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Abstract 

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the 
transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that 
regulatory elements associated with particular traits or diseases share patterns of transcriptional 
regulation. Accordingly, shared transcriptional regulation (coexpression) may help prioritise loci 
associated with a given trait, and help to identify the biological processes underlying it. Using cap 
analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 20 
1824 human samples, we have quantified coexpression of RNAs originating from trait-associated 
regulatory regions using a novel analytical method (network density analysis; NDA). For most traits 
studied, sequence variants in regulatory regions were linked to tightly coexpressed networks that 
are likely to share important functional characteristics. These networks implicate particular cell 
types and tissues in disease pathogenesis; for example, variants associated with ulcerative colitis 
are linked to expression in gut tissue, whereas Crohn’s disease variants are restricted to immune 
cells. We show that this coexpression signal provides additional independent information for fine 
mapping likely causative variants. This approach identifies additional genetic variants associated 
with specific traits, including an association between the regulation of the OCT1 cation transporter 
and genetic variants underlying circulating cholesterol levels.  This approach enables a deeper 30 
biological understanding of the causal basis of complex traits.  

Introduction 

Genome-wide association studies (GWAS) have considerable untapped potential to reveal new 
mechanisms of disease1. Variants associated with disease are strongly over-represented in 
regulatory, rather than protein-coding, sequence; this enrichment is particularly strong in promoters 
and enhancers2–4. There is emerging evidence that gene products associated with a specific 
disease participate in the same pathway or process5, and therefore share transcriptional control6.  

We have recently shown that cell-type specific patterns of activity at multiple alternative promoters7 
and enhancers3 can be identified using cap-analysis of gene expression (CAGE) to detect capped 
RNA transcripts, including mRNAs, lncRNAs and eRNAs3,5. In the FANTOM5 project, we used 40 
CAGE to locate transcription start sites at single-base resolution and quantified the activity of 
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267,225 regulatory regions in 1824 human samples (primary cells, tissues, and cells following 
various perturbations)8.  

Unlike analysis of chromatin modifications or accessibility, the CAGE sequencing used in 
FANTOM5 combines extremely high resolution in three relevant dimensions:  maximal spatial 
resolution on the genome, quantification of activity (transcript expression) over a wide dynamic 
range, and high biological resolution – quantifying activity in a much wider range of cell types and 
conditions than any previous study of regulatory variation2,4. Since a majority of human protein-
coding genes have multiple promoters5 with distinct transcriptional regulation, CAGE also provides 
a more detailed survey of transcriptional regulation than microarray or RNAseq resources. 50 
Heritability of traits studied by GWAS is substantially enriched in these FANTOM5 promoters9. 

Genes that are coexpressed are more likely to share common biology10,11. Similarly, regulatory 
regions that share activity patterns are more likely to contribute to the same biological pathways5. 
Transcriptional activity of regulatory elements (both promoters and enhancers3) is associated with 
variable levels of expression arising at these elements in different cell types and tissues5.  

In order to determine whether coexpression can provide additional information to prioritise 
genome-wide associations that would otherwise fall below genome-wide significance, we 
developed network density analysis (NDA). The NDA method combines genetic signals (disease 
association in a GWAS) with functional signals (correlation in expression across numerous cell 
types and tissues, Figure 1), by mapping genetic signals onto a pairwise coexpression network of 60 
regulatory regions, and then quantifying the density of genetic signals within the network. Every 
regulatory region that contains a GWAS SNP is assigned a score quantifying its proximity in the 
network to every other regulatory region containing a GWAS SNP for that trait. We then identified 
specific cell types and tissues in which there is preferential activity of regulatory elements 
associated with selected disease-related phenotypes, thereby providing appropriate cell culture 
models for critical disease processes.  

Results 

Discovery and prioritisation of GWAS hits in regulatory sequence 
We defined regulatory regions as the transcription start site (TSS) -300bp and +100bp for 
promoters5, and the region between bidirectional TSS for enhancers3 (See Online Methods).  For 70 
each of 7 GWAS studies for which high-resolution complete datasets were publicly available, we 
identified a set of regulatory regions containing variants with GWAS p-values below a permissive 
threshold (5e-8; Table 1). We devised NDA to examine the similarity in activity patterns among the 
set of regulatory regions detected in each GWAS (that is, the similarity in expression profile of 
transcripts arising from these regulatory regions).  

NDA detected significant coexpression (see below) among the sets of transcripts arising from 
regulatory regions containing variants associated with each of the following diseases and traits: 
ulcerative colitis, Crohn’s disease, height, HDL cholesterol, LDL cholesterol, total cholesterol and 
triglyceride levels (Table 1). One lower-resolution study, of blood pressure, was also analysed: in 
this smaller study, no coexpression signal was detected among transcripts arising near variants 80 
associated with either systolic or diastolic blood pressure (Table 1).  

Significant coexpression was only detected within loci containing variants with low p-values (Fig 
2a). Similar expression profiles are often seen arising from regulatory regions that are close to 
each other on the same chromosome, which may also span linkage disequilibrium blocks. The 
effect of this on the coexpression signal was mitigated by grouping nearby (within 100,000bp) 
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regulatory regions into a single unit, unless they have notably different expression patterns (Fig 2c; 
Online Methods). SNPs in nearby regulatory regions are also more likely to be in linkage 
disequilibrium, and these regulatory regions themselves are more likely to share cis- or short range 
trans- regulatory signals in common. We checked for significant linkage disequilibrium between 
regulatory regions assigned to independent groups (Supplementary files 1, 4-12). At a threshold of 90 
r2 > 0.8, there is no linkage disequilibrium between significantly coexpressed groups; three 
examples of weaker linkage relationships were detected with 0.08 ≤ r2 ≤ 0.6 (Supplementary file 1).  

Regulatory regions around individual TSS with higher coexpression scores contain variants with 
stronger GWAS p-values (Fig 2b), indicating that this independent signal provides additional 
information that may be used for fine-mapping causative loci (Fig 2c). 

In order to enable the detection of new regulatory regions with strong coexpression relationships, 
we chose a permissive p-value threshold for trait association of 5x10-6 (see Online Methods). 
GWAS data for Crohn’s disease12 were used for initial optimisation of the NDA approach; among 
GWAS datasets for phenotypes that were not used in algorithm development (i.e. all apart from 
Crohn’s disease), 0-24% of regulatory regions containing a GWAS SNP showed significant 100 
coexpression with other regulatory elements associated with the same phenotype (FDR < 0.05, 
compared with 100 permuted subsets of equal size; see Online Methods).  

For a given disease, regulatory regions containing GWAS variants are coexpressed if they share 
similar activity patterns (i.e. similar expression patterns among transcripts arising from these 
regulatory regions) with other regulatory regions implicated in that disease. Figure 3 shows 
significant coexpression superimposed on a two-dimensional representation of the entire network 
of pairwise correlations. Since activity (transcript expression) was measured in numerous samples, 
the true proximity of regulatory regions to one another cannot be accurately represented in two 
dimensions – a perfect representation would require as many dimensions as there are unique 
samples. However, the NDA method is designed to quantify proximity in network space, so that 110 
significantly coexpressed elements are detected, even if they are not directly adjacent on a two-
dimensional representation of the network (Figure 3). Among strong coexpression was seen 
between loci that were widely separated on the genome (Figure 4).   

The coexpression signal essentially combines the signal for association in a GWAS with the 
location and activity pattern of regulatory regions on the genome. We deliberately chose a 
permissive GWAS p-value threshold in order to enable the detection of new signals that did not 
achieve genome-wide significance in the original studies.  For example, we found that 
coexpressed transcripts for both LDL and total cholesterol (TC) arise from promoters for well-
studied genes such as APOB13 and ABCG514, but also from regulatory regions not previously 
associated with cholesterol levels. A promoter for SLC22A1, which encodes an organic cation 120 
transporter, OCT115, is strongly coexpressed among elements associated with both conditions 
(Supplementary File 1). OCT1 transcription is regulated by cholesterol16 and the transporter 
regulates hepatic steatosis through its role in thiamine transport17. This action of OCT1 is inhibited 
by metformin17, an oral hypoglycaemic agent whose cholesterol-lowering effect18 is not well 
understood19. Full results of coexpression analyses are in Supplementary File 1, and online at 
www.coexpression.net.  

Cell-type and tissue specificity 
The significantly-coexpressed networks detected here could be regarded as revealing the 
signature expression profile, at least within the FANTOM5 dataset, for a given disease or trait. We 
next explored whether these signature expression patterns reveal cell types or biological 130 
processes that may contribute to the trait or disease susceptibility.  
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We therefore ranked cell types and tissues by transcriptional activity for each of the significantly-
coexpressed loci for each trait, and combined the rankings using a robust rank aggregation20 
(Online Methods). By first detecting the characteristic expression signature associated with a given 
phenotype using only high-resolution GWAS data, and then detecting the cell type and tissue 
activity profiles that underlie this signature, we improve on the statistical power of previous 
methods that have attempted to detect cell-type specific signatures of disease4,6,21. Strong signals 
reported previously are highly significant in our analysis; for example genetic loci associated with 
cholesterol are transcriptionally active in hepatocytes and liver tissue6(Supplementary File 8).  

This analysis reveals robust cell-type associations that have important implications for 140 
understanding disease pathogenesis. For example, cell-type associations with Crohn’s disease 
were restricted to immune cells, particularly monocytes exposed to inflammatory stimuli 
(Supplementary File 4). In contrast, cell type associations with ulcerative colitis were statistically 
significant in rectum, colon and intestine samples, and in a distinct group of immune cells: 
macrophages exposed to bacterial lipopolysaccharide (Supplementary File 5). This is consistent 
with the view that ulcerative colitis, in which disease processes are primarily restricted to the colon 
and rectum, is a consequence of dysregulation of processes that are intrinsic to the large bowel, 
including epithelial barrier function22, whereas Crohn’s disease is a multisystem autoimmune 
disorder with more diverse extra-intestinal manifestations23, consistent with a primary immune 
aetiology.  150 

Discussion 

The development of high-throughput genotyping methods has led to an explosion of associations 
between genetic markers and human diseases24. The results presented here are a step towards 
overcoming the next challenge for this field: making sense of these associations to advance the 
practice of medicine. There has been increasing recognition of the potential to utilise prior 
knowledge to improve detection and interpretation of genome-wide signals25. The results of our 
analysis demonstrate that there is biological information in the coexpression of genetic variants 
associated with a particular disease that can provide the basis for prioritising variants that would 
not otherwise meet standard thresholds for genome-wide statistical significance. 

We report relationships between numerous regulatory regions that are not associated with named 160 
genes – a restriction that has previously limited the transition from genetic discovery to biological 
understanding26–30. The analysis reveals the impact of specific enhancers and promoters that may 
be remote from the genes they regulate, or may contribute to tissue-specific regulation of a gene 
that may otherwise appear to be more widely-expressed.   

Even for those disease-associated variants that can be reliably assigned to a named gene, 
previous attempts to draw functional inferences have, by necessity, relied on published data26, 
annotated biological pathways31, or gene sets30,32. Although many important insights have been 
gained from these approaches, they share a fundamental limitation: reliance on existing 
knowledge. This restricts the ability to exploit the potential of genomics to deliver insights into new, 
previously unseen, mechanisms of disease33.  170 

The data used for development and testing of the coexpression approach were from large meta-
analyses that incorporate genotyping (or imputation) of genetic variants at extremely high 
resolution, increasing the probability that variants will be found within regulatory regions. In future, 
the availability of whole-genome sequencing can reasonably be expected to produce many 
additional high-quality datasets for coexpression analysis. In principle, the NDA approach can be 
generalised to any network in which it is desirable to quantify the proximity of a subset of nodes.  
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The scale, depth and breadth of the FANTOM5 expression atlas, together with the NDA approach, 
enable detection of subtle coexpression signals for regulatory regions that have previously been 
undetectable. As additional genetic studies become available at greater genotyping resolution, we 
anticipate that this method will detect new genetic associations with disease, coexpressed modules 180 
underlying pathogenesis, identify critical cell types implicated in mechanisms of disease. 
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An online service running the coexpression method is available at http://coexpression.net  190 
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Trait
SNPs included, p<
5⇥10�6 (SNPs per
million bases)

Regulatory regions con-
taining a SNP (SNPs per
million bases)

Fold enrichment
for SNPs in regu-
latory regions

Distinct
regulatory
regions

Significantly co-
expressed TSS
(FDR < 0.05)(%
of distinct regions)

Crohn’s disease* 1924 (0.6) 133 (3.5) 5.7 70 23 (33%)
Ulcerative colitis 2162 (0.7) 146 (3.8) 5.5 83 20 (24%)
HDL 5410 (1.7) 260 (7.2) 4.2 101 17 (17%)
LDL 4644 (1.5) 205 (5.2) 3.5 92 19 (21%)
Total cholesterol 6421 (2.0) 316 (8.3) 4.1 128 29 (23%)
Triglycerides 4863 (1.5) 254 (7.0) 4.6 97 23 (24%)
Height 8882 (2.8) 358 (7.6) 2.7 166 29 (17%)
SBP 417 (0.1) 20 (0.4) 3.0 13 0 (0%)
DBP 711 (0.2) 20 (0.4) 1.9 14 0 (0%)

Table 1: Results of coexpression analysis for a range of human traits for which high-quality data are available: Crohn’s disease,
ulcerative colitis, high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, height, systolic blood
pressure (SBP) and diastolic blood pressure (DBP). *Initial optimisation and parameterisation of the algorithm was undertaken using
a random subset of data from this study.
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Figure 1: Use of NDA to detect coexpression. a) A subset of regulatory elements is identi-
fied containing disease-associated SNPs. b) The strength of the links between pairs of these
regulatory regions is quantified, first as the Spearman correlation, then as the �log10p-value
quantifying the probability, specific to this regulatory region, of a Spearman correlation of at
least this strength arising by chance. This is determined from the empirical distribution of cor-
relations between this regulatory region and all other regulatory regions in the entire network
of all regulatory regions in the genome. c) The subset of regulatory regions containing disease-
associated SNPs form an unexpectedly dense grouping in the network, but this may not be
visible in a two-dimensional representation (for illustration, this network shows all correlations
between regulatory regions with Spearman r > 0.7, layout generated by the FMMM algorithm).
The NDA score assigned to any one node is the sum of the links it shares with other nodes in
the chosen subset (see Supplementary Methods for a full explanation). d) NDA scores from the
input subset of regulatory elements are compared with NDA scores from permuted subsets of
regulatory elements in order to quantify the false discovery rate (FDR).
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(a)

(b) (c)

Figure 2: a. Change in coexpression signal in 800 SNPs selected at random from GWAS of Crohn’s disease �log10(p) bins from 0
to 5. No signal for coexpression is detected at weak p-values. Percentage of significantly coexpressed entities (hits, FDR < 0.05)
and p-value (Kolmogorov-Smirnov test) comparing observed and expected distributions are shown below each plot. b. Relationship
between GWAS p-value for a SNP, and coexpression scores of individual promoters assigned to that SNP. Top panel: GWAS p-values
(log scale) vs corrected coexpression scores. Bottom panel: linear regression lines for data in top panel; Spearman’s r and associated
p-values are shown for each trait. Only significantly coexpressed (FDR < 0.05) promoters are included. c. Detail of chromosomal
region containing variants associated with LDL cholesterol. Top panel: Rectangles show corrected coexpression scores of individual
regulatory regions; groups of regulatory regions considered as a single unit share the same colour. Black circles show GWAS p-values
for individual SNPs. Bottom panel: known protein coding transcripts in sense (green) and antisense (purple).
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Figure 3: Network layouts (Spearman r > 0.5, FMMM layout algorithm, largest component only is shown) showing position of
significant hits on a two-dimensional network representation of FANTOM5 regulatory regions. Red circles: significantly-coexpressed
(FDR < 0.05) regulatory regions containing a putative GWAS hit (p < 5 ⇥ 10�6) for this trait. Blue circles: regulatory regions
containing a putative GWAS hit (p < 5⇥ 10�6) for this trait that are not significantly coexpressed (FDR > 0.05).
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Figure 4: (Top panels) Circular plots of coexpression links between di↵erent locations on the genome, illustrating the spatial separation
of highly-correlated regulatory regions. The coloured outer circle shows an end-to-end concatenated view of the human chromosomes.
The black inner circle shows log10 GWAS p-values for included SNPs. Links depict an association between two regulatory regions
containing these wSNPs and are coloured according to �log10(p)(line colour indicates log10(p): red>3, blue> 2, green> 1.5). (Bottom
panels) Quantile-quantile plots showing observed and expected coexpression scores. Expected coexpression scores are derived from
circular permuted subsets of regulatory regions (post-mapping permutations; black circles) or SNPs chosen by circular permutations
against the background of all SNPs genotyped in each study. Data are shown for Crohn’s disease, ulcerative colitis, high-density
lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, height, systolic blood pressure (SBP) and diastolic
blood pressure (DBP)
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1 Regulatory regions

For the purpose of this analysis, promoters identified in the FANTOM5 dataset were defined
as the region from -300 bases to +100 bases from a transcription start site (Figure 1a, main
paper). Previous analysis demonstrated that this covers the areas of maximal sequence conser-
vation across species[4] and the core region of transcription factor binding[12]. Since eRNA TSS
are considerably longer than promoter TSS (median length(IQR) 272(173-367) vs 15(9-26)),
enhancers were defined by the range covered by eRNA transcription start sites[10].

2 Coexpression algorithm

For each GWAS study, SNPs were identified that lie within either a functional promoter or
enhancer. Any promoter or enhancer that contained a variant putatively associated with a given
phenotype was considered to be candidate phenotype-associated regulatory region. A pairwise
coexpression matrix was then generated across the full FANTOM5 dataset of promoters and
enhancers, in which each node is a regulatory region, and edges reflect the similarity in activity
(expression) patterns arising at these regulatory regions, across di↵erent cell types and tissues.

To test the hypothesis that regulatory regions genetically associated with a given phenotype
are more likely to be coexpressed, we devised a method to quantify coexpression among a
pool of putative phenotype-associated regulatory regions (network density analysis; NDA). This
approach avoids arbitrary cut-o↵s between clusters (or communities) of nodes, and yields a single
value for each node, quantifying the closeness with all other nodes in a particular subset (network
density). NDA was used to integrate the putative association between a regulatory sequence and
the phenotype of interest (indicated by the presence of a phenotype-associated SNP), with the
coexpression similarity between this node with other nodes that are also putatively associated
with the same phenotype.

2.1 Principle of network density analysis (NDA)

NDA integrates information from two distinct and independent sources: the relationships be-
tween nodes in the network, and the choice of subset. In the present work, nodes are regulatory
regions, the subset is those regulatory regions that contain variants associated with a particular
phenotype, and the relationships are Spearman’s rank correlations. However, the NDA approach
is generalisable to any network of pairwise relationships.

Within a network of all possible pairwise relationships between nodes, a subset of nodes is
selected that share a particular characteristic.

Within this subset of nodes, every pair of nodes is considered. Each relationship between
two nodes is expressed as the � log10 of the empirical probability of a relationship at least as
strong occurring between the chosen node and another, randomly-chosen, node from anywhere
in the whole network. These probabilities are specific to each node and are directional. The
NDA score is the sum of the � log10(p) values for a node in the chosen subset and all other
nodes within the subset. The NDA score therefore quantifies the density of this subset of nodes
in network space. The purpose of using the empirical probability of a correlation, rather than
the raw correlation metric, is to control for bias in favour of highly-connected nodes, as would
occur if one expression profile were very common. Finally, the NDA score is assigned its own
p-value by comparison to that obtained using randomly permuted subsets (see below). If the

1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2016. ; https://doi.org/10.1101/095349doi: bioRxiv preprint 

https://doi.org/10.1101/095349
http://creativecommons.org/licenses/by-nc/4.0/


network contains no additional information about this subset of nodes, then the relationships
between nodes in the chosen subset will be no stronger than the relationships seen in permuted
subsets.

2.2 Application to coexpression of regulatory regions

From the set of all nodes in a network, a subset is selected because they share some character-
istic. In the case of the genomic analyses reported here, the nodes are TSS, and the subset of
interest is those TSS that contain a variant that has some evidence of association with a partic-
ular trait. Throughout this paper, we have defined the set of phenotype-associated transcription
start sites, R, as follows: the set of regulatory elements associated with phenotype-associated
single nucleotide polymorphism within 300bp (promoters) or 0bp (enhancers) upstream from
a FANTOM5 transcription start site (TSS) and 100bp (promoters) or 0bp (enhancers) down-
stream. In order to enable the detection of new associations, we use a deliberately permissive
threshold. We define as “putatively-significant” a SNP-phenotype association of p < 5 ⇥ 10�6.
Let the integer variable i be used to index the base pairs (bp) of the genome. For a given trait,
the set of input SNPs, K, are those that have a putatively-significant association with that trait
at our chosen threshold. If we let TSS

start

equal the base pair index 300bp (promoters) or
0bp (enhancers) upstream from a FANTOM5 transcription start site (TSS) and TSS

end

100bp
(promoters) or 0bp (enhancers) downstream, the set, P , of putative trait-associated promoters
is given by:

P = {i : i 2 K,TSS

start

� 300  i  TSS

end

+ 100} (1)

and the set E of enhancers containing a putative trait-associated SNP is given by:

E = {i : i 2 K,TSS

start

 i  TSS

end

} (2)

giving a total set of regulatory regions:

R = P [ E (3)

2.3 Linkage disequilibrium (LD) - grouping nearby regulatory regions

Input SNPs from GWAS results tend to be in LD with nearby variants. There is therefore a
risk of spurious coexpression, since nearby regulatory regions are also likely to share regulatory
influences, such as chromatin accessibility, enhancers, and lncRNAs. One solution to this would
be to filter input SNPs by LD. However this would require that LD relationships for all SNPs be
known for all of the populations from which SNP association data were derived, which is not the
case. It would also risk removing functionally important regulatory regions from the analysis,
by choosing only one SNP per LD block.

In order to overcome these problems, we sought to identify those regulatory region-associated
SNPs within a given region that are most likely to contribute to a given subnetwork of putative
phenotype-associated regulatory regions. By the definitions described above, these will be those
regulatory regions with the highest NDA score. Regulatory regions are considered for combina-
tion if they are separated by 100,000bp or less. If any regulatory regions within this range has
a correlation p-value of less than 0.1 with any other regulatory regions in the range, they are
combined. A single representative regulatory region is then chosen - the regulatory region with
the largest NDA score in the group, derived from a network comprised of all other groups.
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In order to confirm that spuriously significant coexpression signals are not being generated
because of LD, we used the ENSEMBL Perl API for the 1000 genomes phase 3 data (CEU)
to search for variants in LD with each SNP lying within the chosen regulatory region for each
group. Variants in LD with a variant in any other chosen regulatory region are reported.

2.4 Coexpression matrix

Let A be the set of all nodes in the whole network. Each member of A is a node in an interaction
network. For each i 2 R, Spearman’s rank correlation, x, is calculated with each other node in
R. The probability, p, of a correlation as strong or stronger as the index correlation, x, arising
by a chance pairing between the index node and any other node (n(r>x)) is inferred from the
empirical distribution of all correlations (r) of the index node in A.

p =
n(r>x)

n

A

(4)

2.5 Network density analysis

For every node in the set R, a score s is calculated to summarise the strength of interactions
with all other nodes in R. Since the only thing that the elements of R have in common is
that they are TSS identified by the set of input SNPs, unexpectedly strong inter-relationships
between elements of R are taken as indirect evidence of a relationship between the input SNPs
themselves. The NDA score, s, is defined as the sum of �log10(p) values for interaction strength
within the matrix.

s =
nX

p=0

�log10(p) (5)

Raw p-values are calculated from the empirical distribution of values of s for 10000 permuted
networks. The Benjamini-Hochberg method is used to estimate false discovery rate (FDR).
Significant network density scores are taken as those with FDR < 0.05. In order to enable
coexpression scores to be compared loosely between di↵erent analyses, each raw coexpression
scores (s) is corrected by dividing by the total number of independent groups of regulatory
regions included in each analysis, n

r

es, yeilding a corrected coexpression score, ccs:

ccs = s/n

r

es (6)

2.6 Iterative recalculation

The node in the network with the highest NDA score has, by definition, numerous strong cor-
relations with other nodes in the subset R. The NDA scores assigned to these other nodes are
therefore inflated by their association with the stongest node. This inflation may reflect biolog-
ical reality, since both TSS have a putative genetic association with the phenotype of interest,
and both share strong links. However, there is a risk that TSS sharing a chance association with
a strongly coexpressed TSS will be spuriously inflated to significance. For this reason, we have
applied a stringent correction in order to ensure that we have confidence in each significantly
coexpressed TSS independently of all TSS with stronger coexpression in the network: the NDA
score for each TSS is calculated after removing all TSS with stronger NDA scores from the
network.
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2.7 Input datasets

Of 267,225 robust promoters and enhancers identified by FANTOM5[6], 93,558 (50.6%) were
promoters within 400 bases of the 50 end of a known transcript model[6]. These were annotated
with the name of the transcript. Alternative promoters were named in order of the highest tran-
scriptional activity[6]. Where necessary, coordinates for GWAS SNPs (see 2.11 were translated
to hg19 coordinates using LiftOver[9], or coordinates were obtained for SNP IDs from dbSNP[14]
version 138.

2.8 Permutations

A circular permutation method was devised to prevent systematic bias by maintaining the un-
derlying structure of GWAS SNP data. The NDA score for a given regulatory region was
compared with NDA scores obtained from randomly permuted subsets of genes to give an em-
pirical p-value for coexpression. If permuted networks consist of randomly-selected regulatory
regions, then this p-value quantifies coexpression alone (see 2.8.1); if the permuted networks are
generated by mapping randomly-selected SNPs to regulatory regions, then the final p-value is a
composite of two measures: coexpression, and the enrichment for true GWAS hits in regulatory
sequence (see 2.8.2)).

2.8.1 Pre-mapping permutations

Pre-mapping permutations use a random set of SNPs generated by rotation of the input set of
SNPs, K, on a concatenated circular genome. The choice of background is critical - some more
recent GWAS studies consider only a subset of variants with a high probability of association
with a given trait, such as the immunochip[16] or the metabochip[17]. In the present analyses,
background data were chosen to reflect as accurately as possible the pool of variants included in
the original study. For this reason, results are presented only for phenotypes for which the the
entire summary dataset was available, including a p-value for every SNP, so that the background
used to generate permuted networks is exactly the same background from which the real dataset
is drawn.

2.8.2 Post-mapping permutations

In order to quantify the e↵ect of coexpression alone (i.e. eliminating the inflation of NDA
scores that occurs due to enrichment of trait-associated SNPs in regulatory regions), permuted
networks were generated after mapping to TSS regions. Let A be the whole set of FANTOM5
TSS. Post-mapping permutations select a random subset of A in a similar circular manner, by
randomly displacing the members of the set R (Equation 3) by a random number of places on
the list. Where the displacement pushes members of R o↵ the end of the list, they are re-entered
at the beginning.

This process generates a pool of variants that are likely to be grouped in a similar distribution
on the genome as the input set. If the input set contains a large group of TSS regions in close
proximity on the genome, it is likely that this group of TSS regions will be joined as a single unit
(see above) for analysis. During generation of permutations, the same number of consecutive TSS
regions elsewhere on the genome may not be in su�cient proximity (and expression correlation)
to be grouped together. This would create extra network nodes, falsely inflating the NDA scores
in the permuted sets. In order to mitigate against this, those TSS from each permutation that do
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Supplementary Figure 1: Distribution of observed NDA scores for Crohn’s disease, and expected
NDA scores from pre- and post-mapping permutations

not conform to the input set distribution are re-entered into a further circular permutation until
an identical distribution is found. If no matching grouping is found after 8 repeat permutations,
additional regulatory regions are added from consecutive positions above and below whichever
group is nearest in size to the relevant group in the original input dataset.

The di↵erence between the distributions of NDA scores derived from pre- and post-mapping
permutations reveals the di↵erent components of the measure. When compared to a random
pool of SNPs (pre-mapping permutations), two factors inflate the NDA scores for real GWAS
data: firstly, more regulatory regions are identified because true GWAS hits are enriched within
regulatory regions; secondly, the coexpression signal itself is greater for real data. In contrast,
post-mapping permutations have precisely the same number of regulatory regions included as
the real dataset, so there is no component of inflation due to enrichment in regulatory regions.
The e↵ects of these di↵erent components are shown in Figure 1, which reveals the NDA score
to be a composite measure of both signals.

False discovery rates (FDR) are calculated using the Benjamini-Hochberg method[2].
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2.9 Choice of samples and regulatory regions

The enrichment for GWAS hits from a pooled resource comprising the NCBI GWAS catalog
and the GWASdb database (observed SNPs.Mb

�1: expected SNPs.Mb

�1) was quantified
at increasing search window sizes upstream and downstream from the transcription start site
(TSS). A table of GWAS hits for a broad range of phenotypes was obtained from the NCBI
GWAS catalog[8] and from a larger, less selective catalog of GWAS p-values meeting permissive
criteria for genome-wide significance, GWASdb[13]. The GWASdb dataset is less fastidiously
curated than the NCBI GWAS catalog, but contains a much greater range of SNPs since it
does not restrict inclusion to the strongest associations, or to putative causative variants. Since
both databases are limited by the variation in reporting, and quality, of the original GWAS
studies from which data are drawn, this analysis was restricted to variants meeting genome-wide
significance at a widely-accepted threshold (p < 5⇥10�8). These catalogues were combined and
filtered to remove duplicate entries. Data were obtained from:

• NHGRI GWAS catalog, June 2014 http://www.genome.gov/gwastudies

• GWASdb2, June 2014 update ftp://jjwanglab.org/GWASdb/20140629/gwasdb_20140629_
snp_trait.gz

Overlapping phenotypes, such as “urate” and “uric acid” were manually merged as shown in
SF2 phenotype matching.txt. Phenotypes that were considered to be too broad to be informa-
tive were excluded, as were those that were not related to human disease. A complete table of
phenotypes in GWASdb and NCBI GWAS catalog, showing mergers and inclusion/exclusion in
the present work, is provided in a supplementary file (SF2 phenotype matching.txt).

The coexpression signal obtained for the test input set was evaluated using di↵erent subsets of
FANTOM5 samples (cell lines, timecourses following a perturbation in primary cells or selected
cell lines, tissue samples, primary cells, or various combinations of these), and di↵erent types
of regulatory region (enhancers, promoters assigned to annotated genes, other promoters, or all
regulatory regions combined)(Supplementary Figure 3). A weak signal for coexpression is seen
in cell lines, but the addition of cell lines to the combined sample set of primary cells, timecourses
and tissues did not improve the coexpression signal seen for any subset of regulatory regions.
The strongest coexpression is seen in the combined sample set. A “minimal detail” sample
set was also tested, comprising a single average value for each of the timecourses, primary cell
types and tissue types, and excluding data from unstimulated cell lines. The complete dataset,
including all cell types and tissues, provided the strongest signal, demonstrating that there is
additional biologically-relevant information contained in the expression profiles from all sample
subsets (Supplementary Figure 3).

2.10 Anti-correlation

Strong anti-correlation between pairs of TSS associated with the same phenotype may have
biological importance, such as down-regulation at one TSS but expression at another, or neg-
ative regulation of a signalling pathway on which expression of a TSS is dependent. For this
reason, anti-correlations may improve detection of true associations in this analysis. However,
in order to confer an overall improvement on the performance of the algorithm, true inverse ex-
pression relationships between phenotype-associated TSS would need to be su�ciently common
to overcome the noise added by incorporating all strong anti-correlations into the NDA score.
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Anti-correlations do not contribute any net improvement to the NDA scores for a training set
(Crohn’s disease, 50% of all SNPs, chosen at random), and were therefore excluded.

2.11 GWAS data sources

Full GWAS or meta-analysis data, reporting every SNP genotyped or imputed in a given study,
are required in order to permute subsets against the appropriate background for a given study
(see 2.8). These were obtained from the following sources:

• Crohn’s disease[7] summary p-values were obtained from the International Inflammatory
Bowel Disease Genetics Consortium ftp://ftp.sanger.ac.uk/pub4/ibdgenetics/cd-

meta.txt.gz

• Ulcerative colitis[1] summary p-values were obtained from the International Inflamma-
tory Bowel Disease Genetics Consortium ftp://ftp.sanger.ac.uk/pub4/ibdgenetics/

ucmeta-sumstats.txt.gz

• Summary p-values for human height[3] were obtained from the GIANT consortium https:

//www.broadinstitute.org/collaboration/giant/images/4/47/GIANT_HEIGHT_LangoAllen2010_

publicrelease_HapMapCeuFreq.txt

• Summary p-values for total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides[5]
were obtained from the Global Lipids Consortium http://csg.sph.umich.edu/abecasis/

public/lipids2013/

• Summary p-values for systolic and diastolic blood pressure. [15] were obtained from the In-
ternational Consortium on Blood Pressure study http://www.georgehretlab.org/icbp_

088023401234-9812599.html

A permissive threshold for trait association of p < 5⇥ 10�6 was used for whole GWAS / meta-
analysis coexpression analyses.

3 Cell type specificity

In order to better understand the pathophysiological implications of disease variants in regula-
tory regions, we sought to identify whether these regions exhibit unexpectedly specific expression
in any given cell types or tissue samples. In order to reduce noise, technical and biological repli-
cates were averaged for this and subsequent analyses. The full table of samples in FANTOM5,
showing which samples were averaged as technical replicates, and which were excluded, is in
supplementary table (SF2 phenotype matching.txt).

For a given trait, we took the subset of regulatory regions for which a significant coexpression
pattern was detected for that trait (coexpression FDR  0.05). For each regulatory region, we
created a list of all cell types in which that region was active, ranked by expression level. We
then combined the cell type lists for each regulatory region using a robust rank aggregation
(RRA)[11].

There are several possible sources of bias in this raw measurement. For example, some cell
types have more cell-type specific transcriptional activity, perhaps because these cell types fulfil a
specialised role; other cell types are particularly well-represented in the FANTOM5 samples. We
therefore controlled for the probability that a given cell type would be highly ranked in the initial
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RRA analysis, by permuting RRA results for at least 100,000 random selections of n regulatory
regions. We then calculated the empirical p-value for a each cell type, i.e. the probability that
this cell type would be assigined a raw RRA p-value at least as strong by random chance. We
then corrected for multiple comparisons using the Benjamini-Hochberg method to estimate false
discovery rate (FDR).

4 Code availability

Computer code required to run the NDA method, specifically for the detection of coexpression in
FANTOM5 regulatory regions, can be obtained from https://github.com/baillielab/coexpression/
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(a) Promoters for named genes
(b) Promoters not associated with a
named gene

(c) Enhancers (d) All promoters and enhancers

Supplementary Figure 2: Enrichment for GWAS hits at increasing distances above and below
TSS
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Supplementary Figure 3: Change in coexpression signal using di↵erent subsets of the FANTOM5
dataset, using the Crohn’s disease GWAS as the input set. Enrichment column shows a miniature
graph depicting the enrichment (observed SNPs.Mb

�1: expected SNPs.Mb

�1) at increasing
search window sizes upstream and downstream from the transcription start site (TSS). Other
columns show Q:Q plots of observed:expected NDA scores obtained using a given subset of
samples (see SF3 sample averaging.xlsx for full description of each subset). Rows indicate the
subset of regulatory regions used in each analysis. Percentage of significantly coexpressed entities
(hits, FDR < 0.05) and p-value (Kolmogorov-Smirnov test) comparing observed (blue) and
expected (red) distributions are shown below each plot.
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