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Abstract

Background: There are many steps in analyzing transcriptome data, from the acquisition of raw
data to the selection of a subset of representative genes that explain a scientific hypothesis. The data
produced may additionally be integrated with other biological databases, such as Protein-Protein
Interactions and annotations. However, the results of these analyses remain fragmented, imposing
difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new
related data. Integrating databases and tools into scientific workflows, orchestrating their execution,
and managing the resulting data and its respective metadata are challenging tasks. Running in-silico
experiments to structure and compose the information as needed for analysis is a daunting task.
Different programs may need to be applied and different files are produced during the experiment
cycle. In this context, the availability of a platform supporting experiment execution is paramount.
Results: We present GeNNet, an integrated transcriptome analysis platform that unifies scientific
workflows with graph databases for selecting relevant genes according to the evaluated biological sys-
tems. GeNNet includes pre-loaded biological data, pre-processes raw microarray data and conducts a
series of analyses including normalization, differential expression inference, clusterization and geneset
enrichment analysis. To demonstrate the features of GeNNet, we performed case studies with data
retrieved from GEO, particularly using a single-factor experiment. As a result, we obtained differen-
tially expressed genes for which biological functions were analyzed. The results are integrated into
GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships.
The resulting graph database is explored with queries that demonstrate the expressiveness of this
data model for reasoning about gene regulatory networks.
Conclusions: GeNNet is the first platform to integrate the analytical process of transcriptome data
with graph database. It provides a comprehensive set of tools that would otherwise be challenging for
non-expert users to install and use. Developers as well can add new functionality to each component
of GeNNet. The resulting data allows for testing previous hypotheses about an experiment as well
as exploring new ones through the interactive graph database environment. It enables the analysis
of different data on humans, rhesus, mice and rat coming from Affymetrix platforms.

keywords: GeNNet, Graph database, software container, scientific workflow, transcriptome, microarray,
provenance, data-to-knowledge.

Background

The growing accumulation of molecular biology data motivated the development of pipelines, workflows
and platforms for analyzing data. Many researchers are using these integrative approaches for analyzing
metagenomes, proteomes, transcriptomes and other ‘omics’ data. For transcriptomes, microarray and
RNA-seq are currently the main technologies available and widely used. The low cost of microarray,
in relation to RNA-seq, still makes its use very appealing for well-known organisms. Regardless of
the technology, there are many steps from the acquisition of raw data to the selection of a subset of
representative genes that explain the hypothesis of the scientists. Furthermore, these genes can be
grouped based on their gene expression pattern, to which biological function can attributed. The results
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of gene expression analysis may bring new insights to the discovery of new targets for drug development
as well as for uncovering novel biological functions and mechanisms.

However, the results of these analyses remain fragmented, imposing difficulties, either for posterior
inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases
and tools into computational analyses, orchestrating their execution, and managing the resulting data
and its respective metadata are challenging tasks [12]. Academic journals are demanding better repro-
ducibility of computational research, requiring a precise record of parameters, data and processes (also
called provenance [5]) used in these activities to support validation by peers [27].

Overcoming many of these challenges can be supported by designing and executing these computa-
tional analyses as scientific workflows [6], which consist of compositions of different scientific applica-
tions. Their execution is usually chained through data exchange, i.e. data produced by an application
is consumed by subsequent applications. Scientific workflow management systems (SWMSs) enable for
managing the life cycle of scientific workflows, which is usually given by composition, execution and anal-
ysis [21]. Many SWMSs, such as Taverna [23] and Swift [32], natively support gathering provenance [10]
and executing scientific applications on scalable computational resources [31] such as high performance
computational clusters and cloud computing infrastructures.

The heterogeneity of biological data makes its representation with a conceptual data schema that
follows a fixed and strict structure, such as in relational databases challenging. Modifying the data
schema in these cases can result in conflicts or inconsistencies in a database. In the era of expanding
and interconnected information, new data models appeared such as column-oriented, key-value, multidi-
mensional, and graph databases. These are commonly called NoSQL (Not only SQL) [30] databases and
often have advantages in terms of scalability. Graph-based data models, in particular, are useful for data
in which the relationship between attributes is one of the main aspects to be taken into consideration
during querying. The graph database is an intuitive way for connecting and visualizing relationships.
In graph databases the nodes represent objects and the edges represent the relationships between them.
Both, nodes and edges can hold properties, which add information about the objects or the relationships.
We chose the graph data model since it is the most adequate to represent the results in a natural way
focusing on interactions. In recent years, this database model has been used in many different bioinfor-
matics applications and are particularly promising for biological data sets [25, 17, 3, 14, 22]. Have and
Jensen [13] observed that for path and neighborhood queries, Neo4j, a graph database, can be orders of
magnitude faster than PostgreSQL, a widely used relational database, while allowing for queries to be
more intuitively expressed.

Integrating scientific workflows with database systems becomes a powerful framework, in which sci-
entists can express complex data pre-processing analysis and make available for further investigation
treated data to be queried using a high-level query language. We argue that integrated web applications,
involving scientific workflows and databases, can hide the complexity of underlying scientific software
by abstracting away cumbersome aspects, such as managing files and setting command-line parameters,
leading to increased productivity for scientists. One important aspect of enabling reproducible compu-
tational analyses is keeping track of the computational environment components, i.e., operating system,
libraries, software packages and their respective versions. Operating system-level virtualization through
the use of software containers allows for creating within an operating system instance isolated environ-
ments that behave like a server. These isolated environments, also called containers, can be built in a
programmable way to ensure that they will be composed by the same libraries and software packages
every time they are instantiated.

In this paper, we present GeNNet, an integrated transcriptome analysis platform that unifies scientific
workflows with graph databases for determining genes relevant to evaluated biological systems. GeNNet
includes pre-loaded back-end data, pre-processes raw microarray data and conducts a series of analyses
including normalization, differential expression, annotation, clusterization and functional annotation.
During these analyses, the results are stored in different formats, e.g., figures, tables and R workspace
images. Furthermore, the results are stored as a graph database that can be persisted for the user. The
graph database represents networks that can be explored either graphically or using a flexible query
language. The application additionally offers an easy-to-use web interface tool developed in Shiny1 for
automated analysis of gene expression. The implementation follows best practices for scientific software
development [33], for instance, by recording provenance information and using software containers to
distribute the platform and allowing for portability and reproducibility. As far as we know, GeNNet
is the first platform for transcriptome data analysis that tightly couples a scientific workflow with a
persistent biological (graph) database while supporting reproducibility through the use of provenance

1https://shiny.rstudio.com/
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tracking and software containers.

Implementation

GeNNet innovates in its use of a graph-structured conceptual data model coupled with scientific workflow
management, software containers for portability and reproducibility, and a productive and user-friendly
web-based front-end (see in framework). In the following subsections we describe these components in
detail: workflow (GeNNet-Wf), graph database (GeNNet-DB), and web application (GeNNet-Web).

Figure 1: GeNNet framework with the components as GeNNet-Wf, GeNNet-DB and GeNNet-Web.

Workflow

GeNNet-Wf was modularized in two main stages: background preparation and execution of workflow
activities (Figure 2). The background preparation stage is executed during the construction of the GeNNet
software container (described in section container), the resulting data is ready for use when the GeNNet
platform is started. The workflow activities stage is comprised of the execution of a series of tools and
libraries to analyze the transcriptome data uploaded by the user in conjunction with the background
data.

Figure 2: Workflow scheme represented by two stages, Background Preparation in the top and Workflow
Activities in the bottom. Results of both stages are loaded to the GeNNet database. The Workflow
Activities stage is shown with its different steps of the analysis.

‘Background’ Preparation

The genes and existing relationships among them along with other associated elements are the core of
transcriptome analysis. In our platform, we build a data layer called background that contains infor-
mation about all the genes annotated/described for the organisms targeted by GeNNet. Therefore, the
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background constitutes an independent and self-contained layer of the experiment. The independence of
this information, generated during the construction of the software container, enables gains in efficiency
in populating the GeNNet database since the data is bulk-inserted. In this version of the platform, the
background data is comprised of two main sources: (i) gene information about human, rhesus, mice and
rat, obtained from NCBI annotations [28] and (ii) Protein-Protein Interaction (PPI) network, retrieved
from STRING-DB (Search Tools for Retrieval of Interacting Gene/Proteins) [9] (version 10). All genes
imported from NCBI become nodes if the graph database and some of the main information associated
to them (such as symbol, entrezId, description, etc.) are modeled as node properties. The information
derived from STRING-DB PPI become edges (relationships between genes) with score values associ-
ated to the nodes (neighborhood, gene fusion, co-occurrence, co-expression, experiments, databases and
text-mining). This layer of data is added to the graph database during the construction of the GeNNet
container; more detail about the representation and implementation can be found in section graphdb.

Workflow Activities

The workflow activities step (Figure 2) consists of a series of steps executed sequentially. This module
was written in R using different packages mainly from the Bioconductor [7] and CRAN repositories. The
steps are detailed next.

Normalization. This step consists in normalizing the raw data from an informed Affymetrix platform
using either RMA [16] or MAS5 methods, both available in the affy [11] package. During this step,
some quality indicator plots are generated (as boxplot of probe level, Spearman correlation and density
estimates) as well as a normalized matrix (log-normalized expression values).

e-set. In this step, data about the experimental design should be added along with log-normalized
expression values. This generates an ExpressionSet (eSet) object, a data structure object of the S4
class used as base in many packages developed in Bioconductor transcriptome analysis. This format
gives flexibility and access to existing functionality. The input file must be structured using mainly two
columns: a column named SETS for the experimental design, and a column named SAMPLE NAME
for the names of the files containing raw sample expression matrix data.

Filtering/Differential expression inference. Differential expression (DE) inference analysis allows
for the recognition of groups of genes modulated (up- or down-regulated) in a biological system when
compared against one or more experimental conditions. In many situations this is a core step of the
analysis and there are a great diversity of experimental designs (such as control versus treatment, con-
secutive time points, etc) allowing the inference. In our platform, we use the limma package to select the
DE genes [29] on single-factor experimental designs based on a gene-based hypothesis testing statistic
followed by a correction of multiple testing given by the False Discovery Rate (FDR) [18]. Furthermore,
a subset of DE genes can be selected based on a up- and down-regulation, expressed as a logarithmic
(base 2) fold-change (logFC) threshold. Results of this step are displayed as Volcano plots and Matrices
containing the DE genes.

Annotation. The annotation step consists of annotating the probes for the corresponding genes ac-
cording to the Affymetrix platform used in the experiment.

Clusterization. This step consist in analyzing which aggregated genes have a similar pattern (or
level) of expression. We incorporated clusterization analysis including hierarchical methods, k-medoids
from the package PAM (Partitioning Around Medoids) [26] and WGCNA (Weighted Gene Coexpression
Network Analysis) [19].

Functional Analysis. Genes grouped by similar patterns enables the identification of over-represented
(enriched) biological processes (BP). In our approach we conducted enrichment analyses applying hy-
pergeometric tests (with p-value < 0.001) as implemented in the GOStats package [8]. The universe is
defined as the set of all genes represented in a specific Affymetrix platform, or, in case of multiple plat-
forms in a single experiment design, the universe is defined as the common and unique genes in among
all Affymetrix platforms. The subset, geneset, is defined either by the set of diferentially expressed (DE)
genes between a test and a control condition (control versus treatment design), or by the union of the
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DE genes selected among the pairwise comparisons among groups in all other single-factor experimen-
tal designs. Ontology information for the gene and universe sets is extracted from the Gene Ontology
Consortium database [2].

Execution

GeNNet is designed to automatically execute the workflow through the web application interface (avail-
able at http://localhost:3838/gennet, when the software container is running). However, users
that intend to implement new functions or even execute the workflow partially, can use the RStudio
server interface in GeNNet (through at http://localhost:8787 after starting the software con-
tainer). More details are available in Supplementary Material.

Graph database

GeNNet database (GeNNet-DB) schema is based on the Neo4j database management system, a
free, friendly-to-use and with broad community support graph database, with its nodes, edges and
relationships. Although a NoSQL database has no fixed schema, we defined an initial schema to help and
guide the GeNNet-DB (Figure 3). Vertices and edges were grouped into classes, according to the nature
of the objects. We defined the labels as GENE, BP (Biological Process), CLUSTER, EXPERIMENT,
ORGANISM, and a series of edges as illustrated in Figure 3. In the GeNNet platform there is an initial
database defined by interactions between genes as described in Background preparation. During the
execution of GeNNet-Wf, using Shiny or RStudio, new nodes and connections are formed and added to
the database. The resulting information is stored in the graph database using the RNeo4j package2. It
can also be accessed directly through the Neo4j interface (available at: http://localhost:7474).
It is possible to query and access the database in this interface using the Cypher language, a declarative
query language for Neo4j, or Gremlin, a general-purpose query language for graph databases. These
query languages allow for manipulating data by updating or deleting nodes, edges and properties in
the graph. Querying also allows for exploring new hypotheses and to integrate new information from
different resources that are related to the targeted experiment. GeNNet-DB is persistent and the resulting
database is exported to a mounted directory. Its contents can be loaded to a similar Neo4j installation.
For further details one can read the Neo4j manual.

Web application

GeNNet-Web provides a user-friendly way to execute GeNNet-Wf. We developed an easy-to-use
layout for providing the parameters and automatically executing all steps of the workflow experiment.
The parameters comprise the input of the web application, which include: descriptors for experiment
name and overall design; type of normalization; differential expression settings; experiment platform
and organism; and clusterization method. After executing GeNNet-Wf, GeNNet-Web allows for easy
retrieval and visualization of its outputs, which are given by a heatmap, graph database metrics (e.g.,
number of nodes, number of edges, relationships between nodes), and the list of differentially expressed
genes selected. In addition to the outputs generated in the web application, the underlying workflow
generates the output files as described in subsection gennet-workflow.

Software container

GeNNet was built on top of the Docker3 software containerization platform. This enables users to
download a single software container that includes all the components of GeNNet and behave the same
way independently of the hosting operating system. The software container was successfully tested on
CentOS Linux 7, Ubuntu Linux 14.04, MacOS X 10.11.6 and Windows 10. The software container
for GeNNet, specified in a script named Dockerfile, was built according to the following steps: (i) The
operating system environment is based on CentOS Linux 7 with software packages required by GeNNet,
such as R (v. 3.3.1), installed from the official CentOS repository and the EPEL (Extra Packages
for Enterprise Linux) repository; (ii) The R packages required by GeNNet, installed from the CRAN

2Available at: https://cran.r-project.org/web/packages/RNeo4j
3https://www.docker.com
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Figure 3: The graph database schema representing the nodes (in oval), relationships (arrows). The
descriptive boxes showing the mainly properties in nodes and edges.

Figure 4: User-friendly interface in GeNNet. Left hand side showing parameters settings and right hand
side showing some tables, figures and results.

repository; (iii) RStudio (v. 1.0.44) server and the Neo4j (Community Edition v.3.0.6) graph database,
installed from their respective official repositories; (iv) Supporting data sets, such as PPI, loaded to the
graph database; (v) GeNNet-Wf, implemented in R, installed in RStudio; (vi) Shiny, a web application
server for R, installed from its official repository. GeNNet-Web, which calls GeNNet-Wf, is loaded to
Shiny.

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 18, 2016. ; https://doi.org/10.1101/095257doi: bioRxiv preprint 

https://doi.org/10.1101/095257
http://creativecommons.org/licenses/by/4.0/


Computational experiment reproducibility

Reproducibility is accounted in GeNNet in two aspects. Firstly, the platform provides a provenance trace
record generated by the RDataTracker package [20] for R. The trace contains the activities executed by
the workflow and the data sets consumed and produced by them. This trace is exported to a persistent
directory. Secondly, the adoption of software containers allows for using the same environment (operating
system environment, libraries, and packages) every time GeNNet is instantiated and used. Both the
provenance trace and the preservation of the execution environment with software containers significantly
help the computational experiment reproducibility since users can retrieve from the former the parameters
and data sets used in analyses and, from the latter, re-execute them in the same environment, as provided
by the GeNNet software container.

Results

Experimental data – Use case scenarios

To demonstrate our application, we selected some case studies to be analyzed on GeNNet. The data was
obtained from GEO [4] and agreed with the following criteria: (i) raw data availability; (ii) microarray
data coming from the Affymetrix platform; (iii) encompassing humans, rhesus, mice and rat organisms;
(iv) having single-factor experiment design. The datasets retrieved for validating our platform are listed
in Additional material 3. Further details about each experiments can be found in the original articles.

As an example of a specific and more detailed case study, we re-analyzed a gene expression experiment
from a patient with alcoholic hepatitis (15 samples in total) versus healthy individuals (7 samples in total)
[1]. The data for this experiment was obtained from GEO with accession number GSE28619. The study
used the Affymetrix Human Genome U133 Plus. Data was normalized using the MAS5 method and
the differential expressed gene selection criteria were FDR < 0.05 and absolute log2(Fold-Change) > 1.
The genes were clustered using the Pearson correlation method as measure of dissimilarity. Next, the
clusters were associated to biological functions through the hypergeometric test (with p-value < 0.001
as threshold). As a result, 2.478 differentially expressed genes were obtained and 513 ontological terms
were represented (p-value < 0.001). A major part of the analytical process resulting information was
incorporated to GeNNet-DB and beside the database, the results were exported to different formats such
as figures (heatmaps, boxplots, etc.), tables and provenance (Figure 5).

Figure 5: Some figures generated during workflow execution: (a) boxplot (quality indicator), (b) volcano
plot and (c) heatmap. In (d), the provenance trace of a GeNNet-Wf execution is represented as a data
derivation graph (DDG).

The database generated during GeNNet-Wf execution facilitates data representation as interaction
networks, in an approach that allows for exploring a great variety of relationships among its composing
entities, besides making new insights for subnetwork exploration possible. Depending on the type of
these interactions, different kinds of networks and topologies can be defined and analyzed. Through the
data representation used in GeNNet-DB traversal queries are possible. We illustrate a typical scenario
for which the user just needs to query GeNNet-DB to solve them. Using the Cypher declarative query
language with direct access to the database, we formulated some demonstration queries using as example
the dataset analyzed above.
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Query 1 : What are the existing relationships among nodes in the database?
This is a simple query that returns all existing relationships among different node labels and types. The
result of the query was represented as a graph in Figure 6.

MATCH (a)-[r]-(b)
WHERE labels(a) <>[] AND labels(b) <>[]
RETURN DISTINCT head(labels(a)) AS This,

type(r) as Relation,
head(labels(b)) as To

Figure 6: Database schema with all the existing nodes and relationships.

Query 2 : What is the number of edges per type of relationship?
This query returns the number of edges according to each type of edge (1). In the result, one can observe
the number of normalized and annotated genes (Was normalized = 21031) as well as the nuber of DE
genes found using the methodology selected (Was selected = 2478) for the dataset analyzed.

MATCH (n)-[r]->()
RETURN type(r) as relationship_type ,

count(*) as number_of_edges

Table 1: Types of edges with the respective number of edges stored in GeNNet-DB.
relationship type number of edges

Was represented 513
Was clusterized 10116
PPI interaction 3471455

Was selected 2478
Has a 194588
Belong 2

Tech Used 1
Was normalized 21031

Query 3 : Which nodes of type TGENE were DE and present the highest number of connections
associated to the protein interaction networks (PPI) according to a combined score value of > 0.80?
Among these selected nodes, what are the clusters and associated biological processes?

Some common and important topological metrics in biological networks include: degree, distance,
centrality, clustering coefficient. In this work, we use the degree metric ki of a node ni, defined as the
number of edges that are adjacent (aij) to this node, which is given by:

ki =
∑
j∈V

aij . (1)
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We use the Cypher query language to find the most connected DE genes in the network that establish
known connections to the PPI network, having a high attribute value for the combined interaction
score. For these genes we computed the co-expression cluster and, subsequently, the biological processes
attributed to these clusters. One can observe that the query is expressed in a concise manner for
answering a relatively complex topological question. The resulting DE genes are displayed in Table 2.

MATCH (e:EXPERIMENT)-[s:Was_selected]->
(g:GENE)-[p:PPI_interaction]-(h:GENE)-
[:Was_clusterized]-(c:CLUSTER)-
[:Was_represented]-(b:BP)

WHERE p.combined_score > 800
RETURN distinct g.symbol,

COLLECT(distinct(h.symbol)) AS genes,
COLLECT(distinct(b.Term)) AS BP,
COUNT(distinct h) AS score
ORDER BY score DESC LIMIT 10

Table 2: Result showing the top 10 gene DE by PPI in experiment GSE28619. These genes are know as
hubs and maybe are associated in important pathways in experimental context analyzed.

Genes
selected

cgna BP associated

JUN 89
response to zinc ion; positive regulation of
fibrinolysis; astrocyte activation; beta-alanine
metabolic process; dibenzo-p-dioxin
metabolic process; purine nucleobase
catabolic process; positive regulation of gene
expression; generation of precursor
metabolites and energy; regulation of natural
killer cell chemotaxis; ketone body
biosynthetic process;

SRC 83
CDK1 80
STAT3 75
CREBBP 72
FOS 62
CDC42 58
IGF1 58
CCND1 55
CDKN1A 54

a number of connected genes

One of the main advantages of using the data model adopted in GeNNet is the availability of data and
information that can be easily done without changing the data model. New nodes may add information
such as metadata of samples (e.g. information on a patient’s eating habits) or new edges may add new
relationships (e.g. genes co-expressed in different methods used) or even both (e.g. addition of a database
on microRNA interactions connected to existing genes in the database). In the example below, we add
a HUB-like node from the result obtained in query 3. Through the CREATE clause, after obtaining the
selected genes, a new node and edges were created (Figure 7. This queries demonstrates the flexibility
of the database in adding new information that can be generated through existing data in GeNNet-DB.

Query 4 : New node and edges inserted from the result of the previous query.

MATCH (e:EXPERIMENT)-[s:Was_selected]->
(g:GENE)-[p:PPI_interaction]-(h:GENE)-
[:Was_clusterized]-(c:CLUSTER)-
[:Was_represented]-(b:BP)

WHERE p.combined_score > 800
WITH DISTINCT g, COUNT(distinct h) AS score
WHERE score > 50 WITH collect(g) AS gs
CREATE (hub:Hub {name: ’HUB’})
WITH gs, hub UNWIND gs AS g
CREATE (g)-[:AS_HUBS]->(hub)
RETURN *

Conclusion, Updates and Future Work

The platform presented in this work is the first one to integrate the analytical process of transcriptome
data (currently only available for microarray essays) with graph databases. The results allow for testing
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Figure 7: New nodes and edges added to the graph database. The genes that were highly connected
according to query 3 were directed to the type node HUB.

previous hypothesis about the experiment as well as exploring new ones through the interactive graph
database environment. It enables the analysis of different data coming from Affymetrix platforms on
humans, rhesus, mice and rat.

The GeNNet will be periodically updated and we intend to extend the modules including analyses
of RNA-seq and miRNA. We will incorporate additional experimental designs for DE and improve the
execution time of the analyses. Due to the free access to GeNNet we rely on the feedback of the
community for improving the tool. The distribution of the platform in a software container allows not
only for executing it on a local machine but also to easily deploying it on a server and making it available
on the Web.

List of abbreviations

BP: Biological Process;
DE: Differential expression;
DDG: Data Derivation Graph;
EPEL: Extra Packages for Entrerprise Linux;
FDR: False Discovery Rate;
GeNNet-DB: database of the GeNNet;
GeNNet-Web: web interface of the GeNNet;
GeNNet-Wf: workflow of the GeNNet;
GEO: Gene Expression Omnibus;
NoSQL: Not only SQL.
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Juan Carlos Garćıa-Pagán, Vicente Arroyo, Pere Ginès, Juan Caballeŕıa, Robert F Schwabe, and
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GeNNet tutorial

GeNNet tutorial is available at https://github.com/raquele/GeNNet.

Some datasets using to test the database

Table 3: Some examples of gene expression experiments published in literature used in our platform.

accession
number in
GEO

dataset study or-
ganism

strains ref. normalized
genes;
genes DE

hubs

GSE6740 HIV in different
stages

human 40 [15] 12917;339

GSE6011 DMD vs normal human 22;14 [24] 12917;493
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