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Summary 
Many increasingly prevalent diseases share a common risk factor: age. However, little is known about 

pharmaceutical interventions against ageing, despite many genes and pathways shown to be important in 

the ageing process and numerous studies demonstrating that genetic interventions can lead to a healthier 

ageing phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial 

testing on model organisms, where such experiments are possible. To this end, we present a new approach 

to rank drug-like compounds with known mammalian targets according to their likelihood to modulate 

ageing in the invertebrates C. elegans and Drosophila. Our approach combines information on genetic 

effects on ageing, orthology relationships and sequence conservation, 3D protein structures, drug binding 

and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate 

ageing. We provide various lines of evidence for the successful enrichment of our ranking for compounds 

modulating ageing, despite sparse public data suitable for validation. The top ranked compounds are thus 

prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these 

compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier 

human ageing. 

 

Introduction 
Age is a major risk factor for many increasingly prevalent diseases. Thus, understanding the process of 

ageing and finding manipulations leading to a healthier ageing phenotype are highly desirable. Many 

pathways shown to be important in ageing, e.g. the Insulin/IGF-1 signalling pathway, are also central to 

other biological processes and diseases, e.g. cancer or diabetes. Research into these diseases is often 

carried out in mammalian systems or cell lines closely related to humans. In particular, drugs are developed 

mostly for humans and tested in other mammals, where their target proteins are well characterised. 

Several of these mammalian targets have orthologues in invertebrates which are known to be involved in 

ageing. 

While model organisms closely related to humans would be ideal from the standpoint of transferring 

gained knowledge, the length of time required for observing long-term effects and changes in lifespan and 

other differences in ageing phenotypes are often prohibitive, for both ethical and financial reasons. Cell 

cultures are not ideal since mechanisms of cellular senescence are probably distinct from organismal 

ageing. Instead, ageing research is often done in the invertebrate model organisms Caenorhabditis elegans 

and Drosophila melanogaster due to their experimentally more amenable lifespans. Thus, we propose a 

method to transfer knowledge on small-molecule binding from higher organisms, where data on compound 

binding is available, to lower organisms, which are common model organisms in ageing, to enable direct 

testing of the compounds' effects on longevity and ageing. This first step is almost opposite to the more 

common goal of transferring knowledge from lower to higher organisms, e.g. in drug discovery from mice 

and rats to humans. Positive effects on ageing in invertebrates would suggest drugs with potential positive 

effects against human ageing, which would warrant further evaluation in mammalian models. Thus, 

prioritising and testing such compounds in invertebrates could be a first step towards drug-repurposing for 

ageing. Overall, the aim is thus to create a list of compounds rank ordered by decreasing likelihood of 

modulating ageing in C. elegans and D. melanogaster, which incorporates both likely conserved activity as 

well as targets that are likely to ameliorate ageing. 

Here we propose such a ranking procedure based on information on genes and proteins associated with 

ageing in different organisms, homology and sequence conservation between them, 3D-protein structures, 

compound activity information and bioavailability predictions. For each ligand we have produced a report 

card describing the factors which contribute to its score and subsequent ranking. 
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Results 
An overview of our approach to identify and rank those ligands most likely to affect ageing in 

D. melanogaster and C. elegans is shown in Fig 1. We collected genes and proteins implicated in ageing 

from various sources as well as their orthologues for C. elegans, D. melanogaster, M. musculus, 

R. norvegicus, H. sapiens (see Methods for details). This resulted in a total of 13834 UniProt IDs of ageing-

associated proteins (2123 in C. elegans, 1864 in D. melanogaster, 3663 in M. musculus, 1589 in 

R. norvegicus and 4595 in H. sapiens, see supplement S1 for a lists of these IDs). In order to estimate 

whether the compound’s activity might be conserved between orthologues of known structure and 

invertebrate target species, we examined the overall protein conservation, and especially the conservation 

in the binding site. Therefore, we collected information about 3D protein structures and drug-like 

molecules shown to bind them. This large data acquisition procedure resulted in 1480 3D protein structures 

with a bound drug-like ligand. The structure-ligand complexes represent 743 different drug-like compounds 

fulfilling our data requirement criteria binding to 247 different ageing-associated target proteins. 

Next, we proceeded to rank the ligands using properties of the compounds and their target proteins in the 

model organism of interest. We developed an empirical scoring function, with the relevant factors 

multiplicatively linked. In this way, each of the factors is important and cannot be compensated by another 

factor, as would be the case in an additive scoring function. These factors include relevance to ageing, the 

conservation of the protein domain or domains containing the binding site, the conservation of the binding 

site itself, the binding affinity and bioavailability. The resulting base score is then modulated by the 

following additional terms: drug-likeness, according to Lipinski's rule of five, the promiscuity of the 

compound, its approval status as a drug, and the availability to purchase the compound. In the methods 

section we provide the reasoning, technical description and parameter values of each factor and term. 

 

The ranking 
For D. melanogaster, 697 compounds, known to bind an ageing-associated protein or an annotated 

orthologue, were ranked. Compounds scored between 0 (worst) and 1 (best), with a distribution shown in 

Fig. 2A, with the top 15 compounds scoring above 0.91 and the top 10% scoring above 0.81. For C. elegans, 

591 compounds were ranked (Fig. 2B), with the top 15 compounds scoring above 0.56 and the top 10% 

scoring above 0.40. 

The overall lower scores for C. elegans as compared to D. melanogaster originate from two main factors: 

first, the larger evolutionary distance between C. elegans and mammals and, second, the inclusion of the 

bioavailability predictions score, which is often lower than the arbitrary bioavailability substitute used in 

D. melanogaster, for which such data are not available. The bimodal distribution in D. melanogaster is a 

consequence of the ‘ageing implication’ score, which has a complex distribution. In C. elegans the lower 

bioavailability values reduce the total scores to give a single peak. Therefore, rankings rather than absolute 

scores should be compared. Table 1 shows the top 15 ranked compounds for D. melanogaster (A) and 

C. elegans (B), of which six (Fig. 3) are ranked highly in both organisms and described briefly below. Several 

compounds target the same protein and a list of the top 15 compounds targeting different proteins is given 

in supplement S2. For each compound, we provide a report card including ranking, target protein and its 

conservation, a graphical representation, images of the 3D compound-target interaction and some 

additional annotations with links to relevant external resources. The full list of compounds with their 

respective scores and score components for both D. melanogaster and C. elegans and all report cards are 

provided in Supplement S3-S5 and interactively online under https://www.ebi.ac.uk/thornton-

srv/software/repurposing/. 

The six compounds ranked highly in both organisms exemplify some of the most promising compounds 

highlighted by the ranking procedure. All six compounds are protein kinase inhibitors, many of them orally 

available, approved drugs. Others are drug-like probes, not yet approved for the clinic. Despite their 
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common biochemical class, these compounds target a range of different proteins associated with ageing. In 

general, kinases are often highly conserved between even diverse organisms especially in the compound 

binding site, which the table shows are even better conserved than the rest of the protein. These 

compounds rank so highly in part because of the extensive structural work performed for kinases, which is 

essential for this ranking. In contrast structural data for the membrane bound receptors (which are also 

often associated with ageing) is scarce and therefore such targets are rarely identified here. 

STI, also known as Imatinib or Gleevec (Fig. 3A), is an orally available approved drug for treatment of 

multiple cancers, especially Philadelphia chromosome-positive chronic myelogenous leukaemia (CML). It is 

a tyrosine kinase inhibitor targeting a broad range of kinases, amongst which ABL1 is a primary target 

(Fig. 4A). Human ABL1 has been annotated to be involved in ageing in GenAge release 17 (Tacutu et al. 

2013). Since kinases all belong to one family, their inhibitors often bind more than one kinase. For example, 

a second target of Imatinib annotated to be involved in ageing is Mitogen-activated protein kinase 14 

(MK14)(Fig. 4B), also known as Mpk2 or p38a in D. melanogaster, which is annotated in UniProt with the 

GO term for determination of adult lifespan (GO:008340). Additionally, there are alleles of the C. elegans 

orthologue pmk-1, which are annotated as lifespan variants in WormBase (Harris et al. 2014). The Imatinib 

binding sites on ABL1 and on MK14 are very well conserved between human and the invertebrates, 

suggesting a good chance of conserved binding. Additionally, a predicted maximal binding affinity of 

100 nM, in mammals is relatively strong and for C. elegans the bioavailability prediction indicates very likely 

successful bioaccumulation in the worm. 

NIL, also known as Nilotinib or Nexavar (Fig. 3B), is an orally available approved drug for treatment of 

Imatinib-resistant CML. Like Imatinib, it is an inhibitor targeting a broad range of kinases including ABL1. 

Nilotinib also binds to Mitogen-activated protein kinase 11 (MK11), while Imatinib binds to MK14. Since 

MK11 and MK14 are closely related, MK11's role in ageing is implied through the UniProt annotation of the 

common D. melanogaster orthologue Mpk2. Nilotinib has a stronger predicted binding affinity (23 nM) 

than Imatinib and a similarly good predicted bioavailability in C. elegans. However, Nilotinib violates two of 

the Lipinski Rules, resulting in a slightly lower ranking compared to Imatinib. 

BAX, or Sorafenib (Fig. 3C), is another orally available, approved drug for treatment of different cancers, 

including advanced renal cell carcinoma. Sorafenib is a tyrosine kinase inhibitor of several targets including 

the Raf kinases and MK14. While the binding site of Sorafenib on MK14 is partly overlapping with that of 

Imatinib, it makes contact with four more amino acids, and has a similarly strong predicted binding affinity 

(35 nM). However, this is contrasted by less favourable, albeit still reasonable, predicted bioavailability in 

C. elegans and one violated Lipinski rule. 

TAK, also known as Dorsomorphin (Fig. 3D) or compound C, is not an approved drug, but an experimental 

compound (as listed in DrugBank) and available from a number of vendors. Dorsomorphin has been shown 

to inhibit Bone morphogenetic protein (BMP) signalling, causing cancer initiating cells to lose some stem-

cell-like features and induce a proliferation like process (Garulli et al. 2014). Dorsomorphin has also been 

shown to inhibit AMP-activated protein kinase catalytic subunit alpha-2 (Handa et al. 2011)(Fig. 4C), which 

is known as AMPKα or SNF1A in D. melanogaster and as aak-2 in C. elegans. AMPK is a well-known 

intracellular energy sensor, involved in the target-of-rapamycin (TOR) signalling pathway. It has also been 

shown to be involved in ageing in a multitude of experiments in different organism. The binding site is 

completely conserved between human and D. melanogaster and contains only one changed amino acid 

(Y2H) in C. elegans. The predicted binding affinity (63 nM) is quite strong, while the predicted bioavailability 

for C. elegans is only moderate, and no additional information about oral availability is present. 

GVP (Fig. 3E) is classified by DrugBank as an experimental antineoplastic agent and commercially available. 

It inhibits RAC-beta serine/threonine-protein kinase, also known as AKT2 or Protein kinase B beta (Fig. 4D), 

which is a part of the Insulin/IGF-1 and TOR signalling pathways. The C. elegans orthologue akt-2 is 

annotated in UniProt with the term determination of adult lifespan (GO:008340). More specifically, RNAi 

inhibition of Akt in D. melanogaster and akt-1 and akt-2 in C. elegans extends lifespan (Tullet et al. 2008; 

Biteau et al. 2010). The binding site contains 4-5 conservative changes (91% similarity between human and 
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either invertebrate). The predicted binding affinity (23nM) is quite strong, with reasonable predicted 

bioavailability for C. elegans. 

Finally, JNF (Fig. 3F), is also an experimental compound listed in DrugBank and commercially available. It is 

a kinase inhibitor targeting the Mitogen-activated protein kinase 10 (MK10) (Fig. 4E), whose C. elegans 

orthologue jnk-1 is annotated in UniProt with the GO term ‘determination of adult lifespan’. More 

specifically, moderate RNAi of the D. melanogaster orthologue Bsk in adult animals extended lifespan, 

while mutants of C. elegans jnk-1 exhibited decreased lifespan (Oh et al. 2005; Biteau et al. 2010). The 

reasons for the different lifespan effects, besides possible organismal differences, are likely to be a 

detrimental developmental effect in C. elegans jnk-1 mutants as well as a likely dosage dependency of the 

effect of modulating MK10. The predicted binding affinity is relatively strong (120 nM), however the 

predicted bioavailability in C. elegans is significantly lower than for the other compounds described above. 

Overall, these six compounds exemplify the promising candidates for modulating lifespan in both 

D. melanogaster and C. elegans highlighted by the ranking procedure. 

 

Evaluating the ranking 

Modelling & Docking 

In the above high-throughput approach, binding of the compounds to the model organism proteins is 

estimated indirectly, through conservation of sequence. Here we tested this assumption further by 

modelling the orthologues in D. melanogaster and C. elegans for one hit (compound P37 to human MK14) 

and docking the compound directly. P37 is a compound classified by DrugBank as experimental, and does 

not violate any of the Lipinski rules. Its structure was determined by X-ray crystallography in complex with 

human MK14 at 2.10Å (PDB:3GFE, Wurz et al. 2009). The closest homologues in D. melanogaster and 

C. elegans include p38a and pmk-1, respectively, which are 67% and 61% identical. We successfully 

modelled the protein structures of the homologues having removed the P37 ligand before modelling, not 

to bias the modelling procedure. P37 was docked into the two models and their binding affinity was 

predicted 7.65 log Kd/Ki (D. melanogaster), 7.90 log Kd/Ki (C. elegans). This affinity was very similar to that 

predicted from the structure of the human complex: 7.75 log Kd/Ki (Human). This is also evident from a 

superposition of the binding sites of human crystal structure and D. melanogaster or C. elegans protein 

structure model (Fig. 5). The structurally determined conservation in binding is in very good agreement 

with the sequence-based binding site conservation score of 0.951 (D. melanogaster) and 0.914 (C. elegans) 

using the 3D information only to determine the amino acids in contact with the ligand. 

Literature mining for the top ranked compounds 

We conducted a thorough literature search for articles examining any of the top 25 ranked compounds 

with respect to lifespan effects. Searching the PubMed database with the compound names and their 

synonyms in combination with ageing keywords and terms for C. elegans and D. melanogaster resulted in 

38 hits. Querying the PubMed Central database of full text articles resulted in 473 relevant hits of which 

only four publications describe relevant lifespan experiments, with variable results.  

Liu et al. (2011) tested Sorafenib (BAX), for effects in Parkinson’s models in C. elegans and D. melanogaster. 

They reported that Sorafenib at 1 and 10 µM increased survival and reduced locomotor impairment in ddc-

GAL4; UAS-G2019S-LRRK2 flies, while none of the concentrations tested was reported to alter lifespan of 

controls. Furthermore, C. elegans treated with Sorafenib showed positive effects on neuronal survival, 

while overall lifespan was reported unchanged. However, this study tried to exclude effects from cellular 

processes associated with aging, stating “these effects were maintained to a minimum in our studies" (Liu 

et al. 2011). 

Yang et al. (2015) evaluated the effect of β-guanidinopropionic acid and Dorsomorphin (TAK) on wild-type 

D. melanogaster lifespan. While the effect of Dorsomorphin on wild type flies was not discussed, the 

survival curves showed, probably significant, lifespan-shortening, which is in line with what would be 
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expected by inhibiting AMPK and confirms the lifespan changing effects of one of our top ranked 

compounds. 

The third publication tested the lifespan effect of Genistein (4′,5,7-trihydroxyisoflavone) in C. elegans. 

While Genistein is not in our list of compounds, it was found because the highly similar compound 3',4',7-

trihydroxyisoflavone (PDB HET code: 47X) is ranked 21st in C. elegans. It remains unclear how similar their 

biological effect is, but Lee et al. (2015) report Genistein to significantly increase lifespan and stress 

tolerance of wild type C. elegans lifespan at 50 µM and 100 µM concentrations. 

Finally, Wilson et al. (2008) reported modest, albeit not significant, beneficial effects (15% increased 

median lifespan) in C. elegans with Piceatannol (PDB HET code: P01, ranked 73rd in C. elegans). P01 binds to 

Ribosomal protein S6 kinase alpha-1, whose binding site is completely conserved between human and 

invertebrates. 

Rapamycin 

Of the well-known drugs examined for their effect on lifespan in invertebrates, only rapamycin (PDB HET 

code: RAP) is included in our ranking due to the data requirements. Rapamycin was shown to extend 

lifespan in many organism including C. elegans, where it is ranked, however, only 395th according to the 

method presented here. This is because Rapamycin violates 3 out of the 4 Lipinski rules as well as being 

predicted by the Burns et al. (2010) methodology to have low bioavailability in C. elegans. Furthermore, 4 

of the 10 amino acids forming the binding site on TOR are not conserved between human and C. elegans. 

However, Rapamycin has a highly unusual mode of action of disrupting a protein-protein interaction 

between TOR and FKBP and thus also unusual properties. If Rapamycin had a bioavailability score of 0.9, 

instead of 0.2 it would rank 16th in C. elegans, clearly demonstrating the impact of bioavailability. In 

D. melanogaster, with no bioavailability prediction available, Rapamycin ranks 95th, classifying it as a 

promising compound. A different promising kinase inhibitor PI-103 (PDB HET code: X6K), also targeting 

TOR, is, however, ranked 5th in C. elegans and 17th in D. melanogaster. In contrast to Rapamycin, PI-

103/X6K has no violations of Lipinski’s rules for likely drugs, a high predicted bioavailability in C. elegans, a 

completely conserved binding site in both invertebrate species and high predicted binding affinity. While 

our ranking only considered the effect on TOR, PI-103/X6K also inhibits phosphoinositide 3-kinase (PI3K), 

which is also strongly associated with ageing (Fan et al. 2006), suggesting that it is a promising candidate 

for trials. 

Unbiased C. elegans lifespan screen 

Finally, we found a single unbiased screen of a set of compounds for effects on lifespan in C. elegans where 

complete experimental results are reported. The study by Ye et al. (2014) tested the Library of 

Pharmacologically Active Compounds (LOPAC), comprising 1280 different compounds at a fixed 

concentration of 33µM in liquid culture. Of these compounds only four were included in our C. elegans 

ranking, ranking 220th or lower in our calculations. None of them significantly affected lifespan (p≥0.05) 

according to Ye et al. (2014). Furthermore, 15 of the compounds tested are included in our D. melanogaster 

ranking (the 11 additional compounds had no annotated C. elegans orthologues in Compara and thus could 

not be ranked in C. elegans). Three (B43, STR and TDC) of the 15 compounds are reported to significantly 

affect lifespan (p<0.05), these include the two highest ranked of this list. This is a significant enrichment for 

lifespan changing compounds by rank (hypergeometric test p<0.03 for overlap of lifespan extending 

compounds with compounds ranked in the top 250 of the overall list). 

 

Discussion 
In this proof-of-principle study we show that, by combining different types of information, it is possible to 

create a ranked list of compounds with respect to their likelihood to modulate ageing in invertebrates. The 

ranking demonstrated strong differences between potential candidates for compound testing compared to 

random selection of any compound binding an orthologue of a known modulator of ageing.  
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The pipeline developed is fast and conservative, choosing to focus on those compounds with strongest 

supporting evidence for an effect on ageing. The pipeline could be ‘relaxed’ to include more distant 

orthologues or compounds and proteins without any human complex structural data. Furthermore, the 

ranking procedure presented here also serves as a blueprint for similar approaches, where individual 

factors or terms can be omitted or substituted with alternative methods of preference. It is interesting that 

most of the drugs at the top of the list were developed to target cancers, perhaps reflecting the increased 

occurrence of cancer with age.  

Although no direct experimental validation is available, we provide various lines of evidence indicating the 

success of the ranking and making the top ranked compounds interesting candidates for experimental in 

vivo testing. Due to uncertainty about compound dosage, such experiments would require testing at 

multiple concentrations, e.g. three concentrations spanning three orders of magnitude. In C. elegans, the 

use of a specific drug-sensitive mutant strain (partial loss-of-function bus-8 mutant), has been suggested for 

drug-screening (Partridge et al. 2008). A complication in C. elegans drug screening can be the live E. coli 

bacteria contained in the most commonly used food, which might metabolise compounds (Cabreiro et al. 

2013; Zheng et al. 2013). 

Pharmacological interventions can be an extremely helpful research tool, which enable time-restricted 

intervention in a dosage dependent way, thereby allowing a more precise control than genetic 

interventions. Furthermore, various compounds can be easily administered in combination and further 

combined with established genetic or environmental intervention. As such, pharmacological interventions 

are an orthogonal manipulation system which will help to further deconvolute the pathways and processes 

relevant to ageing. The recently established Caenorhabditis Intervention Testing Program (CITP) for 

robustly testing pharmacological interventions for their effect on ageing across different Caenorhabditis 

strains and species further demonstrates the relevance and timeliness of our computational ranking 

procedure. 

Neither C. elegans nor D. melanogaster are typical model organisms for pharmaceutical research, but 

successful examples in drug screenings exist (Desalermos et al. (2011), Pandey and Nichols (2011)) and 

demonstrate the feasibility of large-scale compound screens. Clearly, successful evaluation of compounds 

against ageing in either invertebrate model would require subsequent testing in mammalian models, e.g. in 

the National Institute on Aging Interventions Testing Program (Warner et al. 2000), in order to determine 

the most likely compounds to influence human ageing. 

 

Experimental Procedures 

Data sources and mapping 
Genes and proteins associated with ageing were obtained from the GenAge database (Tacutu et al. 2013) 

as well as from general databases (UniProt (UniProt Consortium 2014) and Ensembl (Flicek et al. 2014)) and 

organism-specific databases (RGD (Dwinell et al. 2009), MGI (Eppig et al. 2012), FlyBase (St Pierre et al. 

2014) and WormBase (Harris et al. 2014)) using the Gene Ontology term for ageing (GO:0007568). We 

considered five selected species of interest: C. elegans, D. melanogaster, M. musculus, R. norvegicus and 

H. sapiens. All results were mapped to the corresponding Ensembl and UniProt entries and all entries were 

cross-mapped between Ensembl and UniProt. For each gene/protein associated with ageing, all 

orthologues in the five species were identified using Ensembl Compara. PDB codes corresponding to these 

proteins were retrieved from UniProt, Ensembl and the PDBsum database (de Beer et al. 2014). DrugBank 

IDs (Law et al. 2014) and ChEMBL IDs (Gaulton et al. 2012, release 15) of compounds binding ageing-

associated proteins were collected from UniProt, PDBsum and ChEMBL. Compound IDs were cross-

referenced with UniChem (Chambers et al. 2013) and, where possible, mapped to the ZINC (Irwin et al. 

2012) and eMolecules databases (http://www.emolecules.com/) of commercially available compounds, 

ChEBI (Hastings et al. 2013) and to PDB HET codes, the compound identifiers used in PDB structures. PDB 
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HET codes were used to identify PDB files of ageing-associated proteins with bound drug-like ligands of the 

DrugBank and ChEMBL set and at least one orthologue in C. elegans or D. melanogaster. All targets with no 

homologue in C. elegans or D. melanogaster were filtered out, because these are the target species. 

Additionally, for each homologue-family and species, only the homologues with the smallest number of 

gaps in the binding site and the highest binding-site identity or similarity were kept.  

The ranking score equations and components 
The ranking score is a bounded score between zero and one determined by five multiplicative factors and 

four additional terms for bonuses and losses, defined by the following formula: 

Ranking score =  max( min( Ageing implication× Domain conservation× Binding site conservation ×

Binding affinity × Bioavailability + Lipinski loss+ Promiscuity loss+ Availability to purchase bonus+

Approved drug bonus, 1),0).  

 

Ageing implication 

This factor represents the certainty of our knowledge associating the protein target with ageing. It is 

derived from the Gene Ontology (Ashburner et al. 2000) annotation evidence codes. A distribution of 

scores for this and the other terms is available online under https://www.ebi.ac.uk/thornton-

srv/software/repurposing/. 

Ageing implication = (1 − (GO evidence score+ 0.1 × #identifier mappings))
2

 

GO evidence score =

{
 
 

 
 
0.01 or 0.02 Experimental Evidence Codes

0.15 Computational Analysis Evidence Codes

0.16 Author or Curator Statement

0.28 or 0.29 Automatically-assigned or No-biol. Data or Not Recorded 

 

Genes implied through being listed in GenAge are assigned a GO evidence score of 0.01. 

 

Protein domain conservation 

This factor and the factor for binding site conservation represent the requirements for conservation to 

maintain binding of the compound to the protein target. In practice, we use a conservation score for the 

protein domains, which contain the binding site contacts. A multiple sequence alignment (MSA) of the 

amino acid sequence from the 3D structure, the corresponding UniProt entries, and their homologues in 

the five species of interest was constructed using MAFFT with maxiterate 1000 and localpair options (Katoh 

& Toh 2008). Pairwise sequence identity between the protein of known structure and each homologue, as 

well as the pairwise Grantham-based similarity (Grantham 1974) were calculated. Grantham-based 

similarity was defined as 1 −
GranthamDistance

215
, resulting in a 0 to 1 scaled similarity measure. Values for amino 

acid codes B, Z and X were calculated as average of the D and N, Q and E and all amino acids respectively 

(see Supplement S6 for Grantham-based similarity matrix). We used protein domain assignments from 

Gene3D (Lees et al. 2014) for the UniProt of the 3D structure. All domains in contact with the bound ligand 

where jointly considered. For amino acids contacts, which lay outside annotated domains, we used a 

window of ±50 amino acids around the contact instead.  

Domain conservation = logistic(Grantham-based similarity of domain sequence, 0.6,0.1)  

The logistic transformation, logistic(𝑥, 𝑙, 𝑠) =
1

1+𝑒
−𝑥+𝑙

𝑠⁄
, was applied, because differences in medium 

similarities are more important than equally large differences among very low or very high percentage 
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similarities. For compounds binding to more than one protein, the maximum values for domain 

conservation, binding-site conservation and binding affinity were used. 

 

Binding site conservation 

This factor represents the conservation in the binding site, which is especially important for conserved 

activity of the compound. We obtained the amino acid positions from the MSA that are in contact with the 

bound ligand as indicated in PDBsum. Since we observed that a large majority of binding sites contained 

more than 50% identical amino acid residues, we based this factor on the Grantham-based similarity score 

of 50% most dissimilar positions only, to increase sensitivity of the factor.  

Binding site conservation = Grantham-based similarity of 50% most dissimilar binding site residues 

 

Binding affinity 

While all compounds ranked are shown to bind their target, as evident from a ligand-protein complex 

structure, the binding affinity of the interaction can range from low to high. Clearly, a compound binding 

only with millimolar affinity (10-3M) to a target is less likely to bind a slightly altered target than a 

compound binding with nanomolar affinity (10-9M). This factor represents the binding affinity and is 

derived from the -log binding affinity predicted by RF-Score v2 (Ballester et al. 2014) based on the protein-

ligand complex structure in 3D. Predicted binding affinities were used since measured binding affinities 

were not available for all complexes and previous validation demonstrated the high accuracy of RF-Score at 

this task (Ain et al. 2015). Since RF-Score v2 required input files in PDBbind format, but not all complexes of 

interest were in the PDBbind database (Wang et al. 2004), we created and successfully tested a PDBbind 

format mimicking pipeline (see Supplement S7). 

Binding affinity = logistic(RFScore, 5,1) 

 

Bioavailability 

In order for any compound to be able to exert an effect, it needs be able to interact with its, mostly 

intracellular, targets. Thus, bioavailability is an essential prerequisite. In C. elegans bioavailability has been 

found to be very limited (<10%) in standard approaches (Burns et al. 2010). After evaluating the only 

published bioavailability predictor for C. elegans (Burns et al. 2010) for its predictive performance (see 

Supplement S7 for details), we used its score logistically transformed and scaled as a basis for our 

bioavailability score in C. elegans. Since we could not successfully evaluate the relevance or suitability of 

the predictor for D. melanogaster, we opted not to use these predictions in the D. melanogaster ranking, 

but rather substitute the bioavailability score with a fixed term, which can be readily replaced when 

predictions or measurements of bioavailability in D. melanogaster becomes available.  

Bioavailability = {
 logistic(Burns score, 4,2.25) ∗ 0.8 + 0.2 C. elegans

0.9 D. melanogaster
 

 

The modulating losses and bonuses are defined as follows: 

Lipinski score 

This term is one of four terms representing non-essential beneficial and detrimental properties. This term 

has been used to represent the drug likeness based on Lipinski's rule of five (Lipinski et al. 2001), which has 

been widely applied in drug development processes. This rule of thumb states that compounds have a high 

likelihood of being orally active in humans if they have a molecular weight less than 500 Daltons, an 
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octanol-water partition coefficient log P of no more than 5, no more than 5 Hydrogen-bond donors and no 

more than 10 Hydrogen-bond acceptors. This and the following terms are scaled to modulate the overall 

score. 

Lipinski loss = −
#violations of Lipinski's rule of five 

20
 

 

Binding promiscuity 

An examination of the list of compounds and their targets showed a few compounds, which are found to 

bind to a large number of targets. These compounds included well-known omnipresent metabolites such as 

ATP, but also compounds often used to aid crystallisation processes, such as PEG. These highly promiscuous 

compounds are less interesting compared to more specific compounds targeting one or a few targets. This 

term penalises compounds by number of targets. 

Promiscuity loss = −
logistic(#different ageing-related proteins crystallised with, 7,1)

5
 

 

Availability to purchase 

The final two terms of the ranking are not requirements for the successful modulation of ageing, but 

influence the ease of performing any experiments and taking positive results forward. This term gives a 

bonus for purchasable compounds, which is a requirement for most researchers in order to examine its 

effects, as few will have the means to synthesise any desired compounds. 

Availability to purchase bonus = {0.1 if contained in ZINC or eMolecules database

0 else
  

 

Drug approval status 

Finally, approved human drugs and drug candidates (as defined in DrugBank (Law et al. 2014)), receive a 

bonus. These compounds would be especially attractive if found to extend lifespan in model organisms 

since they have already been shown to be tolerated by humans at least under certain circumstances. Thus, 

they might offer shorter development routes to beneficial interventions against human ageing by drug-

repurposing. 

Approved drug bonus = {
0.1 if designated as known drug in ChEMBL

0.075 if not designated drug in ChEMBL, but contained in DrugBank
0 else

 

 

Protein structure modelling and docking  
Single template modelling was performed using Automodel and loop modelling from Modeller 9.13 (Eswar 

et al. 2006). Trailing amino acid residues lacking structural information and the P37 ligand were removed 

before modelling, while other hetero atoms such as ions were included. The best model was selected based 

on Discrete Optimized Protein Energy (DOPE) using the CHARM22 force field and Root Mean Square 

deviation (RMSD). Rigid-protein, flexible-ligand docking experiments were performed using Autodock 

vina4.2 (Trott & Olson 2010) with a 27.5Å search box. Finally, protein structure model files with docked 

ligand were converted to PDBbind mimicking files for RF-Score binding affinity prediction. 
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Literature mining 
Literature mining was performed by querying PubMed and PubMed Central (NCBI Resource Coordinators 

2015) using the NCBI Entrez Programming Utilities (eUtils; http://eutils.ncbi.nlm.nih.gov/entrez/eutils). We 

created search term dictionaries for compound names and synonyms, lifespan terms, and species terms, 

with all combinations of a drug dictionary term, a survival dictionary term and a species term. The query 

was conducted to use the automatic term expansion (PubMed), which, for example, expanded ``ageing'' to 

“(aging[MeSH Term] OR aging[All Fields] OR ageing[All Fields])”, or manual equivalent expansion (PubMed 

Central). The compound dictionary was constructed to contain for each of the top 25 compounds for 

D. melanogaster and C. elegans: the ChEMBL, DrugBank and ZINC identifiers if available, all names and 

synonyms listed by these three resources as well as all names from the NCI/CADD Chemical Identifier 

Resolver (http://cactus.nci.nih.gov/chemical/structure). Names shorter than three characters were 

excluded. The survival dictionary comprised “longevity”, “lifespan”, “life-span”, “life span”, “life history”, 

“survival”, “mortality”, “ageing” and the species dictionary included “Drosophila melanogaster”, 

“Drosophila”, “melanogaster”, “Caenorhabditis”, “elegans”, “C.elegans”. The dictionaries were constructed 

to be relatively promiscuous in order not to miss any relevant publications. For the PubMed Central 

queries, the survival dictionary did not contains “ageing”, but all queries had the additional constraint 

“+AND+(aging[MH]+OR+aging[ARTICLE]+OR+ageing[ARTICLE])” to gear the results more toward longevity 

experiments in contrast to cancer survival. In order to avoid finding articles where the relevant terms are 

only part of the references, we restricted the survival and species terms, but not the compound term, to 

the article body. For all PubMed and PubMed Central queries, all space characters were substituted with '+' 

as required by the query tool. 
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Table 1a: Top 15 scoring compounds for D. melanogaster. 

R
a
n
k
 

P
D

B
 

H
E

T
 C

o
d
e

 

N
a
m

e
* 

T
a

rg
e
ts

**
 

g
lo

b
a
l 
id

e
n
ti
ty

 

b
in

d
in

g
 s

it
e
 i
d

e
n
ti
ty

  

A
g
e
in

g
 I
m

p
lic

a
ti
o

n
 

D
o
m

a
in

 c
o
n
s
e
rv

a
ti
o

n
 

B
in

d
in

g
 s

it
e
 

c
o
n
s
e
rv

a
ti
o

n
 

B
in

d
in

g
 a

ff
in

it
y
 

B
io

-a
v
a
ila

b
ili

ty
 

L
ip

in
s
k
i 
L
o
s
s
 

P
ro

m
is

c
u
it
y
 L

o
s
s
 

P
u
rc

h
a
s
a
b
ili

ty
 B

o
n
u
s
 

D
ru

g
 a

p
p
ro

v
a
l 
B

o
n
u
s
 

F
in

a
l 
S

c
o
re

 

1  Dasatinib(Sprycel) BMX, BTK, MK14 67% 100% 1. 0.96 1. 0.95 0.9 0. 0. 0.1 0.1 1.00 

2  NA HSP90α 77% 92% 0.98 0.97 1. 0.95 0.9 0. 0. 0.1 0.08 0.99 

3  NA MK14 67% 100% 1. 0.96 1. 0.93 0.9 0. 0. 0.1 0.08 0.98 

4  NA MK14 67% 100% 1. 0.96 1. 0.92 0.9 0. 0. 0.1 0.08 0.97 

5  Dorsomorphin AMPKα2 56% 100% 1. 0.97 1. 0.9 0.9 0. 0. 0.1 0.08 0.96 

6  Imatinib(Gleevec) ABL1, MK14 67% 94% 1. 0.97 0.99 0.88 0.9 0. 0. 0.1 0.1 0.95 

7  Purvalanol S6Kα1 46% 100% 1. 0.96 1. 0.89 0.9 0. 0. 0.1 0.08 0.95 

8  NA MK14 67% 94% 1. 0.96 0.95 0.94 0.9 0. 0. 0.1 0.08 0.95 

9  NA MK10 62% 100% 1. 0.97 1. 0.87 0.9 0. 0. 0.1 0.08 0.94 

10  Sorafenib(Nexavar) MK14 68% 95% 1. 0.96 0.99 0.92 0.9 -.05 0. 0.1 0.1 0.94 

11  NA MK10 62% 100% 1. 0.97 1. 0.92 0.9 -.05 0. 0.1 0.08 0.93 

12  NA MK14 67% 88% 1. 0.96 0.93 0.94 0.9 0. 0. 0.1 0.08 0.93 

13  NA HSP90α 77% 88% 0.98 0.97 0.93 0.94 0.9 0. 0. 0.1 0.08 0.92 

14  NA AKT2 49% 78% 1. 0.96 0.91 0.93 0.9 0. 0. 0.1 0.08 0.91 

15  Nilotinib(Tasigna) ABL1, MK11 61% 100% 1. 0.97 1. 0.93 0.9 -0.1 0. 0.1 0.1 0.91 

 
Table 1b: Top 15 scoring compounds for C. elegans. 
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1  Imatinib(Gleevec) ABL1, MAPK14 62% 91% 1. 0.96 0.99 0.88 0.97 0. 0. 0.1 0.1 1. 

2  Nilotinib(Tasigna) ABL1, MAPK11 59% 83% 1. 0.95 0.96 0.93 0.95 -0.1 0. 0.1 0.1 0.91 

3  NA AKT2 49% 78% 1. 0.95 0.95 0.93 0.81 0. 0. 0.1 0.08 0.86 

4  Sorafenib(Nexavar) MK14 62% 82% 1. 0.92 0.92 0.92 0.74 -.05 0. 0.1 0.1 0.72 

5  PI-103 mTOR 31% 100% 1. 0.94 1. 0.93 0.69 0. 0. 0.1 0. 0.71 

6  NA MK14 62% 88% 1. 0.96 0.95 0.85 0.68 0. 0. 0.1 0.08 0.71 

7  NA MK14 62% 93% 1. 0.96 0.94 0.94 0.87 -.05 0. 0. 0. 0.69 

8  NA MK10 45% 93% 1. 0.97 1. 0.91 0.83 -.05 0. 0. 0. 0.68 

9  Dorsomorphin AMPKα2 51% 91% 1. 0.97 0.92 0.9 0.6 0. 0. 0.1 0.08 0.66 

10  NA MK10 45% 100% 1. 0.97 1. 0.88 0.66 0. 0. 0. 0.08 0.63 

11  NA MK14 61% 79% 1. 0.96 0.88 0.87 0.78 -.05 0. 0. 0.08 0.6 

12  NA MK14 62% 75% 1. 0.96 0.87 0.79 0.64 0. 0. 0.1 0.08 0.6 

13  NA MK10 45% 100% 1. 0.97 1. 0.87 0.5 0. 0. 0.1 0.08 0.6 

14  NA IGF1R 20% 75% 1. 0.87 0.83 0.9 0.95 -.05 0. 0. 0. 0.57 

15  NA HSP90α 74% 86% 0.98 0.97 0.92 0.88 0.74 0. 0. 0. 0. 0.56 

* NA indicates that a short compound name is Not Available 
** Only targets associated with ageing and protein-compound PDB structure in our dataset are listed. 
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Figure 1: Schematic of principal steps in data gathering and filtering (with number of proteins, structures 

and drug-like compounds) and the use of these data in determining the components of the ranking 

procedure. The ranking properties are calculated per model organisms. 

 

 

Figure 2: Density distribution of scores in (A) D. melanogaster and (B) C. elegans. Dashed lines represent 

the top 15 cut-off and dotted lines the top 10% cut-off. 
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Figure 3: Molecular structures of top overlapping chemical compounds. (A) STI or Imatinib (B) NIL or 
Nilotinib (C) BAX or Sorafenib (D) TAK or Dorsomorphin/compound c (E) GVP (F) JNF. 
 

 

Figure 4: Binding sites of top overlapping compounds. (A) STI or Imatinib binding to human tyrosine kinase 
ABL1 (B) STI or Imatinib binding to human Mitogen-activated protein kinase 14 (MK14).(C) TAK or 
Dorsomorphin binding to AMP-activated protein kinase catalytic subunit alpha-2 (D) GVP binding to RAC-
beta serine/threonine-protein kinase AKT2 (E) JNF binding to Mitogen-activated protein kinase 10, also 
known as JNK3. 
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Figure 5: Interaction between the superimposed P37 ligand and the amino acids in the active binding site 

(A) in human (orange & pink) and D. melanogaster (grey & blue) (B) in human (orange & pink) and 

C. elegans (grey and blue). 
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