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Abstract 

Despite its popularity, characterization of subpopulations with transcript abundance is subject to significant 

amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as 

alternative features for tumor subpopulation identification. We developed a linear modeling framework SSrGE to 

link eeSNVs associated with gene expression. In all the cancer datasets tested, eeSNVs achieve better accuracies 

and more complexity than gene expression for identifying subpopulations. Previously validated cancer relevant 

genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of 

analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its power over the 

cutting-edge single-cell genomics techniques. In summary, SNV features from scRNA-seq data have merits for 

both subpopulation identification and linkage of genotype-phenotype relationship. SSrGE method is available at 

https://github.com/lanagarmire/SSrGE.  
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Background 

Characterization of phenotypic diversity is a key challenge in the emerging field of single-cell RNA-sequencing 

(scRNA-seq). In scRNA-seq data, patterns of gene expression (GE) are conventionally used as features to 

explore the heterogeneity among single cells [1–3]. However, GE features are subject to significant amount of 

noises [4]. One issue of GE is the batch effect, where results obtained from two different runs of experiments 

may present substantial variations [5], even when the input materials are identical. Additionally, the expression 

of certain genes vary with cell cycle [6], increasing the heterogeneity observed in single cells. To cope with these 

sources of variations, normalization of GE is usually a mandatory step before downstream functional analysis 
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(except those done with Unique Molecular Identifiers). Even with these procedures, other sources of biases still 

exist, e.g. dependent on read depth, cell capture efficiency and experimental protocols etc.  

Single nucleotide variations (SNVs) are small genetic alterations occurring in specific cells as compared to the 

population background. SNVs may manifest their effects on gene expression per cis and/or trans effect [7,8]. It 

is regarded that cancer evolution involves the disruption of the genetic stability e.g. increasing number of new 

SNVs [9,10]. A cell may become the precursor of a subpopulation (clone) upon gaining a set of SNVs. Large 

heterogeneity exists not only between tumors but also within the same tumor [11,12]. Therefore, investigating 

the patterns of SNVs provides means to understand tumor heterogeneity.  

In single cells, SNVs are conventionally obtained from the single-cell exome-sequencing approach [13]. 

Previously, the resulting SNVs were used to infer cancer cell subpopulations [14,15]. In this study, we propose to 

obtain useful SNV-based genetic information from scRNA-seq data, in addition to the GE information. Rather 

than being considered the “by-products” of scRNA-seq, the SNVs not only have the potential to improve the 

accuracy of identifying subpopulations compared to GE, but also offer unique opportunities to study the genetic 

events (genotype) that are associated with gene expression (phenotype) [16,17]. Moreover, when the coupled 

DNA- and RNA- based single-cell sequencing techniques become mature, the computational methodology 

proposed in this report can be easily adopted as well. 

Here we first built a computational pipeline to identify SNVs from scRNA-seq raw reads directly. We then 

constructed a linear modeling framework to obtain filtered, effective and expressed SNVs (eeSNVs) associated 

with gene expression profiles. In all the datasets tested, these eeSNVs show better accuracies at retrieving cell 

subpopulation identities, compared to those from gene expression (GE). Moreover, when combined with cell 

entities into bipartite graphs, they demonstrate improved visual representation of the cell subpopulations. We 

ranked eeSNVs and genes according to their overall significance in the linear models, and discovered that 

several top-ranked genes (e.g. HLA genes) appear commonly in all cancer scRNA-seq data. In summary, we 

emphasize the SNV approach that was previously understudied in scRNA-seq analysis, which can successfully 

identify subpopulation complexities and highlight genotype-phenotype relationships. 
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Results 

eeSNV detection from scRNA-seq data 
We implemented a pipeline to identify SNVs directly from FASTQ files of scRNA-seq data, following the SNV 

guideline of GATK (Suppl. Figure S1). We applied this pipeline to four scRNA-seq cancer datasets (Kim, Ting, 

Miyamoto and Patel, see Methods), and tested the efficiency of SNV features on retrieving single cell groups of 

interest. These datasets vary in tissue types, origins (Mouse or Human), read lengths and map-ability (Table 1). 

They all have pre-defined cell types (subclasses), providing good references to assess the performance of a 

variety of clustering methods used in this study. 

To link the relationship between SNV and GE, we developed a method called “Sparse SNV inference to reflect 

Gene Expression” (SSrGE), as detailed in Materials and Methods. This method uses SNVs as predictors to fit a 

linear model for gene expression, under LASSO regularization and feature selection [18]. The output is a subset 

of eeSNVs selected by LASSO, which serve as refined descriptive features for subsequent subpopulation 

identification (Suppl. Figure S2). To directly pinpoint the contributions of SNVs relevant to protein coding 

genes, we used the SNVs residing between transcription starting and ending sites of genes as the inputs. In 

SSrGE, the value of the regularization parameter a is the only tuning variable, controlling the sparsity of the 

linear models and influences the number of eeSNVs.  

eeSNVs are better features than gene expression to identify subpopulations 
We measured the performance of SNVs and gene expression (GE) in the four datasets with five clustering 

approaches. These clustering approaches include two dimension reduction methods, namely Principal 

Component Analysis (PCA) [19] and Factor Analysis (FA) [20], followed by either K-Means or the hierarchical 

agglomerative method (agglo) with WARD linkage [21]. We also used a recent algorithm SIMLR specifically 

designed for scRNA-seq data clustering and visualization (Wang et al., 2016). To evaluate the accuracy of 

obtained subpopulations in each dataset, we used the metric of Adjusted Mutual Information (AMI) over 30 

bootstrap runs, from the optimal a parameters (Suppl. Table S1). Even though the numbers are much reduced 

from the original SNVs, eeSNVs are still better features to retrieve cancer cell subpopulations compared to GE, 

independent of the clustering methods used (Figure 1). Among the clustering algorithms, SIMLR is a better 
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choice in general using eeSNV features. In addition, we also computed Adjusted Rand index (ARI) [22] and V-

measure [23], two other metrics for modularity measurements and obtained similar trends (Suppl. Figure S3).  

Visualization of subpopulations with bipartite graphs 
Bipartite graphs are useful to represent binary relations between two different classes of objects. We next 

represented the binary eeSNVs features and the single cells with bipartite graphs using ForceAtlas2 algorithm 

[24]. We drew an edge (link) between a cell node and a given eeSNV node whenever an eeSNV is detected. The 

results show that bipartite graph is a robust and more discriminative alternative (Figure 2), comparing to PCA 

plots (using GE and eeSNVs) as well as SIMLR (using GE). For Kim dataset, bipartite graph separates the three 

classes perfectly. However, gene based visualization approaches using either PCA or SIMLR have 

misclassifications. For Ting data, eeSNVs-cell bipartite graph gives clear visualization of all six different 

subgroups of single cells. Other three approaches have more exaggerated separations among the same mouse 

circulating tumor cells (CTC) subgroup MP (orange color), but mix some other subpopulations (e.g. GM, MP 

and TuGMP groups). Miyamoto dataset is the most difficult one to visualize among the four datasets, due to its 

high number (24) of reference classes and heterogeneity among CTCs. Bipartite graph is not only able to 

condense the whole populations, but also separate subpopulations (e.g. the orange colored PC subpopulation) 

much better than the other three methods. 

Characteristics of eeSNVs 
Since the selection of eeSNVs is dependent on regularization parameter a, we next explored their relationship. 

For every dataset, increasing the value of a decreases the number of selected eeSNVs overall (Figure 3A), as 

well as the average number of eeSNVs associated with every expressed gene (Figure 3B). The optimal a 

depends on the clustering algorithm and the dataset used (Suppl. Table S1 and Suppl. Figure S4). Increasing the 

value of a increases the proportion of eeSNVs that have annotations in human dbSNP138 database, indicating 

that these eeSNVs are biologically valid (Figure 3C). Finally, increasing a generally increases the average 

number of cells sharing the same eeSNVs, supporting the hypothesis that cancer cells differentiate with a 

growing number of genetic mutations over time (Figure 3D). Note the slight drop of the average number of cells 

sharing the same eeSNVs in Kim data when a > 0.6, this is due to over-penalization (eg. a =0.8 yields only 34 

eeSNVs). Finally, we also compared the CIS effect of the eeSNVs, i.e. the ability of a given eeSNV to predict 
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the expression of its own gene, (See methods). The vast majority of the eeSNVs, and all top ranked eeSNVs, 

have a low CIS effect, indicating that eeSNVs are mostly used by the method as predictor to infer the expression 

of other genes (Suppl. Figure S5).   

Cancer relevance of eeSNVs  
To further explore the biological functions, we ranked the different eeSNVs and the genes harboring them, using 

eeSNVs’ coefficients from SSrGE models (Suppl. Tables S2). We found that eeSNVs from multiple genes in 

Human Leukocyte Antigen (HLA) complex, such as HLA-A, HLA-B, HLA-C and HLA-DRA, are top ranked in 

all three human datasets (Table 2 and Suppl. Tables S2). HLA is a family encoding the major histocompatibility 

complex (MHC) proteins in human. Beta-2-microglobulin (B2M), on the other hand, is ranked 7th and 45th in 

Ting and Patel datasets, respectively (Table 2). Unlike HLA that is present in human only, B2M encodes a 

serum protein involved in the histocompatibility complex MHC that is also present in mice. Other previously 

identified tumor driver genes are also ranked top by SSrGE, demonstrating the significance of mutations on cis-

gene expression (Table 2 and Suppl. Tables S2). Notably, KRAS, previously linked to tumor heterogeneity by the 

original scRNA-Seq study (Kim et al., 2015), is ranked 13th among all eeSNV containing genes (Suppl. Tables 

S2). AR and KLK3, two genes reported to show genomic heterogeneity in tumor development in the original 

study (Miyamoto et al., 2015), are ranked 6th and 19th, respectively. EGFR, the therapeutic target in Patel study 

with an important oncogenic variant EGFRvIII (Patel et al., 2014), is ranked 88th out of 4,225 genes. Therefore, 

genes top-ranked by their eeSNVs are empirically validated. 

Next we conducted more systematic investigation to identify KEGG pathways enriched in each dataset, using 

these genes as the input for DAVID annotation tool [25] (Figure 4A). The pathway-gene bipartite graph 

illustrates the relationships between these genes and enriched pathways (Figure 4B). As expected, Antigen 

processing and presentation pathway stands out as the most enriched pathway, with the sum -log10 (p-value) of 

9.22 (Figure 4A). “Phagosome” is the second most enriched pathway in all four data sets, largely due its 

members in HLA families (Figure 4B). Additionally, pathways related to cell junctions and adhesion (focal 

adhesion, tight junction, cell adhesion molecules CAMs), protein processing (protein processing in endoplasmic 

reticulum and proteasome), and PI3K-AKT signaling pathway are also highly enriched with eeSNVs (Figure 
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4A). 

Heterogeneity markers using eeSNVs 
We exemplified the potential of eeSNV as heterogeneity markers using Kim dataset. First, we reconstructed the 

pseudo-time ordering of the single-cells entirely using eeSNVs, rather than GE. We built a Minimum Spanning 

Tree, similarly to the Monocle algorithm [26], to reconstruct the pseudo-time ordering of the single-cells. The 

graph beautifully captures the continuity among cells, from the primary to metastasized tumors (Figure 5A). 

Moreover, it highlights ramifications inside each of the subgroups, demonstrating the intra-group heterogeneity. 

On the contrary, pseudo-time reconstruction using GE showed much less complexity and more singularity 

(Supplementary Figure S6). Next, we used our method to identify eeSNVs specific to each single-cell subgroup 

and ranked the genes according to these eeSNVs. We compared the characteristics of the metastasis cells to 

primary tumor cells. Two top ranked genes identified by the method, CD44 (1th) and LPP (2th), are known to 

promote cancer cell dissemination and metastasis growth after genomic alteration [27–30] (Suppl. Tables S3).  

Other top ranked genes related to metastasis are also identified, including LAMPC2 (7th), HSP90B1 (14th), MET 

(44th) and FN1 (52th). As expected, “Pathways in Cancer” are the top ranked pathway enriched with mutations 

(Figure 5B). Additionally, “Focal Adhesion”, “Endocytosis” pathways are among the other significantly mutated 

pathways, providing new insights on the mechanistic difference between primary and metastasized RCC tumors 

(Figure 5B).  

Integrating DNA- and RNA-Seq data measured in the same single cells 
Coupled DNA-Seq and RNA-Seq measurements from the same single cell are the new horizon of single-cell 

genomics. To demonstrate the power of SSrGE in integrating DNA and RNA data, we downloaded the only 

accessible public single cells data, which have DNA methylation and RNA-Seq records from the same 

hepatocellular carcinoma (HCC) single cells (Hou dataset) [31]. We then inferred SNVs from the aligned 

reduced representation bisulfite sequencing (RRBS) reads (See Methods). Using our methods, we identified 

eeSNVs, which perfectly separate normal hepatocellular cells from cancer cells and highlight the two cancer 

subtypes identified in the original study (Figure 6A).  Pseudo-time ordering shows not only an early divergence 

between the two previously assumed subtypes, but also unveils significant ramifications amongst subtype type 

II, indicating potential new subgroups (Figure 6B). 
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We postulated that a considerable part of bisulfite reads was aligned with methylation islands associated with 

gene promoter regions. We thus annotated eeSNVs within 1500bp upstream of the transcription starting codon, 

and obtained genes with these eeSNVs, which are significantly prevalent in certain groups.  When comparing 

HCC vs. normal control cells, two genes PRMT2, SULF2 show statistically significant mutations in HCC cells 

(P-values < 0.05). Downregultion of PRMT2 was previously associated with breast cancer [32], SULF2 was 

known to be upregulated in HCC and promotes HCC growth [33]. When comparing HCC subgroup I vs. II, 

CTBP2 is significantly mutated (P-value = 0.01) in subgroup I. CTBP2 is a transcriptional co-repressor that 

promotes cancer cell migration and invasion by inhibiting tumor suppressor genes, and was previously 

associated with worse prognostic in HCC [34]. 

Discussion 
Using GE to accurately analyze scRNA-seq data has many challenges, including technological biases such as the 

choice of the sequencing platforms, the experimental protocols and conditions. These biases may lead to various 

confounding factors in interpreting GE data [5]. SNVs, on the other hand, are less prone to these issues given 

their binary nature. In this report, we demonstrate that eeSNVs extracted from scRNA-seq data are ideal features 

to characterize cell subpopulations. Moreover, they provide a means to examine the relationship between 

eeSNVs and gene expression in the same scRNA-seq sample. 

eeSNVs have improved accuracy on identifying tumor single-cell subpopulations 

The process of selecting eeSNVs linked to GE allows us to identify representative genotype markers for cell 

subpopulations. We speculate the following reasons attributed to the better accuracies of eeSNVs compared to 

GE.  First, eeSNVs are binary features rather than continuous features like GE, thus eeSNVs are more robust at 

separating subpopulations. We have noticed that SNVs are less affected by batch effects (Suppl. Figure S7). 

Secondly, LASSO penalization works as a feature selection method and minimizes the spurious SNVs (false 

positive) from the filtered set of eeSNVs. Thirdly, since eeSNVs are obtained from the same samples as scRNA-

seq data, they are more likely to have biological impacts, and this is supported the observation that they have 

high prevalence of dbSNP annotations.  

A small number of eeSNVs can be used to discriminate distinct single-cell subpopulations, as compared to 
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thousands of genes that are normally used for scRNA-seq analyses. Taking advantage of the eeSNV-GE 

relationship, a very small number of top eeSNVs still can clearly separate cell subpopulations of the different 

datasets (eg. 8 eeSNV features have decent accuracy for Kim dataset). Moreover, our SSrGE package can be 

easily parallelized and process each gene independently. It has the potential to scale up to very large datasets, 

well-poised for the new wave of scRNA-seq technologies that can generate thousands of cells at one time [35].  

One can also easily rank the eeSNVs and the genes harboring them, for the purpose of identifying robust 

eeSNVs as genetic markers for a variety of cancers.  

eeSNVs highlight genes linked to cancer phenotypes 

SSrGE uses an accumulative ranking approach to select eeSNVs linked to the expression of a particular gene. 

Particularly, HLA class I genes (HLA-A, HLA-B and HLA-C) are top-ranked for the three human datasets, and 

they contribute to “antigen processing and presentation pathway”, the most enriched pathways of the four 

datasets. HLA has amongst the highest polymorphic genes of the human genome [36], and the somatic mutations 

of genes in this family were reported in the development and progression of various cancers [37,38]. HLA genes 

with eeSNVs could be used as fingerprints to characterize the cellular state of the cancer cells. B2M, another 

gene with top-scored eeSNVs in Ting and Patel datasets, is also known to be a mutational hotspot [39]. It is 

directly linked to immune response as tumor cell proliferation [37,39]. Many other top-ranked genes, such as 

KRAS and SPARC, were reported to be driver genes in the original studies of the different dataset. Thus, it is 

reasonable to speculate that SSrGE is capable of identifying some driver genes. However, SSrGE may miss 

some driver mutations, since its primary goal is to identify a minimal set of eeSNV features by LASSO 

penalization and LASSO may select one of those highly correlated SNV features that correspond to GE. 

eeSNVs reveal higher degree of single-cell heterogeneity than gene expression 

We have showed with strong evidence that eeSNVs unveil inter- and intra- tumor cells heterogeneities better 

than gene expression count data obtained from the same RNA-Seq reads. Reconstructing the pseudo-time 

ordering of cancer cells from the same tumor (Kim dataset) displays branching even inside primary tumor and 

metastasis subgroups, which gene expression data are unable to do. We identified genes enriched with SNVs 

specific to the metastasis, which were not reported in the original HCC single cell study [31]. Most interestingly, 
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we showed that eeSNVs can also be retrieved from RRBS reads in a multi-omics single-cell HCC dataset, a 

twist from their original purpose of single-cell DNA methylation. Again, genes ranked by eeSNVs from RRBS 

reads only differentiate normal from cancer cells but also the different cancer subtypes. We identified several 

genes that are significant in either HCC or HCC subgroup, whose promoters are highly impacted by eeSNVs. 

Thus, we have demonstrated that our method is on the fore-front to analyze data generated by new single-cell 

technologies extracting multi-omics from the same cells [31,40]. 

Advantages of using bipartite graphs to represent scRNA-seq data 

Bipartite graphs are a natural way to visualize eeSNV-cell relationships. We have used force-directed graph 

drawing algorithms involve spring-like attractive forces and electrical repulsions between nodes that are 

connected by edges. This approach has the advantage to reveal “outlier” single cells, with a small set of eeSNVs, 

compared to those distance-based approaches. Moreover, the bipartite representation also reveals directly the 

relationship between single cells and the eeSNV features. Contrary to dimension reduction approaches such as 

PCA that requires linear transformation of features into principle components, bipartite graphs preserve all the 

binary information between cell and eeSNV. Graph analysis software such as Gephi [24] or Cytoscape [41] can 

be utilized to explore the bipartite relationships in an interactive manner.  

Conclusion 
We demonstrated the efficiency of using eeSNVs for cell subpopulation identification over multiple datasets. 

eeSNVs are excellent genetic markers for intra-tumor heterogeneity and may serve as genetic candidates of new 

treatment options. We also have developed SSrGE, a linear model framework that correlates genotype (eeSNV) 

and phenotype (GE) information in scRNA-seq data. Moreover, we have showed the capacity of SSrGE in 

analyzing multi-omics data from the same single cells, obtained from the most cutting-edge genomics techniques 

[42,43]. Our method has the great promise as part of routine scRNA-seq analyses, as well as multi-omics single-

cell integration projects. 
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Materials and Methods 

scRNA-seq datasets 
All four datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) portal [44].  

Kim dataset (accession GSE73121): contains three cell populations from matched primary and metastasis tumor 

from the same patient [45]. Patient Derivated Xenographs (PDX) were constructed using cells from the primary 

Clear Cell Renal Cell Carcinoma (PDX-pRCC) tumor and from the lung metastasic tumor (PDX-mRCC). Also, 

metastatic cells from the patient (Pt-mRCC) were sequenced.  

Patel dataset (accession GSE57872): contains five glioblastoma cell populations isolated from 5 individual 

tumors from different patients (MGH26, MGH28, MGH29 MGH30 and MGH31) and two gliomasphere cell 

lines, CSC6 and CSC8, used as control [46].  

Miyamoto dataset (accession GSE67980): contains 122 CTCs from Prostate cancer from 18 patients, 30 single 

cells derived from 4 different cancer cell lines: VCaP, LNCaP, PC3 and DU145, and 5 leukocyte cells from a 

healthy patient (HD1) [47]. A total of 23 classes (18 CTC classes + 4 cancer cell lines + 1 healthy leukocyte cell 

lines) was obtained.  

Ting dataset (subset of accession GSE51372): contains 75 CTCs from Pancreatic cancer from 5 different KPC 

mice (MP2, MP3, MP4, MP6, MP7), 18 CTCs from two GFP-lineage traced mice (GMP1 and GMP2), 20 single 

cells from one GFP-lineage traced mouse (TuGMP3), 12 single cells from a mouse embryonic fibroblast cell line 

(MEF), 12 single cells from mouse white blood (WBC) and 16 single cells from the nb508 mouse pancreatic cell 

line (nb508) [48]. KPC mice have uniform genetic cancer drivers (Tp53, Kras). Due to their shared genotype, we 

merged all the KPC CTCs into one single reference class. CTCs from GMP1 did not pass the QC test and were 

dismissed. CTCs from GMP2 mice were labeled as GMP. Finally, 6 reference classes were used: MP, nb508, 

GMP, TuGMP, MEF and WBC.  

Hou dataset (accession GSE65364): contains 25 hepatocellular carcinoma single-cells (Ca) extracted from the 

same patient and 6 normal liver cells (HepG2) obtained from the adjacent normal tissue of another HCC patient 

[31]. The 32 cells were sequenced using scTrio-seq in order to obtain reads from both RNA-seq and reduced 

representation bisulfate sequencing (RRBS). The authors highlighted that one of the Ca cells (Ca_26) was likely 
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to be a normal cell, based on CNV measurements, and thus we discarded this cell. We used only the RRBS reads 

and as Gene expression measurements. As controls, we also used the bulk genome of all the RNA-Seq and 

RRBS reads of the HepG2 group. 

SNV detection using scRNA-seq data 
The SNV detection pipeline using scRNA-seq data follows the guidelines of GATK 

(http://gatkforums.broadinstitute.org/wdl/discussion/3891/calling-variants-in-rnaseq). It includes four steps: 

alignment of spliced transcripts to the reference genome (hg19 or mm10), BAM file preprocessing, read 

realignment and recalibration, and variant calling and filtering (Suppl. Figure S1) [49].  

Specifically, FASTQ files were first aligned using STAR aligner [50], using mm10 and hg19 as reference 

genomes for mouse and human datasets, respectively. The BAM file quality check was done by FastQC [51], 

and samples with lower than 50% of unique sequences were removed (default of FastQC). Also, samples with 

more than 20% of the duplicated reads were removed by STAR. Finally, samples with insufficient reads were 

also removed, if their reads were below the mean minus two times the standard deviation of the entire single-cell 

population. Raw gene counts �� were estimated using featureCounts [52], and normalized using the logarithmic 

transformation: 

 ���� � � log
�

�1 � ��  . ���

���.	

�  

where �� is the raw expression of gene j, R is the total number of reads and 
� is the length of the gene j.  Bam 

files were pre-processed and reordered using Picard Tools (http://broadinstitute.github.io/picard/), before subject 

to realignment and recalibration using GATK tools [53]. SNVs are then calculated and filtered using GATK tools 

using default parameters.  
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SNV detection using RRBS data 
We first aligned the RRBS reads on the hg19 reference genome using the Bismark software [54]. We then 

processed the bam files using all the preprocessing steps as described in “SNV detection using scRNA-seq data” 

section (i.e. Picard Preprocessing, Order reads, Split reads and Realignments), except the base recalibration step. 

Finally, we called the SNVs using the BS-SNPer software [55]. We only considered the SNVs with the status 

“PASS”. 

SNV annotation 
To annotate human SNV datasets, dbSNP138 from the NCBI Single Nucleotide Polymorphism database [56] 

and reference INDELs from 1000 genomes (1000_phase1 as Mills_and_1000G_gold_standard) [57] were used. 

To annotate the mouse SNV dataset, dbSNPv137 for SNPs and INDELs were downloaded from the Mouse 

Genomes Project of the Sanger Institute, using the following link: ftp://ftp-mouse.sanger.ac.uk/REL-1303-

SNPs_Indels-GRCm38/ [58]. The mouse SNP databases were sorted using SortVcf command of Picard Tools, in 

order to be properly used by Picard Tools and GATK.  

SSrGE package to calculate eeSNVs  
For each dataset, we denote ���  and ���  as the SNV and gene expression matrices, respectively. ���  is 

binary and ����,� 
� 0, 1� designates the presence/absence of SNV s in cell c. ����,� 

 is the log transformed 

gene expression value of the gene g in cell c. A gene and its associated SNVs were only considered when the 

gene was expressed in at least one sample. Sparse linear regression using LASSO was then applied to identify 

��  , the linear coefficients associated to the SNVs. The objective function (to minimize) is: 

�����

1
2� ||��� . ��

�  � ����,� 
||�

� �  �. ||��||� 

where � is the regularization parameter.  

An SNV was considered as eeSNV when ����� � 0. To derive sensible eeSNVs, the linear regression was only 

done on a particular gene, when at least 10 cells in the population expressed it.  

Ranking of eeSNVs and genes  
SSrGE generates coefficients of eeSNVs for each gene, as a metric for their contributions to the gene expression. 

The score of an eeSNV is given by the sum of its weights over all genes: 
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Each gene also receives a score according to its associated eeSNVs: 

    

����������
� � ���������

���� � �����  

 

In practice, we first obtained eeSNVs using a minimum filtering of �=0.1, before using these two scores above 

to rank eeSNVs and the genes.  

Ranking of eeSNVs and genes for a subpopulation 

For a given single-cell subpopulation p, a eeSNV is specific to the subpopulation p if only it is significantly 

more present for cells of p. For each eeSNV we took only the subset of cells expressing the gene g associated 

with the eeSNV. We then computed the Fisher’s exact test to compare the presence of the eeSNV between 

single-cells inside and outside p. We considered a eeSNV as significant for p-value < 0.05. p’ designates the 

subset of cells from p expressing g. The score of a eeSNV for p is given by: 

���������
� �  |��   !�"# ��$%&|��   �  '(�|

|'(|  ��������� 

The score of a given gene g for p is thus given by: 

����������

�  � � ���������
�

���� � �����  

 

To rank eeSNVs from the promoter regions of the RRBS reads in Hou dataset, we applied a similar 

methodology: we annotated the eeSNVs within 1500bp upstream of genes’ starting codon regions.   

CIS scores of eeSNVs  

The CIS score of an eeSNV s is the fraction of contribution of an eeSNV to the expression of the gene g that it 

resides in among the total score: 

)*$��������� �  
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�
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Pseudo-time ordering reconstruction 

To estimate the trajectory of cell evolvement, we adopted the following procedure, motivated by the method 

described earlier [26]. We first constructed the following distance matrix to reflect the correlation between each 

pair of cells: 

D�,� �  1 � Correlation5Sample�, Sample�9 

Using this distance matrix as the adjacency matrix, we constructed a weighted undirected complete graph with 

each node representing a cell. We then find the minimum spanning tree of this complete graph. Finally, we 

plotted the graph and mapped the original labels as colors of the nodes. 

 

Subpopulation clustering algorithms 

We combined two dimension reduction algorithms: Principal Component Analysis (PCA) [19] and Factor 

Analysis (FA) [20] with two popular clustering approaches: the K-Means algorithm [59] and agglomerative 

hierarchical clustering (agglo) with WARD linkage [21]. We also used SIMLR, a recent algorithm specifically 

tailored to cluster and visualize scRNA-seq data, which learns the similarity matrix from subpopulations [60]. 

Similar to the original SIMLR study, we used the embedding of the cells produced by the algorithm to apply K-

Means algorithm.  

PCA and FA were performed using their corresponding implementation in Scikit-Learn (sklearn) [61]. For PCA, 

FA and SIMLR, we used various input dimensions D [2, 3, 5, 10, 15, 20, 25, 30] to project the data. To cluster 

the data with K-Means or the hierarchical agglomerative procedure, we used a different cluster numbers N (2 to 

80) to obtain the best clustering results from each dataset. We computed accuracy metrics for each (D, N) pair 

and chose the combination that gives the overall best score. Between the two clustering methods, K-Means was 

the implementation of sklearn package with the default parameter, and hierarchical clustering was done by the 

AgglomerativeClustering implementation of sklearn, using WARD linkage. 

Validation metrics 
To assess the accuracy of the obtained clusters, we used three metrics: Adjusted Mutual Information (AMI), 
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Adjusted Rand Index (ARI) and V-measure [22,23]. These metrics compare the obtained clusters C to some 

reference classes K and generate scores between 0 and 1 for AMI and V-measure, and between -1 and 1 for ARI. 

A score of 1 means perfect match between the obtained clusters and the reference classes. For ARI, a score 

below 0 indicates a random clustering. 

Rand Index (RI) was computed by: :* � ���

 �

����	
�
, where a is the number of con-concordant sample pairs in 

obtained clusters C and reference classes K, whereas b is the number of dis-concordant samples. As an 

improvement, ARI normalizes RI against random chances: ;:* � 	!"��	!


#$%�	!
"��	!

 [22]. 

AMI, similarly to ARI, normalizes Mutual Information (MI) against chances [22]. The Mutual Information 

between two sets of classes C and K is equal to: MI �), >� �  ∑ ∑ @��, A� log C &�',�


&�'
&���

D|)|

�

| |

' , where @��� is the 

probability that an object from C belongs to the class i, @*�A� is the probability that an object from K belongs to 

class j, and P(i, j) is the probability that an object are in both class i and j.  AMI is equal to: ;�*�), >� �
+!� ,)
"��+!� ,)



#$%�,-� 
,-�)
.
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, where E�)� and E�>� designates the entropy of C and K.  

V-measure, similar to F-measure, calculates the harmonic mean between homogeneity and completeness. 

Homogeneity is defined as 1 �  -� |)


-� 

, where E�)|>� is the conditional entropy of C given K. Completeness is 

the symmetrical of homogeneity: 1 �  -�)| 


-�)

. 

Graph visualization 
The different datasets were transformed into GraphML files with Python scripts using iGraph library [62]. 

Graphs were visualized using GePhi software [24] and spatialized using ForceAtlas2 [63], a specific graph 

layout implemented into the GePhi software. 

Pathway enrichment analysis 
We used the KEGG pathway database to identify pathways related to specific genes [64].  We selected genes 

scored with significant eeSNVs for the metastasis cells from Kim dataset and for the CTCs for the Ting dataset. 

We then used DAVID 6.8 functional annotation tool to identify significant pathways amongst these genes [25]. 

We used the default significance value (adjusted p-value threshold of 0.10).  Significant pathways are then 
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represented as a bipartite graph using Gephi: Nodes are either genes or pathway and the size of each nodes 

represent the score of the genes or, in the case of pathways, the sum of the scores of the genes linked to the 

pathways. We used the same methodology to infer significant pathways of cancer cells, compared to normal 

cells, from Hou dataset. However, we used all the genes ranked rather than only the significant genes, since only 

few genes are found to be significant for cancer cells. 

Code availability 
The SNV calling pipeline and SSrGE are available through the following GitHub project: 

https://github.com/lanagarmire/SSrGE.  
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Figure legends 
Figure 1: Comparison of clustering accuracy using eeSNV and gene expression (GE) features. 

(A) Bar plot comparing the clustering performance using eeSNV vs. gene expression (GE) as features, over four 

datasets and five different clustering strategies. Y-axis is the adjusted mutual information (AMI) obtained across 

30 bootstrap runs (mean ± s.d.). *: P<0.05, ** P<0.01 and *** P<0.001. (B) Heatmap of the rankings among 

different methods and datasets as shown in (A).  

Figure 2: Comparison of clustering visualization using eeSNV and gene expression (GE) features. 

(A) Bipartite graphs using eeSNVs and cell representations. (B) Principle Component Analysis (PCA) results 

using gene expression. (C) PCA results using eeSNVs. (D) SIMILR results using gene expression.  

Figure 3: Characteristics of the eeSNVs. 

X-axis: the regularization parameter a values. And the Y-axes are: (A) Log10 transformation of the number of 

eeSNVs. (B) The average number of eeSNVs per gene. (C) The proportion of SNVs with dbSNP138 annotations 

(human datasets). (D) The average number of cells sharing eeSNVs. Insert: Patel dataset. 

Figure 4: Gene and KEGG pathways enriched with eeSNVs in the four scRNA-seq datasets. 

(A) KEGG pathways enriched with genes containing eeSNVs in the four datasets. Pathways are sorted by the 

sum of the -log10(p-value) of each dataset, in the descending order. (B) Bipartite graph for KEGG pathways and 

genes enriched with eeSNVs. Pathways and genes in each dataset are colored as shown in the gragh. The size of 

the nodes is proportional to the normed gene scores, according to the eeSNV scores, and to the sum of the 

normed gene scores for the pathway nodes.  

Figure 5: Heterogeneity revealed by Kim dataset. 

(A) Pseudo-time ordering reconstruction of the different subgroups. (B) Bipartite graph for KEGG pathways and 

genes enriched with eeSNVs. The size of the nodes is proportional to the gene scores, according to the eeSNV 

scores, and to the sum of the gene scores for the pathway nodes. Also, lighter green indicates genes with a lower 

rank 

Figure 6: Heterogeneity revealed by eeSNVs from multi-omics single cell HCC (Hou) dataset. 

(A) Bipartite-graph representation of the single cells using eeSNVs from RRBS reads. (B) Pseudo-time ordering 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/095810doi: bioRxiv preprint 

https://doi.org/10.1101/095810


reconstruction of the HCC cells.  

Tables 
 
 
Table 1: Summary of scRNA-seq datasets used in this study. 

 
 
Table 2:  A list of interested genes highly ranked. Ranks with ‘*’ designate cancer driver genes reported in the 

original studies. 

Dataset Kim Patel Miyamoto 
Ting 

(mouse) 
HLA-A 32 8 2 - 
HLA-B 3 105 1 - 
HLA-C 1 98 4 - 

HLA-DRA 71 771 200 - 
B2M 1617 45 301 7 
KRAS 13 2101 2254 235* 
TRP53 NA NA NA 365* 
SPARC 22 37 567 79 
EGFR 2231 88* NA NA 

AR NA NA 6* NA 
KLK3 NA NA 19* NA 

 

Data Description Type Organis
m 

Sub-
class 

Cell 
count 

Reads 
Per cell 

Map-
ability 

Read 
length 

Express
genes

Kim dataset 
[45] 

Renal carcinoma 
cancer cell from 
patient and PDX 

RNA-seq Human 3 91 4.1M 82 % 100 18288

Ting dataset 
[48] 

Pancreas Circulating 
Tumor cells (CTC) 

Cancer 

RNA-seq Mouse 6 116 13.7M 39 % 50 15868

Miyamoto 
dataset 

[47] 

Prostate CTCs 
Cancer 

RNA-seq Human 24 133 2.0M 44 % 50 18224

Patel dataset 
[46] 

Glioblastoma tumor 
cells 

RNA-seq Human 7 593 3.2M 63 % 25 25053
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Supplemental Materials 
 

Supplementary Figure S1: The SNV calling pipeline. It follows GATK’s “Best Practice” workflow for SNP 

and INDEL calling, with four steps. Step 1: alignment. Step 2: preprocessing of BAM files. Step 3: read 

realignment and recalibration. Step 4: variant calling. 

Supplementary Figure S2: Sketch of Sparse SNV inference to Reflect Gene Expression (SSrGE) linear models. 

The SNVs calculated from the SNV calling pipeline (Supplementary Figure S1) are transformed into a predictor 

matrix ��� . Gene expression is the response matrix ��� . For each gene, a LASSO regression is fitted to 

identify non-null coefficient matrix W. The output of the models is a set of filtered eeSNVs and a set of 

corresponding genes in which eeSNVs are found.  

Supplementary Figure S3: Bar plot comparing the clustering performance using eeSNV vs. gene expression 

(GE) as features, over four datasets and five different clustering strategies. The metrics used are (A): Adjusted 

Rand Index (ARI), and (B): V-measure.  

Supplementary Figure S4: Relationship between the best accuracy metrics and the LASSO regularization 

parameter a, over the four datasets and five different clustering approaches. The accuracy metrics are: (A) 

Adjusted Mutual Information (AMI), B: Adjusted Rand Index (ARI), and (C): V-measure. 

Supplementary Figure S5: CIS score of the eeSNVs for the four datasets. (I) CIS effect for all the dataset and 

(II) CIS score for the top 100 eeSNVs. 

Supplementary Figure S6: Pseudo-time reconstruction using the Monocle algorithm with gene expression from 

genes having eeSNVs as features.  

Supplementary Figure S7: Comparison of the batch-effect on SNVs and gene expression, using scRNA-seq 

data from glioblastoma patient MGH26. 

Supplementary Table S1: Regularization values (a) used for the clustering procedures along with the number 

of eeSNVs features.  

Supplementary Tables S2: Ranked eeSNVs and genes for each dataset (with minimum regularization filtering 

a=0.1). 
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Supplementary Tables S3: Ranked genes for the metastasis single-cells from the Kim dataset (mRCC). 
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Clustering results with eeSNVs selected according to alpha
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