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Abstract

Despite many recent advances in system biology and a marked increase in
the availability of high-throughput biological data, the productivity of
research and development in the pharmaceutical industry is on the decline.
This is primarily due to clinical trial failure rates reaching up to 95% in
oncology and other disease areas. We have developed a comprehensive
analytical and computational pipeline utilizing deep learning techniques
and novel systems biology analytical tools to predict the outcomes of phase
I/II clinical trials. The pipeline predicts the side effects of a drug using
deep neural networks and estimates drug-induced pathway activation. It
then uses the predicted side effect probabilities and pathway activation
scores as an input to train a classifier which predicts clinical trial outcomes.
This classifier was trained on 577 transcriptomic datasets and has achieved
a cross-validated accuracy of 0.83. When compared to a direct gene-based
classifier, our multi-stage approach dramatically improves the accuracy of
the predictions. The classifier was applied to a set of compounds currently
present in the pipelines of several major pharmaceutical companies to
highlight potential risks in their portfolios and estimate the fraction of
clinical trials that were likely to fail in phase I and II.
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Introduction

Throughout the last decade many studies have revealed a continuous increase in the
total cost of developing successful pharmaceutical products (Munos and Chin 2011;
Mignani et al. 2016; Scannell et al. 2012). The estimated drug development costs
exceed US$2.5 billion per the new molecular entity (NME) and the returns of
investment in breakthrough drugs with the exception of cancer immunology, are on the
decline (Munos and Chin 2011; Mignani et al. 2016; Rubin and Gilliland 2012; DiMasi,
Grabowski, and Hansen 2016). This forces many pharmaceutical companies to opt for
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not taking on ambitious innovation plans that might have resulted in a range of
investigational drugs for addressing various health issues faced by both developed and
developing countries around the world (Hay et al. 2014; Ledford 2011). The rising cost
of in vivo studies dominating the total development cost is a major concern, especially
taking into account the very low predictive value for human clinical trials (Viceconti,
Henney, and Morley-Fletcher 2016). Despite the many efforts and substantial resources
invested in the identification and careful design of new compounds and the systematic
monitoring of all steps in the early development process and extensive in vitro
validation, even the most promising high-value compounds often fail in clinical trials.
Improvements in the drug development process failed to resolve the disturbingly high
and continuously growing failure rates in clinical trials due to issues with safety and
efficacy (Hay et al. 2014; Ledford 2011). In 2012, only 39 drugs classified as NMEs and
biologic license applications (BLAs) were approved by the FDA (Mullard 2013). The
success rates vary among different disease areas. In oncology only 1 of 15 drugs that
enter phase I clinical trials are approved by the FDA (Hay et al. 2014; Rubin and
Gilliland 2012), and for cardiac medications, where none of prospective compounds from
phase I and II studies have been successful in phase III clinical trials in recent years
(Lavine and Mann 2013). Multiple specific solutions have been proposed to address the
common causes of failure at each phase of clinical trials (Berry 2011). Finding
innovative solutions to reduce the clinical failure rates is one of the main challenges of
the pharmaceutical industry as a failures during late-stage clinical trials result in
substantial losses. The fact that clinical trials alone do not provide enough information
about the structural and design properties explaining a candidate’s failure makes a
repurposing process of such compound difficult(Viceconti, Henney, and Morley-Fletcher
2016). Often times this leads to its complete abandonment at the expense of
considerable resources invested in its early development, despite the fact that such
compounds could have been repositioned as candidates for other conditions (Ashburn
and Thor 2004; Vanhaelen et al. 2016).

Although many factors contribute to this concerning trend, it is acknowledged that
significant drug discovery workflow optimization is necessary in order to fully integrate
the knowledge about the onset and progression of diseases gained over the last decades
with the latest technological and computational advances. The standard workflow
employed by pharmaceutical companies for developing a new compound can be roughly
divided into three main phases: design/discovery, pre-clinical assessment and clinical
assessment (Viceconti, Henney, and Morley-Fletcher 2016). Currently it is common
practice to use various computational modeling methods and simulation tools to
accelerate and improve the efficiency of drug discovery, design and other steps in the
early development stage. The fact that over 75% of the development cost of a new
compound is spent on in vivo studies (Viceconti, Henney, and Morley-Fletcher 2016)
implies that improvements made at the level of the early development in silico cycle
have a small impact on the total development cost but could significantly help with
predicting the outcome of clinical trials. Furthermore, integrating in silico approaches
inside the late development phases and making use of in silico clinical trials (ISCT)
could significantly reduce the cost of clinical trials while improving the overall success
rate (Chabanas, Luboz, and Payan 2003; Fernandez and Hunter 2005; Li et al. 2008;
Clermont et al. 2004). Currently, one of the most ambitious projects in this direction is
the initiative called Virtual Physiological Human (VPH) (Viceconti, Henney, and
Morley-Fletcher 2016). The final goal of this project is to develop a framework where
various types of technologies could be used to generate quantitative information about
the biology, physiology, and pathology of a patient at different scales of space and time,
with the ultimate aim of producing patient-specific predictions for diagnosis, prognosis,
and treatment planning.
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Although very attractive, the idea of using ISCT for reducing, refining or partially
replacing in vivo experimentation faces three main challenges. Firstly, pharmaceutical
companies still lack the fundamental and technological knowledge required to do so, and
one has to continuously address the inherent complexity associated with the accurate,
quantitative modelling of living organisms. Secondly, the main industry players still
need to be convinced of the reliability of in silico approaches, especially in the case of
predictions made in place of in vivo experiments. Finally, the adoption of such
disruptive technologies can be a tedious process involving changes in business practice
and adaptation of the regulations regarding the standard certification process of new
pharmaceutical compounds (Viceconti, Henney, and Morley-Fletcher 2016).

Taking these aspects into account, other paths for improving the success rates of
clinical trials have been investigated. Another computational-based strategy currently
followed is to develop a set of criteria that could be used to predict the outcome of a
clinical trial before it actually begins. A major focus of such approaches lies in the
ability to identify compounds with unfavorable toxicity properties. Within the
pharmaceutical industry, drug-likeness measures are commonly used as guidelines for
filtering out toxic molecules in the early development stages. The procedure is based on
a set of physical and chemical features associated with orally active drugs obtained from
the screening of clinical drugs that reached phase II trials or beyond (Lipinski et al.
2001). This procedure contributed to improving the drug discovery process by providing
a set of practical filters for many drug development pipelines (Leeson and Springthorpe
2007). Nevertheless, the initial drug-likeness approach as well as the improved versions
developed later (Veber et al. 2002; Ghose, Viswanadhan, and Wendoloski 1999) are not
able to distinguish unacceptable toxicity profiles from safe ones (Bickerton et al. 2012;
Leeson and Springthorpe 2007). Further modifications to these protocols primarily
focus on properties associated with bioavailability, ignoring other aspects that can
trigger clinical trial toxicity events.Various computational methods have been developed
for tackling the issue of toxicity in various situations, including tissue-specific toxicities
(Jeliazkova and Jeliazkov 2011) and QSAR methods used for predicting specific toxicity
endpoints and estimating maximum tolerated dose levels (Patlewicz and Fitzpatrick
2016). One recently developed approach called PrOCTOR (Gayvert, Madhukar, and
Elemento 2016) takes into account not only bioavailability related properties, but also
target-related properties, such as tissue selectivity and established informative chemical
features of the drugs with target-based features to produce a classifier based on random
forests that can be used to address clinical drug toxicity. In their study, the authors
demonstrated that some of these properties, even when taken into account individually,
have a significant discriminative power. Furthermore, using a feature importance
analysis, they have shown that both the chemical and target-based features contribute
significantly to an efficient classification.

One of the emerging fields in machine learning is deep learning, a set of techniques
aimed to learn a high level of feature representation. On large datasets in image, text
and voice recognition deep learning systems drastically outperform the conventional
methods and achieve human-competitive levels of accuracy (LeCun, Bengio, and Hinton
2015). However, there is a rapidly growing amount of literature on the application of
deep learning techniques to biomedicine, which indicates that deep learning actively
dominates the field of computational biology with its sparse and often limited data.
Deep-learned systems have demonstrated reasonable accuracy when guessing patients’
chronological age using anonymized blood biochemistry samples (Putin et al. 2016).
The ensemble of neural networks with different architecture and set of hyperparameters
outperformed baseline machine learning technique and proved the previously
questionable utility of basic blood biochemistry data in precise age prediction. Such
spectacular predictive power of neural networks, however, like with any other method,
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Figure 1. Artificially intelligent pipeline for generating drug leads. Insilico Medicine developed a drug discovery pipeline
utilizing a large number of data sets of multiple data types. The pipeline starts with a database of transcriptional
response and structural data linked to other molecular properties that is supplied into the transcriptomic drug discovery
engine, structural drug discovery engine and pathway-centric drug discovery engine. The data is also used to train the
generative adversarial networks to provide leads in the form of graph representations of molecular structure that can be
supplied into the structure-based predictor, or tested experimentally. It also generates transcriptional response data sets
for pathway-based and deep learned predictors. After the leads are ranked by the efficacy, safety and other properties,
the literature and patent review is performed. For molecules that can not be patented, another engine utilizing deep
reinforcement learning is used to develop analogs that may have the same or superior properties and can be tested and
patented.

clouded by the fact that population-specific bias could decrease the accuracy of the
predictor (Cohen et al. 2016). However, with an increasing number of
population-specific samples deep learning methods overcome such training limits in
most cases (Mamoshina et al. 2016). Multi-layer neural networks were able to classify
small molecules by pharmaceutical classes using one the most complex and
heterogeneous categories of biological data - namely, gene expression (Aliper et al.
2016). In order to overcome the “curse of dimensionality” networks were trained on
both a set of landmark genes as well as signaling pathways. Pathway-based deep neural
networks show better classification accuracy and could be considered as powerful
repurposing tools. Another direction in deep learning holding a lot of promise for drug
discovery and biomarker development are the Generative Adversarial Networks (GANs).
GAN is a fresh direction in deep learning invented by Ian Goodfellow in 2014
(Goodfellow et al. 2014). In recent years GANs produced extraordinary results in
generating meaningful images according to the desired descriptions. Similar principles
can be applied to drug discovery and biomarker development. The proof of concept of a
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GAN-based drug discovery engine was developed using the generative adversarial
autoencoders (AAEs), (Makhzani et al. 2015) to generate molecular fingerprints of
prospective compounds with the desired molecular properties (Kadurin et al., The
cornucopia of meaningful leads: applying deep adversarial autoencoders for new
molecule development in oncology, 2016, Oncotarget, In press).

Insilico Medicine developed a comprehensive and constantly evolving drug discovery
pipeline utilizing deep learning (Figure 1). In this study, we have thoroughly analyzed
transcriptomic data for drug-induced perturbations in cell cultures. We applied various
machine learning and pathway analysis techniques to predict the side effects of drugs
and the consequent success or failure of clinical trials. We demonstrated how pathway
analysis and the accurate prediction of side effects can help to achieve high predictive
accuracy of clinical trial outcomes. Finally, we applied the classifiers constructed on
retrospective data to the current pipelines of the major pharmaceutical companies.

Results

Neural networks accurately predict common side effects

Deep neural networks were constructed to predict side effects of compounds based on
the transcriptional alterations they cause in cell lines. As an input, the neural networks
took pathway activation scores, estimated by the iPANDA algorithm (Ozerov et al.
2016). These scores represented activation or inhibition of various regulatory pathways
following treatment of a cell line with a given compound. We built a single neural
network for each side effect. The accuracy, sensitivity, specificity and f1 measure were
estimated after cross-validation for each network. For 46 side effects, we achieved f1
greater than 0.8.

Gene expression changes after drug treatment poorly predict
clinical trials outcome

We firstly investigated whether the drug-induced changes of gene expression per se
could predict the outcome of a clinical trial. We constructed a set of classifiers based on
relative gene expression changes following treatment with a compound of interest. The
random forest (RF) classifier achieved an accuracy of 0.66 (Figure 2B).

Deep-learned predictions of side effects explain failures of Phase
II

Unexpected side effects could be one of the reasons for clinical trial failure. Therefore,
we explored whether our transcriptomic-based predictions of side effects could be used
to predict the outcome of clinical trials in Phase II. We first selected the side effects for
which we had high confidence of the prediction given by a neural network, namely those
with f1 measure greater than 0.8. Next, we built a random forest classifier based on
probabilities of each side effect to be discovered for each compound, predicted by the
neural network. The classifier achieved much higher accuracy (0.81) compared to
analyses based on gene expression changes as is (Figure 2B).

Pathway-based classifier predicts the outcome of clinical trials

We hypothesized that the low accuracy of the gene-based classifier could be explained
by the high number of features (genes with measured expression) compared to the
number of samples (i.e., compounds for which the outcomes of clinical trials are known).
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Figure 2. (A) A schematic representation of the computational experiment. (B) Cross-validated accuracy of clinical
trials’ outcome prediction for the following classifiers: random forest based on drug-induced gene expression changes;
random forest based on probabilities of various side effects predicted by a deep neural network; random forest based on
iPANDA pathway activation scores after drug treatment; combined random forest classifier utilizing both side effects
predictions and iPANDA scores.

Therefore, an efficient and biologically relevant method for dimensionality reduction
could potentially improve the accuracy. To test this hypothesis, we applied the iPANDA
algorithm (Ozerov et al. 2016) to estimate the activation or inhibition of certain
regulatory and biochemical pathways following treatment with a drug of interest. The
iPANDA scores were then used as an input for the classifier designed to predict the
outcomes of clinical trials (Figure 2A). The obtained results show that using pathway
activation scores as predictors in the classifier dramatically improved its accuracy up to
0.83 (Figure 2B).

In order to understand which pathway activation had the greatest contribution to
the prediction, we performed importance ranking of the input variables. In
Supplementary Figure S1, we summarized the most important variables for the classifier.
A significant number of metabolic pathways, in particular those involved in oxidation,
as well as endoplasmic reticulum (ER)—related pathways, were among the best
predictors of clinical trial failures. Interestingly, these processes are responsible for
metabolism of xenobiotics and are particularly active in hepatic tissue.

A combined classifier accounts for both side effects and efficacy

To account for both potential side effects and the mode of action of each compound of
interest, we constructed a combined classifier which used both the predicted
probabilities of side effects and iPANDA pathway activation scores. This combined
model showed performance comparable to the model based on iPANDA scores alone
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Figure 3. Analysis of drug pipelines for certain major pharmaceutical companies. Red bars show the predicted
probabilities of clinical trials’ failures for individual compounds. (A) AbbVie, (B) Eli Lilly, (C) Merck, (D) Roche

(Figure 2B) and therefore we used the classifier based on iPANDA scores for the further
analysis.
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Analysis of pharma pipelines

The classifier achieved a cross-validated accuracy of 0.83, which is high enough to
predict the outcome of an individual clinical trial. It was even more suitable to assess
the portfolio of compounds to estimate the fraction of compounds under the risk of
failing a clinical trial, as the uncertainty in the prediction for an individual compound is
compensated by the number of compounds in a portfolio. We predicted probabilities of
failure in clinical trials for the compounds currently included in the pipelines of one of
four major pharmaceutical companies (Figure 3A-D).

In our prediction, Abexinostat (PCI-24781), an HDAC inhibitor developed by
AbbVie, had a high expected probability of failure. There are several completed clinical
trials featuring this compound. First Phase I trial (NCT01149668) was focused on
investigating long-term safety of Abexinostat in subjects with various hematologic
cancers. Although the trial was completed in 2013, the results have not been published
so far. Second trial Phase I/II trial (NCT00724984) had a slightly different scope and
focused only on patients with Hodgkin’s and Non-Hodgkin’s lymphoma. Recently
published results (Evens et al. 2016) indicate that the drug was well tolerated and
showed good efficacy in follicular lymphoma. Grade 3-4 treatment-related adverse
events in Phase II were thrombocytopenia, fatigue, and neutropenia.

For an independent evaluation of our pipeline’s ability to detect successes (Figure
4A) and failures (Figure 4B) of clinical trials, we applied the classifier to a set of novel
compounds in the new L1000 Connectivity Map perturbational profiles dataset
(GSE70138). We predicted the highest probabilities of failure for PKC inhibitor
enzastaurin, CDK inhibitor dinaciclib (MK-7965), prospective Hsp90 inhibitor
tanespimycin, BET bromodomain inhibitors I-BET151 (GSK1210151A) and JQ1,
PKC/CDK inhibitor CGP60474 and B-Raf inhibitor SB590885 (Figure 4B). None of
these compounds were approved: according to Lilly report, enzastaurin failed in Phase
III; the clinical trials of tanespimycin were halted by Bristol-Myers Squibb; dinaciclib
(MK-7965) showed severe side effects and no improvement of efficacy in non-small cell
lung cancer and breast cancer clinical trials (Stephenson et al. 2014; Mita et al. 2014).
In contrast, three among eight of compounds for which we predicted the lowest
probabilities of failure, namely entinostat, vorinostat and resveratrol, did in fact pass
phase II clinical trials or were approved by FDA (Figure 4A).

Methods

Data preparation

As an input, we used the LINCS L1000 dataset with transcriptional response of multiple
cell lines to drug treatment. In the dataset, expression was profiled for a thousand
“milestone” genes (Lamb et al. 2006). For a näıve gene expression-based classifier, we
performed limma test of differential gene expression between the samples treated with a
compound and control samples of a given cell line. The obtained signed values of test
statistics were used as an input for the gene-based classifiers.

For pathway-based classification, we calculated pathway activation scores using the
iPANDA algorithm (Ozerov et al. 2016). We used a collection of signalling pathways
from KEGG (Kanehisa 2000), NCI (Schaefer et al. 2009) and SABiosciences
(http://www.sabiosciences.com/pathwaycentral.php) pathway databases.

Clinical trials data was processed similarly to the approach used in (Gayvert,
Madhukar, and Elemento 2016).
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Figure 4. Compounds predicted to succeed and fail in clinical trials from an independent transcriptomic dataset. Red
bars show the predicted probabilities of clinical trials’ failures for individual compounds. Available clinical trials data is
summarized in the bottom. The compounds which are not intended to be used medically are marked as non-medical.
Panel (A) depicts the compounds with the lowest predicted probabilities of failure while panel (B) depicts the compounds
with the highest predicted probabilities of failure.

Deep neural network for side effects prediction based on
transcriptomic data

Deep neural networks (DNNs) were trained with transcriptional response data from the
LINCS L1000 dataset. Side effects for drugs were derived from SIDER database (Kuhn
et al. 2015). Side effect categories were mapped onto 205 preferred terms from
MedDRA v16.0 ontology (Brown, Wood, and Wood 1999). Each DNN was trained to
predict concrete side effect, thus each DNN was binary. In total 205 DNNs were trained.
DNNs were trained with Dropout (Srivastava et al. 2014) and l2 regularization to
prevent overfitting. For each side effect the optimal topology (number of neurons in
each layer, number of layers, optimizer, etc) of the DNN in terms of accuracy was found
by grid search procedure. The search space for all DNNs was: from 100 to 1000 neurons,
from 3 to 6 layers, Adam (Kingma and Ba 2014), Adadelta (Zeiler 2012), Adagrad
(Duchi, Hazan, and Singer 2011) as optimizers, ReLU, PReLU, ELU as activation
functions, from 0.25 to 0.5 as dropout probability. For all DNNs binary cross entropy
was used as a loss function. DNNs were trained on NVIDIA Titan X graphical
processing unit with 5-fold cross validation.

Classification and cross-validation

The classification based on RF was performed using the randomForest function from the
standard R distribution and the glm function (with parameter method=”binomial”)
was used for logistic regression. 500 trees were used to construct a random forest
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classification.
The classifier was trained on 577 transcriptomic datasets obtained for 214

compounds.
Multiple lines of the input data matrix could correspond to a single drug (e.g., a

drug can be profiled at different concentrations, cell lines and durations of treatment).
To prevent the data related to a single drug from appearing in both the training and the
test set, the following cross-validation procedure was applied: we extracted the list of
unique drug identifiers and on each iteration took a random 1

5 of those as a test set of
compounds; only the lines of the input data matrix not corresponding to the drugs in
the test set were considered for training.

Before predicting probabilities of failure for the compounds of a certain company, we
excluded the compounds of that company from the training set and rebuilt the classifier.
The classifier (trained on all compounds except the compounds of the analyzed
company) was used to predict probabilities of failure for the compounds of the given
company.

Discussion

In this work, we described certain computational methods to predict drug efficacy and
clinical trial failure or success based on transcriptomic data. As expected, the outcome
of a clinical trial appeared to depend both on potential side effects and on the efficacy
of the drug. This can explain the fact that the combined classifier performed better
than those based on either gene expression or predicted side effects alone.

Both the iPANDA-based classifier and the combined classifier achieved high
cross-validated performance. Remarkably, the results of iPANDA-based DNNs for side
effects significantly outperform gene-based DNNs. Previously we showed that DNN
classifiers of therapeutic category trained on signaling pathway activation scores are
significantly more accurate than their gene-based counterparts (Aliper et al. 2016).

Overall, such prediction tools can be of a great value, especially at the stage of lead
screening. The only type of data required to perform the prediction is gene expression
before and after incubation of a single cell line with the compound of interest, which
can be obtained in a cost effective and high-throughput manner.

We aimed to analyze the current pipelines of the major pharmaceutical companies to
estimate what proportion of currently tested drugs is likely to fail Phase 2 clinical trials.
This estimation can be thought of as a clinical analog of the value-at-risk concept. We
applied the classifiers to the current pipelines of pharma companies and obtained the
risk rate, or clinical trial failure rate, as well as predictions of multiple side effects.

Rather low predicted probabilities of failure for the analyzed compounds could seem
contradictory to the overall 70% failure rate. This contradiction can be resolved by
taking into account the fact that the compounds for which L1000 transcriptomic data is
available represent a biased set of compounds: they are on the market for a longer time
than the average compound, and some of them have already been successfully tested for
other indications. Therefore, the analyzed set of drugs can be less likely to fail than the
average drug in the current R&D pipelines.

In contrast, among the novel compounds in the new L1000 dataset, which are
currently studied in preclinical and clinical trials, we discovered those which were likely
to fail (Figure 4B). Most of our predictions already failed the clinical trials due to severe
side effects or lack of improvement in efficacy. Interestingly, some BET inhibitors
showed high probabilities of failure in our analysis, which corresponded to their
observed side effects. Moreover, while we predicted failure for BET inhibitors JQ-1 and
I-BET151 which were not intended to be used medically, we predicted success for their
analog gsk525762a (I-BET 762) which is currently in clinical trials (Figure 4A). This

10/20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2016. ; https://doi.org/10.1101/095653doi: bioRxiv preprint 

https://doi.org/10.1101/095653


advocates for a more thorough evaluation of candidate BET inhibitors in preclinical
studies. As BET inhibitors have a direct and broad effect on gene expression, our
transcriptomic-based pipeline can be particularly useful for the prediction of side effects
and clinical trial failures for the members of this class of compounds.

Interestingly, the studied companies showed different risk rates. Among four
investigated big pharma companies, AbbVie has the highest median risk rate. On the
other hand Eli Lilly has the lowest median risk rate. Such variation in risk rates
between companies might reflect differences in their research areas as some diseases or
targets can have systematically higher failure rate. Therefore, a high-risk pipeline
portfolio might not be a reason to blame a company, but instead could reflect the fact
that it searches for a treatment of a condition which is in general more complicated to
treat. Nevertheless, our predictions can be of use in estimating the market risks of
certain companies, especially small ones.

Currently, there is substantial pressure in the medical community to report all
clinical trial results, and such transparency initiatives like AllTrials (www.alltrials.net)
are gaining momentum (Powell-Smith and Goldacre 2016). Development of clinical trial
prediction instruments and proof-of-concept demonstration may encourage big pharma
companies to reveal some of the unreported clinical trial results and pay more attention
to ML prediction methods.
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Supporting Information

S1 Figure

Figure S1. Variable importance of predictors for iPANDA pathway activation-based classifier. Notice the abundance of
metabolic pathways (particularly, related to oxidation) and ER-related pathways.

Supplementary text 1. Analysis of current R&D
pipelines

In this section, we provide a succinct description of the current status of the
development pipelines for five major pharmacology companies. The compounds
described are currently at various stage of development, sometimes for many different
indications related to oncology and cancer research. In some cases, they have received
FDA approval and are already on the market. The information summarized
below has been obtained from different sources including http://adisinsight.springer.com/,
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http://www.roche.com/research and development/who we are how we work/pipeline.htm,
http://www.merck.com/research/pipeline/home.html,
http://www.abbvie.com/research-innovation/pipeline.html,
https://www.lilly.com/pipeline/11.html,
https://www.astrazeneca.com/our-science/pipeline.html

Roche

Compound Alecensa (targets: ALK, RET) is approved for treatment against lung
cancer. Several Compounds are investigated regarding effects against diabetes mellitus
type 2. This includes compound RO6870952 (target: GLP-1/GIP), currently in phase I,
and Xenical (target: pancreatic lipases) that has completed phase III. However, phase
III has been discontinued for Aleglitazar (target: peroxisome proliferator-activated
receptor) regarding its potential effects on diabetes mellitus type 2 and cardiovascular
disorders. Breast cancer therapies is another successful area of research with Boniva
(target: osteoclast-mediated bone resorption), Perjeta (target: extracellular dimerization
domain (Subdomain II) of the human epidermal growth factor receptor 2 protein
(HER2)) and Xeloda (target: cancer) being all EU and/or FDA approved. Regarding
Alzheimer’s disease, Gantenerumab (target: Abeta fibrils) and MEM3454 (target:
nicotinic alpha7 receptor) are in phase III and II respectively, whereas Sembragiline
(target: MAOB) successfully completed phase II. Gazyva (target: CD-20 B-cell
receptors) is a compound approved by EU and FDA for treatment against leukemia
lymphoid. Inclacumab (target: P-selectin), lebrikizumab (target: IL-13) and also
Perjeta are all in phase II as treatments for heart disease, pulmonary fibrosis and
ovarian cancer respectively. Perjeta is also in phase II for treatment against gastric
cancer whereas Xeloda is approved for its action against this type of cancer. Xeloda has
also successfully passed phase II for treatment against head and neck cancer and is also
approved by EU and FDA for treatment against colorectal cancer. Zelboraf (target:
BRAFV600E gene) is another compound which has completed phase I for this type of
cancer. Another successful compound is Mircera (target: erythropoesis) which is
approved for treatment of kidney disease. One can also mention ORY-1001 (target:
histone demethylase) and RG1662 (target: GABA), both in phase I for treatment
against leukemia myeloid and neurologic disorders respectively.

Merck

Several Compounds are currently at different stages of development for various
indications. MK-2206 (target: DPP-4) is in phase I for treatments against prostate
cancer, melanoma, solid tumors, kidney cancer and pancreatic cancer. It is also in phase
II for its actions against breast cancer, lung cancer and colorectal cancer. Vorinostat
(target: DPP-4) is in phase I for its potential effects against leukemia myeloid and solid
tumors. It has completed phase I for a treatment against pancreatic cancer and it is in
phase II for its effects against multiple myeloma, prostate and breast Cancer.
Pembrolizumab (target: DPP-4) is in phase Ib regarding its effects against gastric and
Bladder cancer. It is in phase I/II regarding its actions on breast cancer. Furthermore,
it is approved by FDA for treatment against lung cancer and BLA has been submitted
for its effects against head and neck cancer. Dalotuzumab (target: IGFR1) is in phase
I/II for treatments of pancreatic, lung and Breast cancers. It is also in phase II/III for
treatment of colorectal cancer. Vytorin (target: DPP-4) is in phase IV for treatments
regarding myocardial infarction strokes and coronary artery disease. Temodar (target:
DPP-4) is approved for treatment of brain cancer and it is in phase II for its effects
against leukemia myeloid and melanoma. Other compounds are investigated for a more
restricted number of indications. Acadesine (target: AMP-activated protein kinase) and
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Anacetrapib (target: CETP) are both in phase III for treatment against coronary artery
disease and cardiovascular disorders. Compound MK-1775 (target: DPP-4) has
completed phase I for its action against solid tumors and is in phase II for possible
involvement in the treatment of ovarian cancer. Compound MK-0542B (target: DPP-4)
is in an unknown phase of development for treatments against coronary artery disease
and atherosclerosis. Novantrone (target: DPP-4) has received FDA approval to be used
in treatment against prostate cancer and leukemia. Arcoxia (target: COX-2) is
approved for its action against pain, acute or chronic but received FDA non-approvable
letter regarding treatments against arthritis and arthritic pain. Finally one can mention
the following compounds that are studied for one indication only. Compounds AF-130
(target: P2X3 receptors), V934/V935 (target: DPP-4) and ALX-0761 (target: IL-17A,
IL-17F) are all in phase I for action related to hypertension, inflammatory disorders and
solid tumors respectively. Atacicept (target: B cells) and SCH-527123 (target: DPP-4)
are in phase II for their actions against rheumatoid arthritis and chronic obstructive
pulmonary disease (COPD) respectively. Odanacatib (target: DPP-4) has completed
phase II for treatment against breast cancer. Omarigliptin and Verubecestat, both
targeting DPP-4, are in phase III for treatment of diabetes mellitus Type 2 and
Alzheimer’s disease respectively. However three compounds, all targeting DPP-4, have
seen their development discontinued. This includes Preladenant for its potential action
against Parkinson’s disease, Vioxx for its effects against pain, acute or chronic and
rheumatoid arthritis and Tredaptive for its effects against cerebrovascular and vascular
diseases.

Compounds having obtained FDA approval are Gardasil (target: immune system)
for a treatment against vaginal cancer, Januvia and Juvisync, both targeting DPP-4,
and involved in a treatment against diabetes mellitus type 2, PEG-Intron (target:
DPP-4) for its effects against melanoma and finally Zontivity (target: DPP-4) for the
treatment of cardiovascular disorders.

Abbvie

Imbruvica (ibrutinib), a small molecule acting as a Bruton’s tyrosine kinase (BTK)
inhibitor, is in phase II for the treatment of solid tumors, Multiple Myeloma (MM),
Acute Myeloid Leukemia (AML) and Diffuse Large B-cell Lymphoma (DLBCL) and it
is in phase III for chronic lymphocytic leukemia (CLL) and mantle cell lymphoma
(MCL). Veliparib is a small molecule acting as an oral inhibitor targeting poly
(adenosine diphosphate [ADP]-ribose) polymerase (PARP-1/2). It is being examined in
combination with DNA-damaging therapies including chemotherapy or radiation. It is
in phase I for its effects against solid tumors and non-small cell lung cancer (SCLC). It
is also in phase II studies for colorectal cancer and in phase III for the treatment of
ovarian cancer, triple-negative breast cancer, and HER2-negative metastatic or locally
advanced BRCA breast cancer. Venclexta (venetoclax) is an oral B-cell lymphoma-2
(BCL-2) inhibitor which is in phase II for treatment of AML, DLBCL, non-Hodgkin
lymphoma (NHL) and in phase III for the treatment of multiple myeloma (MM) and
CLL. Xinlay (atrasentan) (target: Endothelin A receptor) is in phase III for the
treatment of diabetic kidney disease and has completed phase III related to its effects
on prostate cancer. ABT-767 is another PARP inhibitor currently under investigation
and it is in phase I for treatment of ovarian cancer and various solid tumors. PCI-24781
is an inhibitor of histone deacetylase and has completed phase I for its effects against
solid tumors. ABBV-8E12 (target: tau) is in phase I for treatment of neurologic
disorders and a phase II is currently ongoing to evaluate the efficacy and safety of
ABBV-8E12 in individuals with early Alzheimer’s disease (NCT02880956). ABT-414 is
a monoclonal antibody drug conjugate targeting epidermal growth factor receptor
(EGFR). It is a late stage investigational compound currently being studied in Phase
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I/II for the treatment of brain cancer and glioblastoma (GBM) whereas Rova-T
(rovalpituzumab tesirine) is an antibody drug conjugate targeting the cancer stem
cell-associated target delta-like protein 3 (DLL3). It is in phase I for the treatment of
solid tumors and in phase II for treatment of SCLC and could be the first targeted
therapy to show efficacy for this disease. PCI-27483, a factor VIIa inhibitors, was
discontinued after Phase II trials for treatment of pancreatic cancer.

Finally, the following compounds have been approved by FDA. Venclexta is approved
in the U.S. and indicated for the treatment of patients with relapsed/refractory CLL
and Imbruvica is approved to treat patients with CLL and small lymphocytic lymphoma
(SLL). Duodopa (target: hormonal system) for a treatment against Parkinson’s disease
and Elotuzumab (target: SLAMF7) for the treatment of multiple myeloma.

Eli Lilly

Cyramza (ramucirumab) (target: VEGFR2) has completed phase II for treatment of
prostate cancer, melanoma, ovarian cancer and renal cell carcinoma. It is also in phase
III for treatment of Bladder cancer, hepatocellular carcinoma and gastric cancer. It is
also in phase III studies for the treatment of first-line, EGFR positive NSCLC. Erbitux,
an angiogenesis and epidermal growth factor (EGF) inhibitor, is approved and marketed
for treatment of colorectal cancer, head and neck cancer. It has completed phase II for
treatment of breast cancer. It is also in phase II for treatment of Bladder cancer, gastric
cancer and rectal cancer. It is in phase III for treatment of non-small cell lung cancer.
Gemzar (Gemcitabine), an inhibitor of DNA synthesis, is in phase I for treatment of
head and neck cancer, in phase II for treatment of lymphoma and renal cell carcinoma
and it has completed phase III for treatment against cervical dysplasia/cancer.
Olaratumab (Platelet derived growth factor (PDGF) alpha receptor antagonist) is in
phase I for treatment against solid tumours, it has completed phase II for its use against
brain and prostate cancer. It is also in phase III for treatment of advanced sarcoma.
Alimta (Pemetrexed) (target: cancer cell replication) is marketed for the treatment of
mesothelioma and NSCLC. It has completed phase II for its use against breast cancer
and it has also completed phase III for treatment against head and neck cancer but no
further development was reported. Alimta was discontinued for the treatment of SCLC.
Necitumumab (target: EGFR) is marketed as a treatment for NSCLC and has
completed phase II for treatment of solid tumors. It was also in clinical trial for
potential against colorectal cancer, but no development was reported for this indication.
Abemaciclib, an inhibitor targeting Cyclin-dependent kinase 4 (CDK4) and
Cyclin-dependent kinase 6 (CDK6) undergoes preclinical studies for treatment of solid
tumors; it is in phase II for treatment of Cancer, Liposarcoma and Mantle-cell
lymphoma. It is also in phase III for use against Non-small lung cancer and metastatic
breast cancers. Gataparsen, a BIRC5 protein and protein synthesis inhibitor, was
discontinued for treatment of acute myeloid leukaemia and has also been discontinued
for treatment of NSCLC and prostate cancer after completion of phase II. Compounds
that are under study for one indication are also worth mentioning. Tabalumab, an
inhibitor targeting B cell activating factor inhibitors (BAF) has been discontinued after
phase II/III for treatment of multiple myeloma, Taltz, an Interleukin-17 inhibitors, has
completed phase II for its action against rheumatoid arthritis. Teplizumab, CD3
antigen inhibitors, is in phase II for type 1 diabetes mellitus. Galunisertib is a chemical
compound that blocks transforming growth factor-β receptor I kinase and TGF-b
signaling. It is currently under phase II for the treatment of hepatocellular cancer.
Merestinib is another chemical compound that has been shown to be a reversible type II
ATP-competitive inhibitor of MET a receptor for hepatocyte growth factor and is
currently in phase II for the treatment of cancer. Prexasertib (checkpoint kinase 1
(Chk1) inhibitor) is also in phase II for the treatment of cancer as well as Ralimetinib
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(p38 MAP kinase inhibitor) in phase II for treatment of ovarian cancer. Chemical
entities currently in phase I for the treatment of cancer include Angiopoietin 2 antibody,
Chk1 Inhibitor, CSF-1R Monoclonal Antibody, ERK inhibitor, FGFR3-ADC and
PD-L1 Antibody. However, for several compounds, clinical studies have been
unsuccessful for some indications. Zosuquidar, a P-glycoprotein inhibitors, was
discontinued for treatment of acute myeloid leukaemia after completion of phases I/II
and III. One can mention Arzoxifene and Evacetrapib that have been discontinued
regarding their potential use against breast cancer and cardiovascular disorders. Erbitux
was discontinued regarding its potential actions against lung cancer. Enzastaurin
(target: PKC) has been discontinued for treatment of brain and lung cancer. Peglispro
(target: glucose uptake) has been discontinued regarding its potential action against
diabetes mellitus type 1 and type 2.

Other compounds have received FDA approval. This includes: Alimta is approved
by FDA for the treatment of lung cancer. Basaglar (target: glucose uptake) has FDA
approval for its use against diabetes mellitus type 1 and type 2. Necitumumab received
FDA approval for its use in the treatment of lung cancer. Cyramza (target: VEGFR2)
received FDA approval to be used against colorectal, gastric and lung cancers. Erbitux
received FDA approval for its use against colorectal cancer and head and neck cancer.
Cymbalta (target: hormonal system) for the treatment of pain, acute or chronic,
Dulaglutide (target: GLP-1 receptor) and Jentadueto (target: DPP-4) for the treatment
of diabetes mellitus type 2 and Raloxifene (target: estrogen receptors) for the treatment
of breast cancer. Gemzar received FDA approval and is marketed for treatment of
biliary cancer, Bladder cancer, breast cancer, NSCLC, ovarian cancer and pancreatic
cancer.

AstraZeneca

Recentin (target: VEGF) has completed phase II for use against renal cell carcinoma
and lung cancer and phase II/III is also completed for treatment against gastric cancer.
Furthermore, it is in phase III for being used against ovarian cancer and has completed
phase III for its effects against brain cancer. Selumetinib (target: MEK) is in phase II
for a potential use against brain and lung cancer. It is in phase III for treatment against
thyroid cancer. Lynparza (target: PARP) is in phase II for being used against solid
tumors and breast cancer and it has completed phase III for treatment against gastric
cancer. Iressa (target: EGFR tyrosine kinase) has completed phase II for use against
adrenal cancer. Compound AZD2423 (target: ion channels) is in phase II for a use
against COPD, neuropathy (Diabetic) and pain, acute or chronic. Brilinta (target:
P2Y12) is in phase III for its effect on Cardiovascular Disorders. Crestor (target:
HMG-CoA reductase) is in phase III for use against Heart Disease and renal artery
disease. AZD2811 (target: AURKB) is in phase I for treatment against unspecified
cancer/tumors and solid tumors. AZD4076 (target: MiR103/107) is in phase I for its
effects on diabetes mellitus type 2 and liver disease. Several compounds have seen their
development interrupted. Recentin (target: VEGF) has been discontinued regarding its
potential action on colorectal cancer. Selumetinib (target: MEK) was discontinued
regarding a possible treatment against melanoma. Iressa (target: EGFR tyrosine kinase)
was discontinued with respect to its effects on breast and colorectal cancers.

Finally, the following compounds have received approval for specific treatments.
Anastrozole (target: aromatase) and Faslodex (target: estrogen receptor) for an
application against breast cancer. Casodex (target: androgen receptor) for a treatment
of prostate cancer. Daliresp (target: PDE4), Symbicort (target: inflammation) and
Bevespi (target: cholinergic and adrenergic receptors) have been granted FDA approval
for the treatment of COPD. Tagrisso (target: EGFR) for the treatment of lung cancer.
Tomudex (target: thymidylate synthase) for a use against colorectal cancer. Xigduo
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(target: SGLT2) for the treatment of diabetes mellitus type 2. Epanova (target: lipid
regulation) for the treatment of cardiovascular disorders. Naropin (target: sodium ion
influx) for its use against pain, acute or chronic. Lynparza (target: PARP) received
FDA approval for its use against ovarian cancer. Iressa (target: EGFR tyrosine kinase)
is approved by FDA for a treatment against lung cancer. Crestor (target: HMG-CoA
reductase) is approved by FDA for treatment of cardiovascular disorders. Brilinta
(target: P2Y12) is approved by FDA for the treatment of vascular diseases and
myocardial infarction.
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