the optimal a parameters (Suppl. Table S2). These optimal 

parameters were estimated by testing different a values for each dataset and each clustering approach (Suppl. 

Figure S5). As shown in Figure 2, eeSNVs are better features to retrieve cancer cell subpopulations compared to 

GE, independent of the clustering methods used. Among the clustering algorithms, SIMLR tends to be a better 

choice using eeSNV features.  

Additionally, we also computed the Adjusted Rand index (ARI)31 and V-measure32, two other metrics for 

modularity measurements (Methods) and obtained similar trends (Suppl. Figure S6). Similar to AMI, ARI is a 

normalized metric against random chance, and evaluates the number of correct pairs obtained.  On the other 

hand, V-measure combines the homogeneity score, which measures the homogeneity of reference classes in the 

obtained clusters, and the completeness score, which measures the homogeneity of obtained clusters within the 

reference classes. Due to the high number of small homogenous clusters obtained for the Miyamoto dataset, we 

observed higher V-measure scores, compared to AMI and ARI results (Suppl. Figure S6). 

Visualization of subpopulations with bipartite graphs 

Bipartite graphs are an efficient way to describe the binary relations between two different classes of objects. We 

next represented the presence of the eeSNVs into single cell genomes with bipartite graphs using ForceAtlas2 

algorithm33. We drew an edge (link) between a cell node and a given eeSNV node whenever an eeSNV is 

detected. The results show that bipartite graph is a robust and more discriminative alternative (Figure 3), 

comparing to PCA plots (using GE and eeSNVs) as well as SIMLR (using GE). For Kim dataset, bipartite graph 

separates the three classes perfectly. However, gene-based visualization approaches using either PCA or SIMLR 
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have misclassifications. For Ting data, the eeSNV-cell bipartite graph gives a clear visualization of all six 

different subgroups of single cells. Other three approaches have more exaggerated separations among the same 

mouse circulating tumor cells (CTC) subgroup MP (orange color), but mix some other subpopulations (e.g. GM, 

MP and TuGMP groups). Miyamoto dataset is the most difficult one to visualize among the four datasets, due to 

its high number (24) of reference classes and heterogeneity among CTCs. Bipartite graphs are not only able to 

condense the whole populations, but also separate subpopulations (e.g. the orange colored PC subpopulation) 

much better than the other three methods. 

Characteristics of eeSNVs 

In SSrGE, regularization parameter a is the only tuning variable, controlling the sparsity of the linear models and 

influences the number of eeSNVs. We next explored the relationship between eeSNVs and a (Figure 4). For 

every dataset, increasing the value of a decreases the number of selected eeSNVs overall (Figure 4A), as well as 

the average number of eeSNVs associated with every expressed gene (Figure 4B). The optimal a depends on the 

clustering algorithm and the dataset used (Suppl. Table S2 and Suppl. Figure S5). Increasing the value of a 

increases the proportion of eeSNVs that have annotations in human dbSNP138 database, indicating that these 

eeSNVs are biologically valid (Figure 4C). Additionally, increasing a increases the average number of cells 

sharing the same eeSNVs, supporting the hypothesis that cancer cells differentiate with a growing number of 

genetic mutations over time (Figure 4D). Note the slight drop in the average number of cells sharing the same 

eeSNVs in Kim data when a > 0.6, this is due to over-penalization (eg. a =0.8 yields only 34 eeSNVs).  

Cancer relevance of eeSNVs  

Following the simulation results, we ranked the different eeSNVs and the genes for the five datasets, from 

SSrGE models (Suppl. Tables S3). We found that eeSNVs from multiple genes in Human Leukocyte Antigen 

(HLA) complex, such as HLA-A, HLA-B, HLA-C and HLA-DRA, are top ranked in all four human datasets 

(Table 2 and Suppl. Tables S3). HLA is a family encoding the major histocompatibility complex (MHC) 

proteins in human. Beta-2-microglobulin (B2M), on the other hand, is ranked 7th and 45th in Ting and Patel 

datasets, respectively (Table 2). Unlike HLA that is present in human only, B2M encodes a serum protein 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/095810doi: bioRxiv preprint 

https://doi.org/10.1101/095810


involved in the histocompatibility complex MHC that is also present in mice. Other previously identified tumor 

driver genes are also ranked top by SSrGE, demonstrating the impact of mutations on cis-gene expression (Table 

2 and Suppl. Tables S3). Notably, KRAS, previously linked to tumor heterogeneity by the original scRNA-Seq 

study (Kim et al., 2015), is ranked 13th among all eeSNV containing genes (Suppl. Tables S3). AR and KLK3, 

two genes reported to show genomic heterogeneity in tumor development in the original study (Miyamoto et al., 

2015), are ranked 6th and 19th, respectively. EGFR, the therapeutic target in Patel study with an important 

oncogenic variant EGFRvIII (Patel et al., 2014), is ranked 88th out of 4,225 genes. Therefore, genes top-ranked 

by their eeSNVs are empirically validated. 

Next we conducted more systematic investigation to identify KEGG pathways enriched in each dataset, using 

these genes as the input for DAVID annotation tool34 (Figure 5A). The pathway-gene bipartite graph illustrates 

the relationships between these genes and enriched pathways (Figure 5B). As expected, Antigen processing and 

presentation pathway stands out as the most enriched pathway, with the sum -log10 (p-value) of 15.80 (Figure 

5B). “Phagosome” is the second most enriched pathway in all four data sets, largely due its members in HLA 

families (Figure 5B). Additionally, pathways related to cell junctions and adhesion (focal adhesion and cell 

adhesion molecules CAMs), protein processing (protein processing in endoplasmic reticulum and proteasome), 

and PI3K-AKT signaling pathway are also highly enriched with eeSNVs (Figure 5A). 

Heterogeneity markers using eeSNVs 

We exemplify the potential of eeSNV as heterogeneity markers using Kim dataset first. Rather than using GE as 

the input to reconstruct the pseudo-time ordering of the single-cells, we used eeSNVs instead. We built a 

Minimum Spanning Tree, similarly to the Monocle algorithm35, to reconstruct the pseudo-time ordering of the 

single-cells. The graph beautifully captures the continuity among cells, from the primary to metastasized tumors 

(Figure 6A). Moreover, it highlights ramifications inside each of the subgroups, demonstrating the intra-group 

heterogeneity. On the contrary, pseudo-time reconstruction using GE showed much less complexity and more 

singularity (Supplementary Figure S7). Next, we used our method to identify eeSNVs specific to each single-cell 

subgroup and ranked the genes according to these eeSNVs. We compared the characteristics of the metastasis 

cells to primary tumor cells. Two top-ranked genes identified by the method, CD44 (1th) and LPP (2th), are 
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known to promote cancer cell dissemination and metastasis growth after genomic alteration36–39 (Suppl. Table 

S3).  Other top-ranked genes related to metastasis are also identified, including LAMPC2 (7th), HSP90B1 (14th), 

MET (44th) and FN1 (52th). As expected, “Pathways in Cancer” are the top-ranked pathway enriched with 

mutations (Figure 6B). Additionally, “Focal Adhesion”, “Endocytosis” pathways are among the other 

significantly mutated pathways, providing new insights on the mechanistic difference between primary and 

metastasized RCC tumors (Figure 6B).  

Another application is to explore the potential of eeSNVs to separate different cell types within the same 

individual. Towards this, we extended the same analysis on the two patients BC03 and BC07 from the Chung 

dataset, who have primary and metastasized tumor cells as well as infiltrating immune cells. Again bipartite 

graphs and minimum spanning trees based visualization illustrate clear separations of tumor (primary and 

metastasized) cells from immune cells (Suppl. Figure S8). Furthermore, the top-ranked genes relative to the 

metastasis subgroups (BC03M and BC07M) present some similarities with those found in Kim dataset (Suppl. 

Tables S4). Strikingly, CD44 is also top-ranked (23th) among the significant genes of BC07M. Similarly, 

HSP90B1 is top-ranked as the 63th and 51th most important genes, in BC03M and BC07M respectively.  

Integrating DNA- and RNA-Seq data measured in the same single cells 

Coupled DNA-Seq and RNA-Seq measurements from the same single cell are the new horizon of single-cell 

genomics. To demonstrate the potential of SSrGE in integrating DNA and RNA data, we downloaded a public 

single cells data, which have DNA methylation and RNA-Seq records from the same hepatocellular carcinoma 

(HCC) single cells (Hou dataset)40. We then inferred SNVs from the aligned reduced representation bisulfite 

sequencing (RRBS) reads (see Methods), and used them to predict the scRNA-Seq data from the same samples. 

Given the fact that SNVs are heterozygous among tumor and normal cells, and that a small fraction of genes 

harboring eeSNVs are subject to CNV, we included both the percentages of SNVs as well as CNVs as additional 

predictive variables in the SSrGE model besides SNV features. Interestingly, the identified eeSNVs can clearly 

separate normal hepatocellular cells from cancer cells and highlight the two cancer subtypes identified in the 

original study (Figure 7A).  Pseudo-time ordering shows not only an early divergence between the two 

previously assumed subtypes, but also unveils significant ramifications amongst subtype type II, indicating 
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potential new subgroups (Figure 7B). A simplified version of SSrGE model, where only SNV features were 

considered as predictors for gene expression, shared 92% eeSNVs as those in Figure 7A, and achieved almost 

identical separations between normal hepatocellular cells and cancer cells. This confirms the earlier observation 

that eeSNVs are much more important predictive features, compared to CNVs (Figure 1C and D).  

We postulated that a considerable part of bisulfite reads was aligned with methylation islands associated with 

gene promoter regions. We thus annotated eeSNVs within 1500bp upstream of the transcription starting codon, 

and obtained genes with these eeSNVs, which are significantly prevalent in certain groups.  When comparing 

HCC vs. normal control cells, two genes PRMT2, SULF2 show statistically significant mutations in HCC cells 

(P-values < 0.05). Down-regulation of PRMT2 was previously associated with breast cancer41, SULF2 was 

known to be up-regulated in HCC and promotes HCC growth42.  

Discussion 

Using GE to accurately analyze scRNA-seq data has many challenges, including technological biases such as the 

choice of the sequencing platforms, the experimental protocols and conditions. These biases may lead to various 

confounding factors in interpreting GE data5. SNVs, on the other hand, are less prone to these issues given their 

binary nature. In this report, we demonstrate that eeSNVs extracted from scRNA-seq data are ideal features to 

characterize cell subpopulations. Moreover, they provide a means to examine the relationship between eeSNVs 

and gene expression in the same scRNA-seq sample. 

eeSNVs have improved accuracy on identifying tumor single-cell subpopulations 

The process of selecting eeSNVs linked to GE allows us to identify representative genotype markers for cell 

subpopulations. We speculate the following reasons attributed to the better accuracies of eeSNVs compared to 

GE.  First, eeSNVs are binary features rather than continuous features like GE. Thus, eeSNVs are more robust at 

separating subpopulations. We have noticed that SNVs are less affected by batch effects (Suppl. Figure S9). 

Secondly, LASSO penalization works as a feature selection method and minimizes the spurious SNVs (false 

positive) from the filtered set of eeSNVs. Thirdly, since eeSNVs are obtained from the same samples as scRNA-

seq data, they are more likely to have biological impacts, and this is supported the observation that they have 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/095810doi: bioRxiv preprint 

https://doi.org/10.1101/095810


high prevalence of dbSNP annotations.  

A small number of eeSNVs can be used to discriminate distinct single-cell subpopulations, as compared to 

thousands of genes that are normally used for scRNA-seq analyses. Taking advantage of the eeSNV-GE 

relationship, a very small number of top eeSNVs still can clearly separate cell subpopulations of the different 

datasets (eg. 8 eeSNV features have decent seperations for Kim dataset). Moreover, our SSrGE package can be 

easily parallelized and process each gene independently. It has the potential to scale up to very large datasets, 

well-poised for the new wave of scRNA-seq technologies that can generate thousands of cells at one time43.  One 

can also easily rank the eeSNVs and the genes harboring them, for the purpose of identifying robust eeSNVs as 

genetic markers for a variety of cancers.  

eeSNVs highlight genes linked to cancer phenotypes 

SSrGE uses an accumulative ranking approach to select eeSNVs linked to the expression of a particular gene. 

Mainly, HLA class I genes (HLA-A, HLA-B and HLA-C) are top-ranked for the three human datasets, and they 

contribute to “antigen processing and presentation pathway”, the most enriched pathways of the four datasets. 

HLA has amongst the highest polymorphic genes of the human genome44, and the somatic mutations of genes in 

this family occurred in the development and progression of various cancers45,46. eeSNVs of HLA genes could be 

used as fingerprints to identify the cellular state of the cancer cells, and lead to better separation between the 

primary (pRCC, green) and metastatic cells (mRCC, red and blue) compared to GE of HLA genes (Suppl. Figure 

10).  B2M, another gene with top-scored eeSNVs in Ting and Patel datasets, is also known to be a mutational 

hotspot47. It is immediately linked to immune response as tumor cell proliferation45,47. Many other top-ranked 

genes, such as KRAS and SPARC, were reported to be driver genes in the original studies of the different dataset. 

Thus, it is reasonable to speculate that SSrGE is capable of identifying some driver genes. Another possibility is 

that some of the eeSNVs reflect aberrant splicing of genes such as the HLA family, which are regularly found in 

deregulated cancer cells48.  Nevertheless, SSrGE may miss some driver mutations due to the incomplete DNA 

coverage due to the use of scRNA-Seq reads. Also, its primary goal is to identify a minimal set of eeSNV 

features by LASSO penalization but in case of correlated features, LASSO may select one of those highly 

correlated SNV features that correspond to GE. 
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eeSNVs reveal higher degree of single-cell heterogeneity than gene expression 

We have showed with strong evidence that eeSNVs unveil inter- and intra- tumor cells heterogeneities better 

than gene expression count data obtained from the same RNA-Seq reads. Reconstructing the pseudo-time 

ordering of cancer cells from the same tumor (Kim dataset) displays branching even inside primary tumor and 

metastasis subgroups, which gene expression data are unable to do. We identified genes enriched with SNVs 

specific to the metastasis, which were not reported in the original HCC single cell study40. Most interestingly, we 

showed that eeSNVs can also be retrieved from RRBS reads in a multi-omics single-cell HCC dataset, a twist 

from their original purpose of single-cell DNA methylation. Again, genes ranked by eeSNVs from RRBS reads 

only differentiate normal from cancer cells but also the different cancer subtypes. We identified several genes 

that are significant in either HCC or HCC subgroup, whose promoters are highly impacted by eeSNVs. Thus, we 

have demonstrated that our method is on the fore-front to analyze data generated by new single-cell technologies 

extracting multi-omics from the same cells40,49. 

Advantages of using bipartite graphs to represent scRNA-seq data 

Bipartite graphs are a natural way to visualize eeSNV-cell relationships. We have used force-directed graph 

drawing algorithms involve spring-like attractive forces and electrical repulsions between nodes that are 

connected by edges. This approach has the advantage to reveal “outlier” single cells, with a small set of eeSNVs, 

compared to those distance-based approaches. Moreover, the bipartite representation also reveals directly the 

relationship between single cells and the eeSNV features. Contrary to dimension reduction approaches such as 

PCA that requires linear transformation of features into principle components, bipartite graphs preserve all the 

binary information between cell and eeSNV. Graph analysis software such as Gephi33 or Cytoscape50 can be 

utilized to explore the bipartite relationships in an interactive manner.  

 

Conclusion 

We demonstrated the efficiency of using eeSNVs for cell subpopulation identification over multiple datasets. 

eeSNVs are excellent genetic markers for intra-tumor heterogeneity and may serve as genetic candidates of new 
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treatment options. We also have developed SSrGE, a linear model framework that correlates genotype (eeSNV) 

and phenotype (GE) information in scRNA-seq data. Moreover, we have showed the capacity of SSrGE in 

analyzing multi-omics data from the same single cells, obtained from the most cutting-edge genomics 

techniques51,52. Our method has the great promise as part of routine scRNA-seq analyses, as well as multi-omics 

single-cell integration projects. 

Materials and Methods 

scRNA-seq datasets 

All five datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) portal53.  

Kim dataset (accession GSE73121): contains three cell populations from matched primary and metastasis tumor 

from the same patient18. Patient Derivated Xenographs (PDX) were constructed using cells from the primary 

Clear Cell Renal Cell Carcinoma (PDX-pRCC) tumor and from the lung metastasic tumor (PDX-mRCC). Also, 

metastatic cells from the patient (Pt-mRCC) were sequenced.  

Patel dataset (accession GSE57872): contains five glioblastoma cell populations isolated from 5 individual 

tumors from different patients (MGH26, MGH28, MGH29 MGH30 and MGH31) and two gliomasphere cell 

lines, CSC6 and CSC8, used as control21.  

Miyamoto dataset (accession GSE67980): contains 122 CTCs from Prostate cancer from 18 patients, 30 single 

cells derived from 4 different cancer cell lines: VCaP, LNCaP, PC3 and DU145, and 5 leukocyte cells from a 

healthy patient (HD1)20. A total of 23 classes (18 CTC classes + 4 cancer cell lines + 1 healthy leukocyte cell 

lines) were obtained.  

Ting dataset (subset of accession GSE51372): contains 75 CTCs from Pancreatic cancer from 5 different KPC 

mice (MP2, MP3, MP4, MP6, MP7), 18 CTCs from two GFP-lineage traced mice (GMP1 and GMP2), 20 single 

cells from one GFP-lineage traced mouse (TuGMP3), 12 single cells from a mouse embryonic fibroblast cell line 

(MEF), 12 single cells from mouse white blood (WBC) and 16 single cells from the nb508 mouse pancreatic cell 

line (nb508)19. KPC mice have uniform genetic cancer drivers (Tp53, Kras). Due to their shared genotype, we 

merged all the KPC CTCs into one single reference class. CTCs from GMP1 did not pass the QC test and were 
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dismissed. CTCs from GMP2 mice were labeled as GMP. Finally, 6 reference classes were used: MP, nb508, 

GMP, TuGMP, MEF and WBC.  

Hou dataset (accession GSE65364): contains 25 hepatocellular carcinoma single-cells (Ca) extracted from the 

same patient and 6 normal liver cells (HepG2) obtained from the adjacent normal tissue of another HCC 

patient40. The 32 cells were sequenced using scTrio-seq in order to obtain reads from both RNA-seq and reduced 

representation bisulfate sequencing (RRBS). The authors highlighted that one of the Ca cells (Ca_26) was likely 

to be a normal cell, based on CNV measurements, and thus we discarded this cell. We used  the RRBS reads to 

infer the SNVs. We use gene expression data provided by the authors to construct a GE matrix. For controls, we 

used the bulk genome of all the RNA-Seq and RRBS reads of the HepG2 group. 

Chung dataset (accession GSE75688): contains 549 single cells from primary breast cancer and lymph nodes 

metastases, extracted from 11 patients (BC01-11) of distinct molecular subtypes. BC01-02 are estrogen receptor 

positive (ER+); BC04-06 are human epidermal growth factor receptor 2 positive (HER+); BC03 is double 

positive (ER+ and HER+); BC07-11 are triple negative breast cancer (TNBC)22. Only BC03 and BC07 presented 

cells extracted from lymph nodes metastases (BC03M and BC07M). Additionally, the dataset contains a large 

part of infiltrating tumor cells. Following the original analytical procedure of the original study22, we performed 

an unsupervised clustering analysis to separate the cancer from the immune cells. We first reduced the dimension 

with a PCA analysis and then used a Gaussian mixture model to infer the clusters. We obtained a total of 372 

cancer cells and 177 immune cells.  

SNV detection using scRNA-seq data 

The SNV detection pipeline using scRNA-seq data follows the guidelines of GATK 

(http://gatkforums.broadinstitute.org/wdl/discussion/3891/calling-variants-in-rnaseq). It includes four steps: 

alignment of spliced transcripts to the reference genome (hg19 or mm10), BAM file preprocessing, read 

realignment and recalibration, and variant calling and filtering (Suppl. Figure S1)54.  

Specifically, FASTQ files were first aligned using STAR aligner55, using mm10 and hg19 as reference genomes 

for mouse and human datasets, respectively. The BAM file quality check was done by FastQC56, and samples 

with lower than 50% of unique sequences were removed (default of FastQC). Also, samples with more than 20% 
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of the duplicated reads were removed by STAR. Finally, samples with insufficient reads were also removed, if 

their reads were below the mean minus two times the standard deviation of the entire single-cell population. The 

summary of samples and reads filtered by these steps is listed in Table 1. Raw gene counts �� were estimated 

using featureCounts57, and normalized using the logarithmic transformation: 

���� � � log
�

�1 � ��  . 10�

��� . ��� 

where �� is the raw expression of gene j, R is the total number of reads and �� is the length of the gene j.  BAM 

files were pre-processed and reordered using Picard Tools (http://broadinstitute.github.io/picard/), before subject 

to realignment and recalibration using GATK tools58. SNVs are then calculated and filtered using the GATK 

tools HaplotypeCaller and VariantFiltration using default parameters.  

Additionally, we used Freebayes24 with default parameters to infer the SNVs, as alternative to the 

HaplotypeCaller and VariantFiltration softwares. The SNV calling results between the two callers are very 

similar (Suppl. Figure 2).  

SNV detection using RRBS data 

We first aligned the RRBS reads on the hg19 reference genome using the Bismark software 59. We then 

processed the bam files using all the preprocessing steps as described in “SNV detection using scRNA-seq data” 

section (i.e. Picard Preprocessing, Order reads, Split reads and Realignments), except the base recalibration step. 

Finally, we called the SNVs using the BS-SNPer software (default setting)60. The details are the following.  

 --minhetfreq 0.1 # Threshold of frequency for calling heterozygous SNP 

 --minhomfreq 0.85 # Threshold of frequency for calling homozygous SNP 

 --minquali 15 # Threshold of base quality 

 --mincover 10 # Threshold of minimum depth of covered reads 

 --maxcover 1000 # Threshold of maximum depth of covered reads 

 --minread2 2 # Minimum mutation reads number 

 --errorate 0.02 # Minimum mutation rate 

 --mapvalue 20 # Minimum read mapping value 
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SNV simulation 

We created a modified version of the hg19 reference genome by introducing 50000 random mutations in the 

exonic region of the genes. To introduce a new mutation, we weighted each exon depending on its base length 

and selected one randomly and proportional to its weight. We realigned the scRNA-seq reads from a subset of 20 

cells from the Kim dataset with the introduced new mutations, using the same SNV detection pipelines described 

earlier. We used BedTools61 to compute the read depth of each mutation.  

SNV annotation 

To annotate human SNV datasets, dbSNP138 from the NCBI Single Nucleotide Polymorphism database62 and 

reference INDELs from 1000 genomes (1000_phase1 as Mills_and_1000G_gold_standard)63 were used. To 

annotate the mouse SNV dataset, dbSNPv137 for SNPs and INDELs were downloaded from the Mouse 

Genomes Project of the Sanger Institute, using the following link: ftp://ftp-mouse.sanger.ac.uk/REL-1303-

SNPs_Indels-GRCm38/64. The mouse SNP databases were sorted using SortVcf command of Picard Tools in 

order to be properly used by Picard Tools and GATK.  

SSrGE package to correlate eeSNVs to gene expression 

For each dataset, we denote 
���  and 
�	  as the SNV and gene expression matrices, respectively. 
���  is 

binary (
���
,� 
� �0, 1�) indicating the presence/absence of SNV s in cell c. 
�	
,� 

 is the log transformed gene 

expression value of the gene g in cell c. Copy number variation (CNV) 

�� , can be added as an additional 

optional predictor in SSrGE. We computed CNV for each gene g in each cell c using the online platform 

Ginkgo65. For the Hou dataset, we inferred CNV using the same approach described by the authors40. We 

removed any SNV present in less than 3 cells, or associated with a gene having normalized expression value 

below 2.0. We also discarded genes with normalized expressions below 2.0 and expressed in less than 10 cells 

from SSrGE analysis. For each gene g, we applied a sparse linear regression using LASSO to identify ��  , the 

linear coefficient associated to SNV, as well as Wcnv, the coefficient associated to the CNV of g (if CNV was 

considered). The objective function for SSrGE to minimize is: 
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where � is the regularization parameter, 
����
��� represents the 
���  matrix with an additional column that 

corresponds to the CNV of the gene g for each cell. In this configuration, ���
�� has one more column too, 

corresponding to the weight associated with the CNV. An SNV was considered as eeSNV when ����� � 0.   

When CNV is not considered in SSrGE, the objective function is simplified as:  

min
��

� 1
2� ||
��� . ��

�  � 
�	�,� 
||�

� �  �. ||��||�� 

Inference of SNV genotype and allele-specific SSrGE calibration 

We used the package QuASAR (https://github.com/piquelab/QuASAR) to identify the genotype of each SNV27. 

For each dataset, we collected the SNVs and constructed an n x 3 matrix using the number of reads mapping to 

the reference allele, the alternate allele, or neither of the alleles. We then fit this matrix with QuASAR to 

estimate the true genotype of each SNV. We then estimated the allelic gene expression for each cell by 

multiplying the normalized gene counts with the fraction of the SNV of a particular genotype. To calibrate 

SSrGE model with allele expression, we first fit an SSrGE model for each genotype using the allele-specific 

SNVs and gene expression as inputs. We then merged the eeSNVs and weights inferred for each model into a 

final model. 

Ranking of eeSNVs and genes  

SSrGE generates coefficients of eeSNVs for each gene, as a metric for their contributions to the gene expression. 

The score of an eeSNV is given by the sum of its weights over all genes: 

��� !����� � "#��
����#

�

 

Each gene also receives a score according to its associated eeSNVs: 

 

��� !�����
� " ��� !�����

����� � �����  
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In practice, we first obtained eeSNVs using a minimum filtering of �=0.1, before using these two scores above 

to rank eeSNVs and the genes.  

Ranking of eeSNVs and genes for a subpopulation 

For a given single-cell subpopulation p, an eeSNV is defined as specific to the subpopulation p when it has a 

significantly higher frequency in p than in any other subpopulation. For each eeSNV we took only the subset of 

cells expressing the gene g associated with the eeSNV. We then computed the Fisher’s exact test to compare the 

presence of the eeSNV between single-cells inside and outside p. We considered an eeSNV significant for p-

value < 0.05. p’ designates the subset of cells from p expressing g. The score of an eeSNV for p is given by: 

��� !�����
� �  |��!$$ %&'( !!)*+|�!$$ �  ,-�| 

|,�|  ��� !�����  

The score of a given gene g for p is thus given by: 

��� !�����

�  � " ��� !�����
�

����� � �����  

 

To rank eeSNVs from the promoter regions of the RRBS reads in Hou dataset, we applied a similar 

methodology: we annotated the eeSNVs within 1500bp upstream of genes’ starting codon regions. 

Perturbation-model based simulation to quantitatively assess SSrGE  

We first simulated an interaction table (Suppl. Figure 4A) which gives an “interaction score” (between -1 and 1) 

for each gene-SNV pair, denoted as interaction �� for gene . and SNV /. This interaction score follows a 

mixed normal distribution, with two normal distribution components.  These two distributions are named the 

inhibiting component (centered at -0.5), and the enhancing component (centered at 0.5). The type of interaction 

determines the weighting factor. We define a cis-interaction if the SNV is located within the gene and a trans-

interaction otherwise. A cis-interaction has equal weights on the inhibiting and enhancing components. A trans-

interaction has significantly larger weight on the inhibiting component, as previous studies found cis interaction 

is more likely to be inhibitive. 

We then simulated the unperturbed expression matrix using Splatter66, with parameters estimated from the Kim 
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dataset. We also simulated the SNV matrix using random shuffle of the SNV matrix extracted from the same 

dataset. We then applied the interactions to the unperturbed expression. For a gene g in a sample s, the 

expression level  GEgs was perturbed to GE’gs  using the following formula:  

01-�� �  01�� 234�∑ �����  .!�"#$%&"!'���(  

This created the perturbed expression matrix. Then, we added drop-outs to the perturbed expression matrix using 

Splatter, in order to create the final observed expression matrix. We also added random noises to the SNV matrix 

(following a Bernoulli distribution) to generate the final observed SNV matrix. We used these two observed 

matrices as the input for SSrGE, to assess its performance. 

Pseudo-time ordering reconstruction 

To estimate the trajectory of cell evolvement, we adopted the following procedure, motivated by the method 

described earlier35. We first constructed the following distance matrix to reflect the Pearson’s correlation 

between each pair of cells: ��,� � 1
 ��

��������������� , �������� 

Subpopulation clustering algorithms 

We combined two dimension reduction algorithms: Principal Component Analysis (PCA)28 and Factor Analysis 

(FA)29 with two popular clustering approaches: the K-Means algorithm67 and agglomerative hierarchical 

clustering (agglo) with WARD linkage30. We also used SIMLR, a recent algorithm specifically tailored to cluster 

and visualize scRNA-seq data, which learns the similarity matrix from subpopulations68. Similar to the original 

SIMLR study, we used the embedding of the cells produced by the algorithm to apply K-Means algorithm.  

PCA and FA were performed using their corresponding implementation in Scikit-Learn (sklearn)69. For PCA, FA 

and SIMLR, we used various input dimensions D [2, 3, 5, 10, 15, 20, 25, 30] to project the data. To cluster the 

data with K-Means or the hierarchical agglomerative procedure, we used a different cluster numbers N (2 to 80) 

to obtain the best clustering results from each dataset. We computed accuracy metrics for each (D, N) pair and 

chose the combination that gives the overall best score. Between the two clustering methods, K-Means was the 

implementation of sklearn package with the default parameter, and hierarchical clustering was done by the 
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AgglomerativeClustering implementation of sklearn, using WARD linkage. 

Validation metrics 
To assess the accuracy of the obtained clusters, we used three metrics: Adjusted Mutual Information (AMI), 

Adjusted Rand Index (ARI) and V-measure 31,32. These metrics compare the obtained clusters C to some 

reference classes K and generate scores between 0 and 1 for AMI and V-measure, and between -1 and 1 for ARI. 

A score of 1 means perfect match between the obtained clusters and the reference classes. For ARI, a score 

below 0 indicates a random clustering. 

AMI normalizes Mutual Information (MI) against chances31. The Mutual Information between two sets of 

classes C and K is equal to: MI �7, 8� �  ∑ ∑ :�&, ;� log � )�*,�(

)�*()���(
�|,|

�-�

|
|

*-� , where :�&� is the probability that an 

object from C belongs to the class i, :��;� is the probability that an object from K belongs to class j, and P(i, j) is 

the probability that an object are in both class i and j.  AMI is equal to: ?
@�7, 8� � ./�
,,(0	�./�
,,((

123�45�
(,5�,(6(0	�./�
,,((
, 

where A�7� and A�8� designates the entropy of C and K.  

Similar to AMI, ARI normalizes RI against random chances: ?�@ � 7/0	�7/(

123�7/(0	�7/(
 31. Rand Index (RI) was 

computed by: �@ � 8�9



	


��
���
, where a is the number of con-concordant sample pairs in obtained clusters C and 

reference classes K, whereas b is the number of dis-concordant samples.  

V-measure, similar to F-measure, calculates the harmonic mean between homogeneity and completeness. 

Homogeneity is defined as 1 �  5�
|,(

5�
(
, where A�7|8� is the conditional entropy of C given K. Completeness is 

the symmetrical of homogeneity: 1 �  5�,|
(

5�,(
. 

Graph visualization 
The different datasets were transformed into GraphML files with Python scripts using iGraph library70. Graphs 

were visualized using GePhi software33 and spatialized using ForceAtlas271, a specific graph layout implemented 

into the GePhi software. 

Pathway enrichment analysis 
We used the KEGG pathway database to identify pathways related to specific genes72.  We selected genes scored 
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with significant eeSNVs for the metastasis cells from Kim dataset and for the CTCs for the Ting dataset. We then 

used DAVID 6.8 functional annotation tool to identify significant pathways amongst these genes34. We used the 

default significance value (adjusted p-value threshold of 0.10).  Significant pathways are then represented as a 

bipartite graph using Gephi: Nodes are either genes or pathway and the size of each nodes represent the score of 

the genes or, in the case of pathways, the sum of the scores of the genes linked to the pathways. We used the 

same methodology to infer significant pathways of cancer cells, compared to normal cells, from Hou dataset. 

However, we used all the genes ranked rather than only the significant genes, since only few genes are found to 

be significant for cancer cells. 

Code availability 
The SNV calling pipeline and SSrGE are available through the following GitHub project: 

https://github.com/lanagarmire/SSrGE.  
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Figure legends 
Figure 1: The performance measurements of GATK SNV calling and SSrGE pipelines.  

(A-B) Performance measurement of GATK SNV calling pipeline. Box plots of true positive rate (A) and false 

positive rate (B) with respect to the read depth at the called SNV position. The rates are calculated from GATK 

SNV calling pipeline, using hg19 reference genome to align modified scRNA-seq reads from a subset of 20 cells 

from the Kim dataset, which were introduced 50000 random mutations the exonic region of the reads. (C-D) 

Comparisons of importance the different types of features in SSrGE models, with respect to the ranking, in 
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Miyamoto dataset (C) and Kim dataset (D). Blue: CNV feature; Red: eeSNV feature; Green: gene expression 

feature.  

Figure 2: Comparison of clustering accuracy using eeSNV and gene expression (GE) features. 

(A-E) Bar plots comparing the clustering performance using eeSNV vs. gene expression (GE) as features, over 

five different clustering strategies and five datasets: (A) Kim dataset (B) Ting dataset (C) Chung dataset (D) 

Miyamoto dataset and (E) Patel dataset. Y-axis is the adjusted mutual information (AMI) obtained across 30 

bootstrap runs (mean ± s.d.). *: P<0.05, ** P<0.01 and *** P<0.001. (F) Heatmap of the rankings among 

different methods and datasets as shown in (A-E).  

Figure 3: Comparison of clustering visualization using eeSNV and gene expression (GE) features. 

(A) Bipartite graphs using eeSNVs and cell representations. (B) Principle Component Analysis (PCA) results 

using GE. (C) PCA results using eeSNVs. (D) SIMILR results using GE.  

Figure 4: Characteristics of the eeSNVs. 

X-axis: the regularization parameter a values. And the Y-axes are: (A) Log10 transformation of the number of 

eeSNVs. (B) The average number of eeSNVs per gene. (C) The proportion of SNVs with dbSNP138 annotations 

(human datasets). (D) The average number of cells sharing eeSNVs. Insert: Patel and Chung datasets. 

Figure 5: Gene and KEGG pathways enriched with eeSNVs in the five scRNA-seq datasets. 

(A) KEGG pathways enriched with genes containing eeSNVs in the five datasets. Pathways are sorted by the 

sum of the -log10 (p-value) of each dataset, in the descending order. (B) Bipartite graph for KEGG pathways and 

genes enriched with eeSNVs. Pathways and genes in each dataset are colored as shown in the graph. The size of 

nodes reflects the gene and the pathway scores.  

Figure 6: Heterogeneity revealed by Kim dataset. 

(A) Pseudo-time ordering reconstruction of the different subgroups. (B) Bipartite graph for KEGG pathways and 

genes enriched with eeSNVs. The size of the nodes reflects the gene and the pathway scores. Lighter green 

indicates genes with a lower rank. 

Figure 7: Heterogeneity revealed by eeSNVs from multi-omics single cell HCC (Hou) dataset. 

(A) Bipartite-graph representation of the single cells using eeSNVs from RRBS reads which measure single-cell 

methylome. (B) Pseudo-time ordering reconstruction of the HCC cells, using eeSNVs in (A).  
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Tables 
 
Table 1: Summary of scRNA-seq datasets used in this study. 

 
 
Table 2:  A list of interested genes highly ranked. Ranks with ‘*’ designate cancer driver genes reported in the 

original studies. 

Dataset Kim Patel Miyamoto 
Chung Ting 

(mouse) 
HLA-A 32 8 2 6 - 

HLA-B 3 105 1 4 - 

HLA-C 1 98 4 2 - 

HLA-DRA 71 771 200 18 - 

B2M 1617 45 301 425 7 
KRAS 13 2101 2254 72 235* 

TRP53 NA NA NA NA 365* 

SPARC 22 37 567 2070 79 
EGFR 2231 88* NA NA NA 

AR NA NA 6* 340 NA 

KLK3 NA NA 19* NA NA 
 

Data Description Organism Sub-
class 

Cell 
count 

Reads 
Per cell 

Map-
ability 

Read 
length 

Expresse
d genes 

% samples 
removed 

after 
filtering 

% reads 
removed 

after 
filtering 

Kim 
dataset18 

Renal carcinoma 
cancer cell from 
patient and PDX 

Human 3 91 4.1M 82 % 100 18288 23 14 

Ting 
dataset 

19 

Pancreas 
Circulating Tumor 
cells (CTC) Cancer 

Mouse 6 116 13.7M 39 % 50 15868 32 31 

Miyamot
o dataset 

20 

Prostate CTCs 
Cancer 

Human 24 133 2.0M 44 % 50 18224 22 40 

Patel 
dataset 

21 

Glioblastoma tumor 
cells 

Human 7 593 3.2M 63 % 25 25053 38 42 

Chung 
dataset 

22 

Breast cancer Human 13 556 5.9M 81% 100 22121 1 15 
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Supplemental Materials 
 

Supplementary Figure S1: The SNV calling pipeline based on GATK. It follows the “Best Practice” workflow 

for SNP and INDEL calling as recommended, with four steps. Step 1: alignment. Step 2: preprocessing of BAM 

files. Step 3: read realignment and recalibration. Step 4: variant calling. 

Supplementary Figure S2:  The performance comparison of GATK vs. FreeBayes SNV calling pipeline. Box 

plots of true positive rate (A) and false positive rate (B) are shown with respect to the read depth at the called 

SNV position. The rates are calculated from GATK SNV calling pipeline, using hg19 reference genome to align 

modified scRNA-seq reads from a subset of 20 cells from the Kim dataset, which were introduced 50000 

random mutations the exonic region of the reads.  

Supplementary Figure S3: Sketch of Sparse SNV inference to Reflect Gene Expression (SSrGE) linear models. 

The SNVs can be calculated from the GATK pipeline (Supplementary Figure S1) or another SNV calling 

pipeline preferred by users. These SNVs are transformed into a predictor matrix 
��� . As an option, the users 

can also include a CNV matrix 

�� as an additional predictor matrix. CNVs can be inferred from scRNA-Seq 

data using programs such as the online platform Ginkgo65. Gene expression is the response matrix 
�	 . For each 

gene, a LASSO regression is fitted to identify non-null coefficient matrix W. The output of the models is a set of 

filtered eeSNVs and a set of corresponding genes in which eeSNVs are found.  

Supplementary Figure S4: perturbation-model based simulation to evaluate SSrGE quantitatively. (A) 

Flowchart of the perturbation-model based simulation method, as detailed in Methods. (B) Comparison between 

the average expected ranks from top genes inferred by SSrGE (x-axis) vs. those set by the simulation (y-axis), 

over different noise level. 

Supplementary Figure S5: Relationship between the best accuracy metrics and the LASSO regularization 

parameter a, over the five datasets and five different clustering approaches. The accuracy metrics are: (A) 

Adjusted Mutual Information (AMI), B: Adjusted Rand Index (ARI), and (C): V-measure. 

Supplementary Figure S6: Bar plot comparing the clustering performance using eeSNV vs. gene expression 

(GE) as features, over five datasets and five different clustering strategies. The metrics used are (A): Adjusted 
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Rand Index (ARI), and (B): V-measure. 

Supplementary Figure S7: Pseudo-time reconstruction using the Monocle algorithm with gene expression 

features from genes having eeSNVs, as compared to the pseudo-time reconstruction using eeSNVs in the same 

genes shown in Figure 6A. 

Supplementary Figure S8: Immune (blue), primary (red) and metastatic (green) tumor cell subpopulations from 

two breast cancer patients (BC03 and BC07) using either bipartite graphs or minimum spanning trees (Chung 

dataset).  

Supplementary Figure S9: Comparison of the batch-effect on SNVs and gene expression, using scRNA-seq 

data from glioblastoma patient MGH26. 

Supplementary Figure S10: Minimum Spanning tree using either eeSNVs (A) or gene expression (B) of HLA 

as features. Pearson correlation is used as the distance metric. Color labels: primary tumor (green), metastatic 

cells from patients (blue) and metastatic cells from patient derived xenografts (red). 

 

Supplementary Table S1: Genotype of SNVs and similarity testing results with and without allelic specific 

expression.  Average per-cell genotypes of the SNVs are detected and computed using QuASAR. g0, g1 and g2 

correspond to the homozygous reference, heterozygous, and homozygous alternate genotypes, respectively. 

 
ranked genes 
(alpha=0.1) 

ranked eeSNVs 
(alpha=0.1) Number of eeSNVs per genotype 

Dataset 
Kendall 

Tau score 

Kendall 
Tau p-
value 

Kendall 
Tau score 

Kendall 
Tau p-
value 

g0 
(homo 

ref) 
   g1 
(heter) 

g2 
(homo 
alter) 

Without specific 
allelic expression 

Kim 0.71 0 0.58 0 1994 4314 11876 13939 

Patel 0.73 0 0.62 0 372 2020 6660 7168 

Ting 0.64 0 0.53 0 248 2016 14214 15140 

Miyamoto 0.68 0 0.58 0 101 1186 4981 5327 

Chung 0.76 0 0.53 0 3026 6391 16093 18741 
 
 

Supplementary Table S2: Regularization values (a) used for the clustering procedures along with the number 

of eeSNVs features.  

Supplementary Table S3: Ranked eeSNVs and genes for each dataset (with minimum regularization filtering 

a=0.1). 
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Supplementary Table S4: Ranked genes for the metastasis single-cells from the Kim dataset (mRCC) and from 

BC03M and BC07M from Chung datasets. 
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MGH26 

MGH29 MGH30 

MGH28 

MGH31 CSC6 

CSC8 

PDX mRCC 

PDX pRCC 

GMP 

nb508 TuGMP 

MP 

WBC MEF 

LNCaP 

Pr5 Pr4

DU 

Pr20 Pr21 

Pr22 Pr23 

Pt mRCC 

PC 

HD 

Pr6 

Pr1 

Pr9 Pr10 Pr2 

Pr12 Pr13 Pr11 

Pr16 Pr17 Pr14 

Pr19 VCaP Pr18 

BC02 

BC04 BC05

BC03 

BC07 BC07M 

BC09 BC10 

BC01 

BC03M
 
BC06 

BC08 

BC11 

A B C D
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