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Abstract.--- The multispecies network coalescent (MSNC) is a stochastic process that captures how gene trees grow
within the branches of a phylogenetic network. Coupling the MSNC with a stochastic mutational process that
operates along the branches of the gene trees gives rise to a generative model of how multiple loci from within and
across species evolve in the presence of both incomplete lineage sorting (ILS) and reticulation (e.g., hybridization).
We report on a Bayesian method for sampling the parameters of this generative model, including the species
phylogeny, gene trees, divergence times, and population sizes, from DNA sequences of multiple independent loci.
We demonstrate the utility of our method by analyzing simulated data and reanalyzing three biological data sets.
Our results demonstrate the significance of not only co-estimating species phylogenies and gene trees, but also
accounting for reticulation and ILS simultaneously. In particular, we show that when gene flow occurs, our method
accurately estimates the evolutionary histories, coalescence times, and divergence times. Tree inference methods, on
the other hand, underestimate divergence times and overestimate coalescence times when the evolutionary history is
reticulate. While the MSNC corresponds to an abstract model of “intermixture,” we study the performance of the
model and method on simulated data generated under a gene flow model. We show that the method accurately infers
the most recent time at which gene flow occurs. [Multispecies network coalescent; reticulation; incomplete lineage
sorting; phylogenetic network; Bayesian inference; RJMCMC.]

The availability of sequence data from multiple loci1

across the genomes of species and individuals within2

species is enabling accurate estimates of gene and species3

evolutionary histories, as well as parameters such as4

divergence times and ancestral population sizes (Rannala5

and Yang 2003). Several statistical methods have been6

developed for obtaining such estimates (Bouckaert et al.7

2014; Edwards et al. 2007; Heled and Drummond 2010;8

Rannala and Yang 2003). All these methods employ the9

multispecies coalescent (Degnan and Rosenberg 2009)10

as the stochastic process that captures the relationship11

between species trees and gene genealogies.12

As evidence of hybridization (admixture between13

different populations of the same species or across14

different species) continues to accumulate (Arnold 1997;15

Barton 2001; Gogarten et al. 2002; Koonin et al.16

2001; Mallet 2005, 2007; Rieseberg 1997), there is a17

pressing need for statistical methods that infer species18

phylogenies, gene trees, and their associated parameters19

in the presence of hybridization. We recently introduced20

for this purpose the multispecies network coalescent21

(MSNC) along with a maximum likelihood search22

heuristic (Yu et al. 2014) and a Bayesian sampling23

technique (Wen et al. 2016a). However, these methods24

use gene tree estimates as input. Using these estimates,25

instead of using the sequence data directly, has at least26

three drawbacks. First, the sequence data allows for27

learning more about the model than gene tree estimates28

(Rannala and Yang 2003). Second, gene tree estimates29

could well include erroneous information, resulting in30

wrong inferences (DeGiorgio and Degnan 2014; Wen31

et al. 2016a). Third, co-estimating the species phylogeny32

and gene trees results in better estimates of the gene trees33

themselves (DeGiorgio and Degnan 2014; Zimmermann34

et al. 2014).35

We report here on a Bayesian method for co-estimating 36

species (or, population) phylogenies and gene trees along 37

with parameters such as ancestral population sizes and 38

divergence times using DNA sequence alignments from 39

multiple independent loci. Our method utilizes a two- 40

step generative process (Fig. 1) that links, via latent 41

variables that correspond to local gene genealogies, the 42

sequences of multiple, unlinked loci from across a set of 43

genomes to the phylogenetic network (Nakhleh 2010a) 44

that models the evolution of the genomes themselves. 45

Our method consists of a reversible-jump Markov 46

chain Monte Carlo (RJMCMC) sampler of the posterior 47

of this generative process. In particular, our method 48

co-estimates, in the form of posterior samples, the 49

phylogenetic network and its associated parameters for 50

the genomes as well as the local genealogies for the 51

individual loci. We demonstrate the performance of our 52

method on simulated data. Furthermore, we analyze 53

three biological data sets, and discuss the insights 54

afforded by our method. In particular, we find that 55

methods that do not account, wrongly, for admixture in 56

the data tend to underestimate divergence times of the 57

species or populations and overestimate the coalescent 58

times of individual gene genealogies. Our method, on 59

the other hand, estimates both the divergence times 60

and coalescent times with high accuracy. Furthermore, 61

we demonstrate that coalescent times are much more 62

accurately estimated when the estimation is done 63

simultaneously with the phylogenetic network than when 64

the estimation is done in isolation. 65

An important contribution of this manuscript is 66

also to study the performance of the MSNC on data 67

generated under gene flow scenarios. In particular, the 68

population genetics community has developed models of 69

reticulate evolution (i.e., admixture) at the population 70

level. An important question is: How do phylogenetic 71
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FIGURE 1. From a phylogenetic network to multi-locus sequences via latent gene genealogies. The multispecies network coalescent
(Yu et al. 2014) is a stochastic process that defines a probability distribution on gene genealogies along with their coalescent times. The
parameters of the process consist of a phylogenetic network topology, inheritance probabilities, divergence times, and population sizes.
Each gene genealogy, when coupled with model of sequence evolution, defines a probability distribution on sequence alignments.

network methods perform on data generated under such1

scenarios? To answer this question, it is important to2

highlight the difference in abstraction employed in the3

MSNC model as opposed to a gene flow model. It4

turns out that this difference was well articulated by5

in (Long 1991), where two models of admixture were6

presented: the intermixture model and the gene flow7

model (Figure 2). The MSNC employs the intermixture
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FIGURE 2. Two admixture models for a hybrid population
(Long 1991). (a) The hybrid population is formed by a single
intermixture event between two parental populations, where
γ is the inheritance probability measuring the proportion of
the parental populations. (b) The hybrid population (recipient)
receives gene flow from a donor population, where α is the
migration rate.

8

model, whereas the population genetics community9

mostly uses the gene flow model (Gronau et al. 2011; Hey10

and Nielsen 2004, 2007; Leaché et al. 2013; Slatkin and11

Maddison 1989; Strasburg and Rieseberg 2010; Whitlock12

and Mccauley 1999). Note that the intermixture model13

also underlies the admixture graph model of (Pickrell14

and Pritchard 2012; Reich et al. 2009) where γ is the15

admixture proportion. In the admixture graph model,16

the branch lengths correspond to genetic drift values that17

measure variation in allele frequency corresponding to 18

random sampling of alleles from generation to generation 19

in a finite-size population. 20

Hudson’s ms program (Hudson 2002) allows for 21

generating data under each of the two admixture 22

models—intermixture and gene flow. In this paper, 23

we generate data under both models and study the 24

performance of inference under the MSNC in both cases. 25

Finally, as the model underlying out method extends 26

the multispecies coalescent to cases that include 27

admixture, our method is applicable to data from 28

different sub-populations, not only different species, and 29

to data where more than one individual per species or 30

sub-population is sampled. The method is implemented 31

and publicly available in the PhyloNet software package 32

(Than et al. 2008). 33

METHODS 34

0.1 Phylogenetic networks and their parameters 35

A phylogenetic X -network, or X -network for short, Ψ 36

is a directed, acyclic graph (DAG) with V (Ψ)={s,r}∪ 37

VL∪VT ∪VN , where 38

• indeg(s)=0 and outdeg(s)=1 (s is a special node, 39

that is the parent of the root node, r); 40

• indeg(r)=1 and outdeg(r)=2 (r is the root of Ψ); 41

• ∀v∈VL, indeg(v)=1 and outdeg(v)=0 (VL are the 42

external tree nodes, or leaves, of Ψ); 43

• ∀v∈VT , indeg(v)=1 and outdeg(v)≥2 (VT are the 44

internal tree nodes of Ψ); and, 45

• ∀v∈VN , indeg(v)=2 and outdeg(v)=1 (VN are 46

the reticulation nodes of Ψ). 47
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The network’s edges, E(Ψ)⊆V ×V , consist of1

reticulation edges, whose heads are reticulation nodes,2

tree edges, whose heads are tree nodes, and special edge3

(s,r)∈E. Furthermore, ` :VL→X is the leaf-labeling4

function, which is a bijection from VL to X . Each node5

in V (Ψ) has a species divergence time parameter and6

each edge in E(Ψ) has an associated population size7

parameter. The edge er(Ψ)=(s,r) is infinite in length so8

that all lineages that enter it coalesce on it eventually.9

Finally, for every pair of reticulation edges e1 and e210

that share the same reticulation node, we associate an11

inheritance probability, γ, such that γe1 ,γe2 ∈ [0,1] with12

γe1 +γe2 =1. We denote by Γ the vector of inheritance13

probabilities corresponding to all the reticulation nodes14

in the phylogenetic network (for each reticulation node,15

Γ has the value for one of the two incoming edge only).16

Given a phylogenetic network Ψ, we use the following17

notation:18

• Ψtop: The leaf-labeled topology of Ψ; that is, the19

pair (V,E) along with the leaf-labeling `.20

• Ψret: The number of reticulation nodes in Ψ.21

Ψret=0 when Ψ is a phylogenetic tree.22

• Ψτ : The species divergence time parameters of Ψ.23

Ψτ ∈(R+)|V (Ψ)|.24

• Ψθ: The population size parameters of Ψ. Ψθ∈25

(R+)|E(Ψ)|
26

We use Ψ to refer to the topology, species divergence27

times and population size parameters of the phylogenetic28

network.29

It is often the case that divergence times associated30

with nodes in the phylogenetic network are measured in31

units of years, generations, or coalescent units. On the32

other hand, branch lengths in gene trees are often in units33

of expected number of mutations per site. We convert34

estimates back and forth between units as follows:35

• Given divergence time in units of expected number36

of mutations per site τ , mutation rate per site per37

generation µ and the number of generations per38

year g, τ/µg represents divergence times in units39

of years.40

• Given population size parameter in units of41

population mutation rate per site θ, 2τ/θ42

represents divergence times in coalescent units.43

Bayesian Formulation and Inference44

The data in our case is a set S ={S1,...,Sm} where Si45

is a DNA sequence alignment from locus i (the bottom46

part in Fig. 1). A major assumption is that there is47

no recombination within any of the m loci, yet there is48

free recombination between loci. The model M consists49

of a phylogenetic network Ψ (the topology, divergence50

times, and population sizes) and a vector of inheritance51

probabilities Γ (the top part in Fig. 1). The topology52

of a phylogenetic network is a rooted, directed, acyclic 53

graph, whose leaves are labeled by the taxa under study. 54

Every node in the network has at most two parents, 55

and nodes with two parents are called reticulation nodes. 56

Associated with every internal node of the phylogenetic 57

network is a divergence time parameter (the leaves are all 58

assumed to be at time 0). Associated with every branch 59

of the network, including one incident into the root, 60

is a population size parameter. Furthermore, associated 61

with the branches coming into reticulation nodes are the 62

inheritance probabilities given by Γ. 63

The posterior of the model is given by 64

p(M |S ) ∝ p(S |M )p(M )
= p(M )

∏m
i=1

∫
Gp(Si|g)p(g|M )dg,

(0.1)

where the integration is taken over all possible gene 65

trees (the middle part in Fig. 1). The term p(Si|g) 66

gives the gene tree likelihood, which is computed using 67

Felsenstein’s algorithm (Felsenstein 1981) assuming 68

a model of sequence evolution, and p(g|M ) is the 69

probability density function for the gene trees, which 70

was derived for the cases of species tree and species 71

network in (Rannala and Yang 2003) and (Yu et al. 72

2014), respectively. 73

The integration in Eq. (0.1) is computationally 74

infeasible except for very small data sets. Furthermore, in 75

many analyses, the gene trees for the individual loci are 76

themselves a quantity of interest. Therefore, to obtain 77

gene trees, we sample from the posterior as given by 78

p(Ψ,Γ,G|S) ∝ p(M )
∏m
i=1p(Si|gi)p(gi|M )

= p(Ψ)p(Γ)
∏m
i=1p(Si|gi)p(gi|Ψ,Γ),

(0.2)

where G=(g1,...,gm) is a vector of gene trees, one 79

for each of the m loci. This co-estimation approach is 80

adopted by the two popular Bayesian methods ∗BEAST 81

(Heled and Drummond 2010) and BEST (Liu 2008), both 82

of which co-estimate species trees (hybridization is not 83

accounted for) and gene trees. 84

The Likelihood Function 85

Felsenstein (Felsenstein 1981) introduced a pruning
algorithm that efficiently calculates the likelihood of gene
tree g and DNA evolution model parameters Φ as

p(S|g,Φ)=

l∏
i=1

p(si|g,Φ),

where si is i-th site in S, and

p(si|g,Φ)=p(si|gtop,gτ ,π,q,µ).

Here, gtop is the tree topology, gτ is the divergence 86

times of the gene tree, π={πA,πT ,πC ,πG} is a vector 87

of equilibrium frequencies of the four nucleotides, q= 88

{qAT ,qAC ,qAG,qTC ,qTG,qCG} is a vector of substitution 89

rates between pairs of nucleotides, and µ is the mutation 90

rate. Over a branch j whose length (in expected number 91

of mutations per site) is tj , the transition probability is 92

calculated as eµqtj . In the implementation, we use the 93
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BEAGLE library (Ayres et al. 2011) for more efficient1

implementation of Felsenstein’s algorithm.2

Yu et al. (Yu et al. 2012, 2013a, 2014) fully derived3

the mass and density functions of gene trees under the4

multispecies network coalescence, where the lengths of a5

phylogenetic network’s branches are given in coalescent6

units. Here, we derive the probability density function7

(pdf) of gene trees for a phylogenetic network given by8

its topology, divergence/migration times and population9

size parameters following (Rannala and Yang 2003; Yu10

et al. 2014). Coalescence times in the (sampled) gene11

trees posit temporal constraints on the divergence and12

migration times of the phylogenetic network.13

We use τΨ(v) to denote the divergence time of node14

v in phylogeny Ψ (tree or network). Given a gene15

tree g whose coalescence times are given by τ ′ and a16

phylogenetic network Ψ whose divergence times are given17

by τ , we define a coalescent history with respect to times18

to be a function h :V (g)→E(Ψ), such that the following19

condition holds:20

• if (x,y)∈E(Ψ) and τΨ(x)>τg(v)≥τΨ(y), then21

h(v)=(x,y).22

• if r is the root of Ψ and τg(v)≥τΨ(r), then h(v)=23

er(Ψ).24

The quantity τg(v) indicates at which point of branch25

(x,y) coalescent event v happens. We denote the set of26

coalescent histories with respect to coalescence times for27

gene tree g and phylogenetic network Ψ by HΨ(g).28

Given a phylogenetic network Ψ, the pdf of the gene29

tree random variable is given by30

p(g|Ψ,Γ)=
∑

h∈HΨ(g)

p(h|Ψ,Γ), (0.3)

where p(h|Ψ,Γ) gives the pdf of the coalescent history31

(with respect to divergence times) random variable.32

Consider gene tree g for locus j and an arbitrary33

h∈HΨ(g). For an edge b=(x,y)∈E(Ψ), we define Tb(h)34

to be a vector of the elements in the set {τg(w) :w∈35

h−1(b)}∪{τΨ(y)} in increasing order. We denote by36

Tb(h)[i] the i-th element of the vector. Furthermore, we37

denote by ub(h) the number of gene lineages entering38

edge b and vb(h) the number of gene lineages leaving39

edge b under h. Then we have40

p(h|Ψ,Γ)=∏
b∈E(Ψ)

[∏|Tb(h)|−1
i=1

2
θb
e
−( 2

θb
)(ub(h)−i+1

2 )(Tb(h)i+1−Tb(h)i)
]

×e−( 2
θb

)(vb(h)
2 )(τΨ(b)−Tb(h)|Tb(h)|)×Γ

ub(h)
b ,

(0.4)
where θb=4Nbµ and Nb is the population size41

corresponding to branch b, µ is the mutation rate per-42

site per-generation, and Γb is the inheritance probability43

associated with branch b.44

Prior Distributions 45

We extended the prior of phylogenetic network 46

composed of topology and branch lengths in (Wen et al. 47

2016a) to phylogenetic networks composed of topology, 48

divergence times and population sizes, as given by Eq. 49

(0.5), 50

p(Ψ|ν,δ,η,ψ)=p(Ψret|ν)×p(Ψtop|Ψret,Ψτ ,η)

×p(Ψτ |δ)×p(Ψθ|ψ)
(0.5)

where p(Ψret|ν), the prior on the number of reticulation 51

nodes, and p(Ψtop|Ψret,Ψτ ,η), the prior on the diameters 52

of reticulation nodes, were defined in (Wen et al. 2016a). 53

It is important to note here that if Ψtop does not follow 54

the phylogenetic network definition, then p(Ψ|ν,δ,η,ψ)= 55

0. This is crucial since, in the MCMC kernels we describe 56

below, we allow the moves to produce directed graphs 57

that slightly deviate from the definition; in this case, 58

having the prior be 0 guarantees that the proposal is 59

rejected. Using the strategy, rather than defining only 60

“legal” moves simplifies the calculation of the Hastings 61

ratios. See more details below. 62

Rannala and Yang used independent Gamma 63

distributions for time intervals (branch lengths) instead 64

of divergence times. However, in the absence of 65

any information on the number of edges of the 66

species network as well as the time intervals, it is 67

computationally intensive to infer the hyperparameters 68

of independent Gamma distributions. Currently, we a 69

uniform distribution (as in BEST (Liu 2008)). 70

We assume one population size per edge, including 71

the edge above the root. Population size parameters are 72

Gamma distributed, θb∼Γ(2,ψ), with a mean 2ψ and a 73

shape parameter of 2. In the absence of any information 74

on the population size, we use the noninformative 75

prior Pψ(x)=1/x for hyperparameter ψ (Heled and 76

Drummond 2010). The number of elements in θ is 77

|E(Ψ)|+1. To simplify inference, our implementation 78

also supports a constant population size across all 79

branches, in which case θ contains only one element. 80

For the prior on the inheritance probabilities, we use 81

Γb∼Beta(α,β). Unless there is some specific knowledge 82

on the inheritance probabilities, a uniform prior on 83

[0,1] is adopted by setting α=β=1. If the amount 84

of introgressed genomic data is suspected to be small 85

in the genome, the hyper-parameters α and β can be 86

appropriately set to bias the inheritance probabilities to 87

values close to 0 and 1 (a U-shaped distribution). 88

The RJMCMC Sampler 89

As computing the posterior distribution given by Eq. 90

(0.2) is computationally intractable, we implement a 91

Markov chain Monte Carlo (MCMC) sampling procedure 92

based on the Metropolis-Hastings algorithm. In each 93

iteration of the sampling, a new state (Ψ′,Γ′,G′) is 94

proposed and either accepted or rejected based on the 95

Metropolis-Hastings ratio r that is composed of the 96

likelihood, prior, and Hastings ratios. When the proposal 97
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changes the dimensionality of the sample by adding a1

new reticulation to or removing an existing reticulation2

from the phylogenetic network, the absolute value of the3

determinant of the Jacobian matrix is also taken into4

account, which results in a reversible-jump MCMC, or5

RJMCMC (Green 1995, 2003).6

Our sampling algorithm employs three categories7

of moves: One for sampling the phylogenetic network8

and its parameters, one for sampling the inheritance9

probabilities, and one for sampling the gene trees. To10

propose a new state of the Markov chain, one element11

from (Ψ,γ1,...,γΨret ,g1,...,gm) is selected at random,12

then a move from the corresponding category is applied.13

The workflow, design and full derivation of the Hastings14

ratios of the moves are given in Supplementary Materials.15

We implemented our method in PhyloNet (Than et al.16

2008), a publicly available, open-source software package17

for phylogenetic network inference and analysis.18

RESULTS19

Performance on Data Simulated Under the20

Intermixture Model21

We used the phylogenetic nework shown in Fig. 3 as22

the model species phylogeny. The scale parameter of the

0.6sE-2

0.25

BA C D E

1.6sE-2

1.2sE-2

0.8sE-2

0.4sE-2

0.8sE-2

1.6E-2

FIGURE 3. A model phylogenetic network used to generate
simulated data. The divergence times in units of expected number
of mutations per site, the population size parameter in units of
population mutation rate per site, and the inheritance probability
are marked in red, green, and purple, respectively. Parameter s is
used to scale the divergence times.

23

divergence times s was varied to take on values in the set24

{0.1,0.25,0.5,1.0}. Setting s=0.1 results in very short25

branches and, consequently, the hardest data sets on26

which to estimate parameters. Setting s=1.0 results in27

longer branches and higher signal for a more accurate28

estimate of the parameter values. It is important to29

note that the topology, reticulation event, divergence30

times (with s=1.0) and population size are inspired31

by the species phylogeny recovered from the Anopheles32

mosquitoes data set (Fontaine et al. 2015; Wen et al.33

2016b). For each setting of the four settings of s values,34

we simulated 20 data sets with 128 independent loci. For35

each of those 20 data sets, the program ms (Hudson 2002)36

was used to simulate the gene trees and the program Seq-37

gen (Rambaut and Grassly 1997) was used to generate38

sequence alignments down the gene trees under the Jukes39

Cantor model. Sequence alignments were generated with40

lengths of 250, 500, and 1000 sites. To vary the number 41

of loci used in the inference, we produced data sets with 42

32, 64, and 128 loci by sampling loci without replacement 43

from the full data set of 128 loci. Each of these sequence 44

data sets was then used as input to the inference method. 45

For each data set, we ran an MCMC chain of 8×106
46

iterations with 3×106 burn-in. One sample was collected 47

from every 5,000 iterations, resulting in a total of 1,000 48

collected samples. We summarized the results based on 49

20,000 samples from 20 replicates for each of the 36 50

simulation settings (four values of s, three sequence 51

lengths, and three numbers of loci). 52

In assessing the performance of our method, we 53

evaluated the estimates obtained for the various 54

parameters of interest: divergence times, population size, 55

the number of reticulations, and the topology of the 56

inferred species phylogeny. Fig. 4 shows the estimates 57

obtained for the divergence time at the root of the 58

network. Three observations are in order. First, for any

1.5e-03
1.8e-03
2.1e-03
2.4e-03

0
.1

SeqLen=250 500 1000

2.9e-03
3.8e-03
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5.6e-03

0
.2
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S
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1
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FIGURE 4. Divergence time estimates at the root under
different values of the scaling parameter s (different rows), sequence
lengths (different columns), and numbers of loci (three values
within each panel). The dashed line indicates the true value in
the model network.

59

combination of sequence length and scaling parameter 60

value, the divergence time estimate converges to the true 61

value as the number of loci increases. Second, for any 62

combination of number of loci and scaling parameter 63

value, the divergence time estimate converges to the 64

true value. Third, the estimates are relatively poor only 65

under the extreme settings of scaling parameter value 66

0.1 and sequence length 250. In this case, the signal in 67

the sequence data is too weak to obtain good estimates. 68

However, it is worth noting that even under this setting, 69

using 128 loci produces a very accurate estimate of the 70

divergence time. 71

Fig. 5 shows the estimates obtained for the population 72

mutation rate parameter (one value across all branches 73

of the species network was assumed). The results show 74

very similar trends to those obtained for the divergence 75

time estimates, with the main difference being that the 76

estimates now are very accurate even for the hardest of 77

cases: s=0.1 and sequence length 250, regardless of the 78

number of loci used. 79
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FIGURE 5. Population mutation rate estimates under different
values of the scaling parameter s (different rows), sequence lengths
(different columns), and numbers of loci (three values within each
panel). The dashed line indicates the true value in the model
network.

The results are quite different when it comes to1

estimating the number of reticulations and the topology2

of the phylogenetic network itself. Fig. 6 shows the3

estimates of the number of reticulations under different4

settings. As the figure clearly shows, under the case of
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FIGURE 6. The number of reticulations inferred under
different simulation conditions. The model network has a single
reticulation.

5

extremely short branches (s=0.1), the method recovers6

a tree; that is, it estimates the number of reticulations7

to be 0, regardless of the number of loci or sequence8

length used. Here, the signal is too weak to recover9

any reticulation. In the case of slightly longer branches10

(s=0.25), the estimate of the number of reticulations11

becomes slightly more accurate when the sequences are12

long and 128 loci are used. Given the observed trend, the13

method could recover the true number of reticulations if14

a thousand or so loci are used. In the case of s=0.5, a15

fast convergence towards the true number is observed16

as the number of loci increases. It is worth pointing17

out that, in the case of s=0.5, increasing the number18

of loci, even when the sequences are very short, is 19

much more advantageous than increasing the sequence 20

lengths of the individual loci. It is also important to 21

note here that in analyzing biological data sets, one 22

cannot use longer sequences without risking violating the 23

recombination-free loci assumption. In the case of s=1.0, 24

the method does very well at estimating the number of 25

reticulations. Finally, observe that the method almost 26

never overestimates the number of reticulations on these 27

data sets. 28

In assessing the quality of the estimated network 29

topology itself, we analyzed the recovered networks in 30

two ways. First, we compared the inferred network to the 31

true network using a topological dissimilarity measure 32

(Nakhleh 2010b). Second, when the method infers a tree, 33

rather than a network, we compared the tree to the 34

“backbone tree” of the true network (the tree resulting 35

from removing the arrow in Fig. 3) using the Robinson- 36

Foulds metric (Robinson and Foulds 1981). The latter 37

comparison allows us to answer the question: When the 38

method estimates the species phylogeny to be a tree, 39

how does this tree compare to the backbone tree of the 40

true network? Fig. 7 shows the results. The results in 41

terms of the topological difference between the inferred 42

and true networks parallel those that we discussed above 43

in terms of the estimates of the number of reticulations: 44

Poor accuracy and no sign of convergence to the true 45

network in cases of very small scaling parameter values, 46

and very good accuracy and fast convergence to accurate 47

estimates in cases of larger scaling parameter values. 48

However, the topological difference between the inferred 49

trees (in the cases where trees were inferred) and the 50

backbone tree reveal an important insight: When the 51

method fails to recover the true network, it does a very 52

good job at recovering the backbone tree of the true 53

network. 54
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FIGURE 7. The topological difference between the true
and inferred networks in blue and the Robinson-Foulds distance
between the inferred tree (if a network is inferred, this case is not
included) and the backbone tree of the true network.

Contrasting the Performance on Data Simulated Under1

the Intermixture and Gene Flow Models2

As we discussed above and illustrated in Fig. 2,3

intermixture and gene flow provide two different abstract4

models of reticulation. Furthermore, the program ms5

(Hudson 2002) allows for generating data under models.6

While the MSNC is based on an intermixture model, we7

study here how it performs on data simulated under a8

gene flow model. We set up the experiment so that data9

are generated under the same phylogenetic networks and10

their parameters, yet under the scenarios of intermixture11

and gene flow separately. Furthermore, in this part, we12

assess the performance when multiple reticulation events13

occur between the same pair of species—a very realistic14

scenario in practice. Fig. 8 shows the six phylogenetic15

networks we used to generate data.
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FIGURE 8. True phylogenetic histories with intermixture
and gene flow models. Recurrent reticulations between non-sister
taxa (a,b), a single reticulation between non-sister taxa (c,d), and
a single reticulation between sister taxa (e,f) is captured under
both the intermixture model (top) and gene flow model (bottom).
Parameters h1 and h2 denote divergence times (in coalescent
units), ti parameters denote intermixture times, mti parameters
denote start/end of migration epochs, γ is the inheritance
probability, and mr is the migration rate.

16

For each simulation setting, we simulated 20 data 17

sets with 200 1-kb loci (in this part, we did not vary 18

the sequence lengths and numbers of loci). We set the 19

population mutation rate at 0.02 across all the branches. 20

Furthermore we set the inheritance probability γ and 21

the migration rate mr each to 0.20. The MCMC settings 22

were set as discussed above. 23

We set h1 =9, h2 =6. For the intermixture model (Fig. 24

8(a)), we set t2 =3, and varied (t1,t3) to take on the 25

values (4,2), (5,1), and (6,0) so that the elapsed time, 26

denoted by ∆t, between subsequent reticulation events 27

is 1, 2, or 3. For the gene flow model (Fig. 8(b)), we 28

set (mt1,...,mt6) to (6,4,4,2,2,0) and (6,5,3.5,2.5,1,0), 29

so that the duration of each gene flow epoch, denoted by 30

∆mt, is either 1 or 2. Notice that, under our setting, the 31

time elapsed between two consecutive gene flow epochs 32

is smaller for ∆mt=2 than for ∆mt=1. 33

Table 1 shows the population mutation rates, 34

divergence times, and numbers of reticulations estimated 35

by our method on data generated under the models of 36

Fig. 8(a) and Fig. 8(b). As the results show, the method

TABLE 1. Estimated population mutation rates (θ),
divergence times (h1 and h2), and numbers of reticulations (#reti)
as a function of varying ∆t in the model of Fig. 8(a) and ∆mt in
the model of Fig. 8(b). The divergence times were estimated in
units of expected number of mutations per site and are reported
in coalescent units by dividing by θ/2=0.01.

Case θ h1 h2 #reti
∆t=1 2.2±0.2e−2 8.9±0.1 5.9±0.1 1.2±0.4
∆t=2 2.2±0.2e−2 8.9±0.1 5.9±0.1 2.0±0.0
∆t=3 2.1±0.3e−2 9.0±0.1 6.0±0.1 2.6±0.5
∆mt=1 2.3±0.3e−2 8.9±0.1 6.0±0.1 2.1±0.3
∆mt=2 2.3±0.3e−2 8.9±0.1 6.9±0.1 2.0±0.1

37

performs very well in terms of estimating the divergence 38

times and population mutation rates, regardless of 39

whether the data was generated under an intermixture 40

model or a gene flow model. Furthermore, for these two 41

parameters, the estimates are stable while varying the 42

elapsed times between consecutive reticulation events. 43
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As for the estimated number of reticulations, it1

becomes more accurate as the elapsed times between2

consecutive reticulations is larger. To better understand3

the factors that affect the detectability of reticulations,4

we plotted histograms of the true and estimated5

coalescent times of the most recent common ancestor6

(MRCA) of alleles from B and C in Fig. 9. As Fig. 8(a)
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FIGURE 9. Histograms of the true (top) and estimated
(bottom) coalescent times (in coalescent units) of the MRCA of
alleles from B and C on data generated under the models of Fig.
8(a) and Fig. 8(b).

7

and Fig. 8(b) show, the coalescent times of alleles from B8

and C would form a mixture of four distributions: three9

due to the three reticulation events, and one above the10

root of the phylogenetic network.11

As the left three columns of panels in the figure12

show, under an intermixture model, as ∆t increases,13

the signal for a mixture of four distributions of (A,B)14

coalescent times becomes much stronger, thus pointing15

to three reticulations in addition to the coalescent events16

above the root of the phylogeny. This is why, under the17

intermixture model, the method’s performance in terms18

of the estimated number of reticulations improves as ∆t19

increases. However, this is not the case under the gene20

flow model (the right two columns of panels in the figure).21

It is important to note that for ∆mt=2, the three gene22

flow epochs actually form one continuous epoch of gene23

flow from time mt1 to mt6.24

Fig. 10 shows results similar to those reported in Fig.25

9, with the only difference being that these are the26

coalescent times from all 4,000 loci generated from the27

20 data sets of 200 loci each. Effectively, this is the
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FIGURE 10. Histograms of the true (top) and estimated
(bottom) coalescent times (in coalescent units) of the MRCA of
alleles from B and C on 4,000 loci generated under the models of
Fig. 8(a) and Fig. 8(b).

28

signal in a data set of 4,000 independent loci. Clearly, 29

the signal is much stronger than in data sets of 200 30

loci, and all reticualtions would be recoverable under the 31

intermixture model for ∆t=2,3 and for the gene flow 32

model for ∆mt=1. 33

We also ran simulations where we varied the number 34

of individuals sampled from species B (we sampled 1, 3, 35

and 5 individuals). The results improve as the number 36

of individuals increases from 1 to 3, but no discernible 37

improvement is achieved under our simulation settings 38

when the number of individual is increased to 5. Results 39

are given in the Supplementary Materials. 40

To assess the performance of our method on the 41

simpler case of a single reticulation event, we considered 42

the networks in Fig. 8(c) and Fig. 8(d), set h1 =2.5, 43

h2 =1.5, and mt1 =h2, and varied t,mt2∈{1,0}. 44

As the results in Table 2 demonstrate, our 45

method estimated the population mutation rate θ, 46

the divergence times h1 and h2, and the inheritance 47

probability/migration rate very accurately under all 48

cases. A single reticulation was detected for all cases of

TABLE 2. Estimated population mutation rates (θ),
divergence times (h1 and h2), inheritance/migration rates, and
numbers of reticulations (#reti) as a function of varying t in
the model of Fig. 8(c) and mt2 in the model of Fig. 8(d). The
divergence times were estimated in units of expected number of
mutations per site and are reported in coalescent units by dividing
by θ/2=0.01.

Case θ h1 h2 γ (mr) #reti
t=1 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.20±0.05 1.0±0.0
t=0 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.21±0.04 1.0±0.0

mt2 =1 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.18±0.05 1.0±0.0
mt2 =0 2.2±0.2e−2 2.5±0.1 1.5±0.1 0.17±0.04 1.0±0.0

49

intermixture and gene flow. We plotted the histograms 50

of the true and estimated coalescent times of the MRCA 51

of alleles from B and C in Fig. 11. As the figure shows,
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FIGURE 11. Histograms of the true (top) and estimated
(bottom) coalescent times (in coalescent units) of the MRCA of
alleles from B and C on data generated under the models of Fig.
8(c) and Fig. 8(d).

52

the distributions of estimated coalescent times match the 53

distributions of true coalescent times very well. 54

Finally, we assessed the performance of our method 55

on cases where the reticulation event involves sister taxa. 56

Fig. 8(e) and Fig. 8(f) show the cases we considered, with 57

setting h1 =2.5 and h2 =1.5, and varying t,mt∈{1,0}. As 58



“main-biorxiv” — 2017/4/26 — 10:45 — page 9 — #9i
i

i
i

i
i

i
i

0000 Wen and Nakhleh 9

the results in Table 3 demonstrate, our method obtained1

very accurate estimates of the various parameters under2

t=0 and mt=0. Under the cases of intermixture with t=

TABLE 3. Estimated population mutation rates (θ),
divergence times (h1 and h2), inheritance/migration rates, and
numbers of reticulations (#reti) as a function of varying t in the
model of Fig. 8(e) and mt in the model of Fig. 8(f). The divergence
times were estimated in units of expected number of mutations per
site and are reported in coalescent units by dividing by θ/2=0.01.

Case θ h1 h2 γ #reti
t=1 2.0±0.2e−2 2.5±0.1 1.3±0.1 NA 0.0±0.0
t=0 2.0±0.2e−2 2.5±0.1 1.5±0.0 0.21±0.06 1.0±0.0
mt=1 2.0±0.2e−2 2.5±0.1 1.4±0.1 NA 0.0±0.0
mt=0 2.2±0.2e−2 2.5±0.1 1.5±0.1 0.11±0.06 1.0±0.0

3

1 and gene flow with mt=1, our method did not detect4

the reticulation, which resulted in an underestimation5

of h2. In the case of mt=0, the migration rate was6

severely underestimated, most likely due to the short7

time interval between the migration and divergence8

events between A and B.9

We plotted the histograms of the true and estimated10

coalescent times of the MRCA of alleles from A and11

B in Fig. 12. When t=1 and mt=1, the signal of
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FIGURE 12. Histograms of the true (top) and estimated
(bottom) coalescent times (in coalescent units) of the MRCA of
alleles from A and B on data generated under the models of Fig.
8(e) and Fig. 8(f).

12

reticulation is very low, which explains the failure of our13

method to detect it. In the cases of t=0 and mt=0, the14

distributions of estimated coalescent times match those15

of true coalescent times very well.16

Performance on Biological Data Sets17

Analysis of a bread wheat data set The bread wheat18

data set consists of three subgenomes of Triticum19

aestivum, TaA (A subgenome), TaB (B subgenome) and20

TaD (D subgenome), and five diploid relatives Tm (T.21

monococcum), Tu (T. urartu), Ash (Ae. sharonensis),22

Asp (Ae. speltoides) and At (Ae. tauschii). Marcussen23

et al. found that each of the A and B lineages is24

more closely related to D than to each other, as25

represented by the phylogenetic network in Fig. 13(a)26

inferred using the parsimony approach of (Yu et al.,27

2011) given gene tree topologies of TaA, TaB, and TaD.28

Based on this network, they proposed an evolutionary29

history of Triticum aestivum, where about 7 million 30

years ago the A and B genomes diverged from a 31

common ancestor and 1∼2 million years later these 32

genomes gave rise to the D genome through homoploid 33

hybrid speciation (Marcussen et al., 2014). We fed

(a) (b)

A D B
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~5.5

A D B

 ~8.5
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~7.2 0.25±0.06

FIGURE 13. Phylogenetic history of the bread wheat data
of (Marcussen et al., 2014). (a) The phylogenetic network inferred
using the parsimony approach of (Yu et al., 2011) given gene tree
topologies of TaA, TaB, and TaD. The times are estimated by gene
tree analyses. (b) The phylogenetic network inferred by our method
given 68 loci of eight genomes. The times at the internal nodes are
in millions of years.

34

68 loci of the eight genomes into our method. The 35

only network in the 95% credible set is identical to 36

the one in (Marcussen et al., 2014), shown in Fig. 37

13(b) where A, B, and D represent ((TaA,Tu),Tm), 38

(TaB,Asp), and ((TaD,At),Ash), respectively. Assuming 39

a mutation rate of 1×10−9 per-site per-generation 40

and 1 year per generation, a plausible evolutionary 41

history posits that a common ancestor of A, B, and 42

D started differentiation ∼8.5 Ma into (A,D) and 43

B genome lineages. Subsequently, (A,D) speciated at 44

∼7 Ma into A and D lineages. The hybridization 45

occurred around 4-4.5 Ma from B to D genome lineages. 46

Although both proposed evolutionary histories contain 47

one hybridization, phylogenetic networks with two or 48

more reticulations were inferred on larger data sets by 49

our method and by the authors of the original study 50

(Marcussen et al., 2014). See Supplementary Materials 51

for full details. 52

Analysis of a yeast data set The yeast data set of 53

(Rokas et al., 2003) consists of 106 loci from seven 54

Saccharomyces species, S. cerevisiae (Scer), S. paradoxus 55

(Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. 56

bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu). 57

Rokas et al. (Rokas et al., 2003) reported on extensive 58

incongruence of single-gene phylogenies and revealed the 59

species tree from concatenation method (Fig. 14(a)). 60

Edwards et al. (Edwards et al., 2007) reported as the 61

two main species trees and gene tree topologies sampled 62

from BEST (Liu, 2008) the two trees shown in Fig. 14(a- 63

b). The other gene tree topologies (Fig. 14(c)) exhibited 64

weak phylogenetic signals among Sklu, Scas and the 65

other species. Bloomquist and Suchard (Bloomquist and 66

Suchard, 2010) reanalyzed the data set without Sklu 67

since it added too much noise to their analysis. Their 68
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FIGURE 14. Results on the yeast data set of (Rokas et al., 2003). (a) The species tree inferred using the concatenation method
(Rokas et al., 2003) and the main species tree and gene tree topology sampled using BEST (Edwards et al., 2007). (b) The second most
frequently sampled species and gene tree topology by BEST (Edwards et al., 2007). (c) Many other gene tree topologies were sampled
by BEST (Edwards et al., 2007), indicating weak phylogenetic signals among Sklu, Scas, and the rest of the species. (d) A representative
phylogenetic network inferred by our method on all 106 loci. (e) A representative phylogenetic network inferred by our method on the
28 loci with strong phylogenetic signal (see Supplementary Materials). (f) The single phylogenetic network inferred using all 106 loci
from the five species Scer, Spar, Smik, Skud, Sbay.

analysis resulted in many horizontal events between Scas1

and the rest of the species because the Scas lineage-2

specific rate variation is much stronger than that of the3

other species. Yu et al. (Yu et al., 2013b) analyzed the4

106-locus data set restricted to the five species Scer,5

Spar, Smik, Skud, and Sbay and identified a maximum6

parsimony network that supports a hybridization from7

Skud to Sbay with inheritance probability of 0.38.8

Analyzing the 106-locus data set using our method, the9

95% credible set contains many topologies with similar10

hybridization patterns; the representative network is11

shown in Fig. 14(d). All the previous findings are12

encompassed by the networks inferred by our method.13

The two hybridizations between Sklu and Scas (green14

edges in 14(d)) indicate the weak phylogenetic signals15

among Sklu, Scas and the rest of the species. The16

hybridization from Scas to the other species except for17

Sklu (red edge in 14(d)) captures the stronger lineage-18

specific rate variation in Scas. Finally, the hybridization19

from Skud to Sbay (blue edge in 14(d)) resolves20

the incongruence between the two main species tree21

topologies in 14(a-b).22

We further investigated the phylogenetic signal in23

each locus by counting the number of internal branches24

in the 70% majority-rule consensus of 100 maximum25

likelihood bootstrap trees. We found that only 28 out of26

the 106 loci contain four internal branches, and no locus27

had a consensus tree with all five internal branches. A28

representative phylogenetic network in the 95% credible29

set given these 28 loci, shown in Fig. 14(e), indicates the30

weak phylogenetic signals among Sklu, Scas and the rest31

of the species. We then analyzed the 106-locus data set32

restricted to the five species Scer, Spar, Smik, Skud, and33

Sbay. The phylogenetic signal in this data set is very34

strong—the consensus trees of 99 out of the 106 loci35

contain two internal branches. The MPP phylogenetic36

network in Fig. 14(f) contains the hybridization from37

Skud to Sbay, which is identical to the sub-network in38

14(d). See Supplementary Materials for full details. In39

summary, analysis of the yeast data set demonstrates the40

effect of phylogenetic signal in the individual loci on the41

inference and the care that must be taken when selecting42

loci of analysis of reticulate evolutionary histories.43

Analysis of a mosquito data set The Anopheles 44

mosquitoes (An. gambiae complex) data set of (Fontaine 45

et al., 2015) consists of genome alignment of An. 46

gambiae (G), An. coluzzii (C), An. arabiensis (A), An. 47

quadriannulatus (Q), An. merus (R) and An. melas 48

(L). Fontaine et al. reported on extensive introgressions 49

in the An. gambiae complex (Fontaine et al., 2015). 50

Gene tree analyses were performed to detect the donor, 51

recipient and migration times of the reticulation edges. 52

Three major introgressions were added to the species tree 53

backbone recovered from the X chromosome, resulting 54

in a plausible phylogenetic network. More recently, Wen 55

et al. (Wen et al., 2016b) reanalyzed the data set using 56

the maximum likelihood method of (Yu et al., 2014) and 57

then using the Bayesian method of (Wen et al., 2016a) 58

and provided new insights into the evolutionary history 59

of the An. gambiae complex. 60

Fontaine et al. inferred gene trees on 50-kb genomic 61

windows using maximum likelihood and tabulated and 62

analyzed the frequencies of distinct gene tree topologies 63

across the chromosomes. However, such large genomic 64

windows are very likely to include recombination. Indeed, 65

a simple comparison of the 70% majority-rule consensus 66

of 100 maximum likelihood bootstrap trees on the entire 67

window against individual trees inferred from smaller 68

regions of the same window highlight this issue (see 69

Supplementary Materials for details). 70

To avoid using such large genomic windows, we 71

randomly sampled 228 1-kb regions from the X 72

chromosome. We fed the 228-locus data set into ∗BEAST 73

and our method. Our method produces a phylogenetic 74

network with many reticulations on this data set. 75

We assessed the phylogenetic signal in each locus by 76

computing the number of internal branches in the 77

70% majority-rule consensus of 100 maximum likelihood 78

bootstrap trees. We found that only 59 out of the 228 79

loci contain three internal branches, and no locus had 80

a consensus tree with all four internal branches. The 81

MPP species tree inferred by ∗BEAST (Fig. 15(a)) 82

groups (A,Q) with (C,G) to account for heterogeneity 83

across loci by means of ILS alone. Analyzing those 59 84

loci data set using our method, the 95% credible set 85

contains three topologies grouping (C,G) with R and 86

positing hybridization from A, Q, or (A,Q) to (C,G) with 87
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inheritance probability 0.33 (Fig. 15(b)). The divergence1

times of the MRCAs of (C,G), (A,Q), (A,Q,C,G),2

and (R,C,G) inferred by ∗BEAST are similar to those3

inferred by our method. The minimum coalescent times4

of clades (C,G), (A,Q), (A,Q,C,G) and (R,C,G) co-5

estimated by ∗BEAST (green) and our method (blue)6

in Fig. 15(c) further confirm this statement. However,7

∗BEAST obtains lower estimates of the divergence times8

of the MRCA of (R,L) (or the root) to reconcile the9

divergence times of (R,C,G). BEAST, which infers gene10

trees from sequences without regard to a species tree,11

significantly underestimates all the coalescent times12

(sandy brown bars in Fig. 15(c)). For the autosomes,13

we randomly sampled 382 1-kb regions with strong14

phylogenetic signal and fed the data set into our method.15

The MPP phylogenetic network shown in Fig. 15(e)16

groups Q with R, and reveals hybridization from (A,C,G)17

to Q. This network can be embedded in the phylogenetic18

network inferred by the Bayesian method of (Wen et al.,19

2016a) given gene tree topologies from 2791 regions with20

varying lengths of 1∼20-kb from the autosomes (Fig.21

15(d)). Using data with strong phylogenetic signal would22

significantly reduce the complexity of the model. See23

Supplementary Materials for details.24

DISCUSSION25

To conclude, we have devised a Bayesian framework for26

sampling the parameters of the MSNC model, including27

the species phylogeny, gene trees, divergence times, and28

population sizes, from sequences of multiple independent29

loci. Our work provides the first general framework for30

Bayesian phylogenomic inference from sequence data in31

the presence of hybridization. The method is publicly32

available in the open-source software package PhyloNet33

(Than et al. 2008). We demonstrate the utility of our34

method on simulated data and three biological data35

sets. Our results demonstrate several important aspects.36

First, ignoring hybridization when it had occurred results37

in underestimating the divergence times of species and38

overestimating the coalescent times of individual loci.39

Second, co-estimation of species phylogeny and gene40

trees results in more accurate gene tree estimates than41

the inferences of gene trees from sequences directly.42

Third, comparing to existing phylogenetic network43

inference methods (Wen et al. 2016a; Yu et al. 2014)44

that use gene tree estimates as input, our method not45

only estimates more parameters, such as divergence46

times and population sizes, but also estimates more47

accurate phylogenetic networks. Last but not the least,48

the phylogenetic signal in the individual loci on the49

inference must be taken into consideration when selecting50

loci of analysis of reticulate evolutionary histories. In51

particular, when there is low phylogenetic signal in the52

data, tree inference methods tend to result in unresolved53

trees. In the case of network methods, the counterpart54

to an unresolved tree is an overly complex network.55

In other words, while low signal is captured by a soft56

polytomy in trees, it is captured by multiple reticulations57

in networks. Therefore, it is very important that the 58

signal in individual loci is carefully assessed in network 59

inference, and indeed, in phylogenomics in general. 60

While the MSNC corresponds naturally to an 61

intermixture model of admixture, we assesses the 62

performance of our model and method on simulated 63

data generated under a gene flow model. Our method 64

performed very well on such data. However, given the 65

nature of our abstract phylogenetic network model, a 66

gene flow epoch is estimated as a single reticulation 67

event. 68

Finally, we identify several directions for further 69

improvements of our proposed approach. First, while 70

priors on species trees, such as the birth-death model, 71

have been developed and employed by inference methods, 72

similar prior distributions on phylogenetic networks are 73

currently lacking. Second, while techniques such as 74

the majority-rule consensus exist for summarizing the 75

trees sampled from the posterior distribution, principled 76

methods for summarizing sampled networks are needed. 77

Last but not least, the sequence data used here, and 78

in almost all phylogenomic analyses, consist of haploid 79

sequences of randomly phased diploid genomes. The 80

effect of random phasing on inferences in general needs 81

to be studied in detail. Furthermore, the model could 82

be extended to work directly on unphased data by 83

integrating over possible phasings (Gronau et al. 2011). 84
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