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Abstract 14 

Speed is the fundamental constraint on animal movement, yet there is no general consensus on the 15 

determinants of maximum speed itself. Here, we provide a universal scaling model of maximum 16 

speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic 17 

groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship due to 18 

a finite acceleration time for animals. This model is strongly supported by extensive empirical data 19 

(470 species with body masses ranging from 5.7x10-8 to 108,000 kg) from terrestrial as well as 20 

aquatic ecosystems. Our approach offers a novel concept of what determines the upper limit of 21 

animal movement, thus enabling a better understanding of realized movement patterns in nature 22 

and their multifold ecological consequences. 23 

 24 

Main text 25 

The movement of animals and its consequences for ecosystem functioning have long fascinated 26 

humans and triggered enormous research1,2. Nevertheless, a generalized understanding of what 27 

determines variation in movement across species and environments is still lacking. This is 28 

particularly important as movement is one of the most fundamental processes of life: the individual 29 

survival of mobile organisms depends on their ability to reach resources and mating partners, 30 

escape predators, and switch between habitat patches or breeding and wintering grounds. 31 

Moreover, by creating and sustaining individual home ranges3 and meta-communities4, movement 32 

also profoundly affects the ability of animals to cope with land-use and climate changes5. 33 

Additionally, movement determines encounter rates and thus the strength of species interactions6, 34 

which is an important factor influencing ecosystem stability7. Thus, a generalized and predictive 35 

understanding of animal movement is crucial.  36 
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Maximum speed is the fundamental constraint of movement. The realized movement depends on 37 

ecological factors such as landscape structure, habitat quality, or sociality, but the range within 38 

which this realized movement occurs meets its upper limit at maximum movement speed. Similar 39 

to many physiological and ecological parameters, movement speed of animals is often thought to 40 

follow a power-law relationship with body mass8–10. However, scientists have always struggled 41 

with the fact that in running animals the largest are not the fastest. In nature, the fastest animals 42 

such as cheetahs or marlins are of intermediate size indicating that a hump-shaped pattern may be 43 

more realistic. There have been numerous attempts to describe this phenomenon11–15, but a 44 

universal mechanistic model explaining this relationship is still lacking. Here, we fill this void by 45 

a novel maximum speed model based on the concept that animals are limited in their time for 46 

maximum acceleration due to restrictions on the quickly available energy. Consequently, 47 

acceleration time becomes the critical factor determining the maximum speed of animals. In the 48 

following, we first derive the maximum-speed model (in equations that are illustrated in the 49 

conceptional Fig. 1) and, subsequently, test the model predictions employing a global data base 50 

and eventually illustrate its applications to advance a more general understanding of animal 51 

movement. 52 

Consistent with prior models, we start with a power-law scaling of theoretical maximum speed 53 

vmax(theor) of animals with body mass M: 54 

𝑣max⁡(𝑡ℎ𝑒𝑜𝑟) = 𝑎𝑀𝑏 (1) 55 

 56 
During acceleration, the speed of an animal over time t saturates (Fig 1a, solid lines) approaching 57 

vmax(theor) (Fig 1a, dotted lines): 58 

𝑣(𝑡) = 𝑣max⁡(𝑡ℎ𝑒𝑜𝑟)⁡(1 − 𝑒−𝑘𝑡)   (2) 59 

 60 
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The acceleration constant k describes how fast an animal reaches vmax(theor). Based on the 61 

Newtonian principle F=M *k, acceleration k should scale relative to the ratio between maximum 62 

force, F, and body mass, M: k ~ F/M. Knowing that maximum muscle force is roughly proportional 63 

to body mass as: F ~ Md, this yields a general power law scaling of k with body mass M: 64 

𝑘 = 𝑐⁡𝑀𝑑−1 (3) 65 

 66 

with constants c and d. As the allometric exponent d of the muscle force falls within the range 0.75 67 

to 0.94 16–18 the overall exponent (d-1) should be negative, implying that larger animals need more 68 

time to accelerate to the same speed than smaller ones (conceptional Fig 1a, color code exemplifies 69 

four animals of different size). Note that this general scaling relationship also allows for the special 70 

cases of a constant acceleration across species or a linear relationship with body mass.  71 

While prolonged high speeds are related to the maximum aerobic metabolism, maximum burst 72 

speeds are linked to anaerobic capacity19,20. For maximum aerobic speed, so-called slow twitch 73 

fibers are needed, which are highly efficient at using oxygen for generating adenosine triphosphate 74 

(ATP) to fuel muscle contractions. Thus, they produce energy more slowly but for a long period 75 

of time before they fatigue and allow for continuous, extended muscle contractions. In contrast, 76 

maximum anaerobic speed is fueled by a special type of so-called fast twitch fibers, which use 77 

ATP from the ATP storage of the fiber until it is depleted. Thus, they produce energy more quickly 78 

but also fatigue very fast and only allow for short bursts of speed. Consequently, the critical time 79 

available for maximum acceleration τ is limited by the amount of fast twitch fibers and their energy 80 

storage capacity. This storage capacity is correlated with the amount of muscle tissue mass, which 81 

is directly linked to body mass. Thus, similar to the muscle tissue mass, τ should follow a power 82 

law: 83 

τ = 𝑓⁡𝑀𝑔   (4), 84 
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where the allometric exponent g should fall in the range 0.76 to 1.27 documented for the allometric 85 

scaling of muscle tissue mass 21–24. This power-law implies that larger animals should have more 86 

time for acceleration (dashed red lines in conceptional Fig 1b and c). However, the power law 87 

relationship of the critical time τ in our model allows for a negative or positive scaling of energy 88 

availability with body mass as well as the lack of a relationship (constant energy availability across 89 

body masses (f = 0)). While we included power-law relationships of k and τ (equations 3 and 4) in 90 

our model, these scaling assumptions are not strictly necessary. Instead, our only critical 91 

assumptions are that acceleration over time follows a saturation curve (equation (1)) and that the 92 

time available for acceleration is limited.  93 

Within the critical time τ, after which energy available for acceleration is depleted, the animal 94 

reaches its realized maximum speed vmax (points in Fig 1c), which may be lower than the theoretical 95 

maximum speed (Fig 1a, dotted lines). Combining equations (1) – (4) with t = τ yields  𝑣𝑚𝑎𝑥 =96 

𝑎⁡𝑀𝑏 ⁡(1 − 𝑒−𝑐𝑓𝑀
𝑑+𝑔

) which simplifies to 97 

 98 

𝑣𝑚𝑎𝑥 = 𝑎⁡𝑀𝑏⁡ (1 − 𝑒−⁡ℎ𝑀
𝑖
)   (5) 99 

 100 

where 1 − 𝑒−ℎ𝑀
𝑖
 is the limiting factor that determines the realized maximum speed depending on 101 

the critical time and the body mass. This equation predicts a hump-shaped relationship between 102 

realized maximum speed and body mass (conceptional Fig 1d). Based on the allometric power-103 

law exponents of muscle forces (0.75<d< 0.94) and muscle mass (0.76<g<1.27), we expect that 104 

the exponent i (i=d-1+g) should fall in the range between 0.51 and 1.21. 105 
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    106 

Figure 1 | Concept of time- and mass-dependent realized maximum speed of animals. Acceleration of animals 107 

follows a saturation curve (solid lines) approaching the theoretical maximum speed (dotted lines) depending on body 108 

mass (blue color code) (a). The time available for acceleration increases with body mass following a power law (b). 109 

This critical time determines the realized maximum speed (c) yielding a hump-shaped increase of speed with body 110 

mass (d). 111 

The limiting term 1 − 𝑒−⁡ℎ𝑀
𝑖
 represents the fraction of the theoretical maximum speed that is 112 

realized and is defined on the interval ]0;1[. For low body masses, this term is close to 1 and the 113 

realized maximum speed approximates the theoretical maximum speed (black and green dots in 114 
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Fig. 1c). With increasing body masses, this term decreases and reduces the realized maximum 115 

speed (blue and yellow dots in Fig 1c).  Put simply, small to intermediately sized animals accelerate 116 

quickly and have enough time to reach their theoretical maximum speed whereas large animals are 117 

limited in acceleration time and run out of readily mobilizable energy before being able to reach 118 

their theoretically possible maximum speed. Therefore, they have a lower realized maximum speed 119 

than predicted by a power-law scaling relationship. 120 

 121 

To test the model predictions (Fig. 1d), we compiled literature data on maximum speeds of 122 

running, flying and swimming animals including not only mammals, fish and bird species but also 123 

reptiles, mollusks and arthropods. Body masses of these species range from 5.7x10-8 to 108,000 124 

kg. Statistical comparison amongst multiple models (see Methods) shows that the time-dependent 125 

maximum speed model is the most adequate (see Supplementary Table 3). Our model (Fig. 2, 126 

parameter values in Supplementary Table 4) shows that the initial power-law increase of speed 127 

with body mass is similar for running and flying animals (b = 0.24 and 0.27, respectively). 128 

However, flying animals are nearly six times faster than running ones (a = 144 and 26, 129 

respectively). For swimming animals, the power-law increase in speed is steeper than expected (b 130 

= 0.36, Fig 2a). This is due to the fact that in contrast to air (in which both flying and running 131 

animals move), water is 800 times denser and 60 times more viscous25. Small aquatic animals are 132 

slower than running animals of the same body size while larger species approach a similar speed 133 

as their running equivalents. This implies that in water, size brings a greater benefit in gaining 134 

speed. The second exponent is higher for flying animals (i = 0.72) than for running (i = 0.6) and 135 

swimming ones (i = 0.56), which fits into the expected range (0.51<i< 1.21). Future research will 136 

need to disentangle the relative importance of anaerobic and musculoskeletal constraints on 137 
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movement speed by measuring muscle force, muscle mass, body mass and maximum acceleration 138 

for the same species to narrow down this large range of possible exponents. Furthermore, this may 139 

allow to address the systematic differences in the exponent i between the locomotion modes as 140 

well as potential morphological side effects (e.g. quadrupedal vs. bipedal running or soaring vs. 141 

flapping flight).  142 
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    143 

Figure 2 | Empirical data and time-dependent model fit on the allometric scaling of maximum speed. (a) Scaling 144 

for the different locomotion modes (flying, running, swimming) in comparison. Taxonomic differences are illustrated 145 

separately for (b) flying (n = 55), (c) running (n = 453) and (d) swimming (n = 109) animals. Overall model fit: R2 = 146 

0.893. The residual variation does not exhibit a signature of taxonomy (only a weak effect of thermoregulation, see 147 

Methods). 148 

While the model provides strikingly strong fits with observations (R2 = 0.893), obvious 149 

unexplained variation remains. This might partially be explained by the fact that our data probably 150 
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include not only maximum anaerobic speeds but also some slightly slower maximum aerobic 151 

speeds. Moreover, we assessed the robustness of our model by exploring this residual variation 152 

with respect to taxonomy (arthropods, birds, fish, mammals, mollusks, and reptiles), primary diet 153 

(carnivore, herbivore, omnivore), thermoregulation (ectotherm, endotherm) and locomotion mode 154 

(flying, running, swimming). As taxonomy and thermoregulation are highly correlated, we made 155 

a first model without taxonomy and a second model without thermoregulation and compared them 156 

by their BIC values (see Methods for details). According to this, the model including 157 

thermoregulation instead of taxonomy is the most adequate (∆BIC = 27.37). In this model, the 158 

differences between the diet types were not significant. In contrast, combinations of locomotion 159 

mode with thermoregulation exhibited significant differences (Fig. 3). In flying and running 160 

animals, endotherms generally tend to be faster than ectotherms (Fig. 3a and b). Metabolic 161 

constraints may enable endotherms to have higher activity levels compared to ectotherms at the 162 

low to intermediate temperatures most commonly encountered in nature29. This pattern is reversed 163 

in aquatic systems where endotherms (mammals and penguins) are significantly slower than 164 

ectotherms (mainly fish, Fig. 3c). We assume that this is due to the transition from a terrestrial to 165 

an aquatic lifestyle aquatic endotherms underwent. Semi-aquatic endotherms are adapted to 166 

movement in two different media, which reduces swimming efficiency in comparison to wholly 167 

marine mammals: they have 2.4x105 times higher costs of transport30. But also in marine 168 

mammals, costs of transport are considerably higher than in fish of similar size because they have 169 

higher energy expenditures for maintaining their body temperature30. Thus, the effect of 170 

thermoregulation on the allometric scaling of maximum speed depends on the locomotion mode 171 

and the medium. Overall, this significant effect of thermoregulation explained only ~ 4% of the 172 
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residual variation suggesting that the vast majority of the variation in speed across locomotion 173 

modes, ecosystem types and taxonomic groups is well explained by our maximum speed model. 174 

      175 

Figure 3 | Effect of thermoregulation on the maximum speed of animals (residuals of the relationship in Fig. 2). 176 

In flying (a) and running (b) animals, endotherms are generally faster than ectotherms. In swimming animals (c) this 177 

effect is reversed with ectotherms being generally faster than endotherms. Box plots show medians (horizontal line), 178 

an approximation of 95% confidence intervals suitable for comparing two medians (notches), 25th and 75th percentiles 179 

(boxes), the most extreme values within 1.5 times the length of the box away from the box (whiskers), and outliers 180 

(dots). 181 

Our findings help solve one of the most challenging questions in movement ecology over the last 182 

decades: why are the largest animals not the fastest? Many studies tried to answer this based on 183 

morphology, locomotion energetics and biomechanics10–14. However, the body-size related hump-184 

shaped pattern observed in empirical data on animal movement speed remained unresolved. To 185 

account for this, some studies used polynomials but still lacked a mechanistic understanding22-24. 186 

Others suggested a threshold beyond which animals run slower than predicted by a power-law 187 

relationship due to biomechanical constraints13. Therefore, they propose different speed scaling 188 

trends depending on the body-mass range11,12. Instead of applying different laws to small and large 189 

animals, we provide the first universal mechanistic model explaining the hump-shaped relationship 190 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2016. ; https://doi.org/10.1101/095018doi: bioRxiv preprint 

https://doi.org/10.1101/095018
http://creativecommons.org/licenses/by-nc-nd/4.0/


between maximum speed and body mass. Our speed predictions are thereby only derived from two 191 

major species traits: body mass and locomotion mode, which explain almost 90% (R2 = 0.893) of 192 

the variation in maximum speed. This general approach allows a species-level prediction of speed 193 

which is crucial for understanding movement patterns, species interactions and animal space use.  194 

However, our model not only allows prediction of the speed of extant but also that of extinct 195 

species. For example, paleontologists have long debated potential running speeds of large birds31 196 

and dinosaurs32,33 roaming past ecosystems. The benchmark of speed predictions is set by detailed 197 

morphological models32,33. Interestingly, our maximum speed model yields similar predictions by 198 

only accounting for body mass and locomotion mode (Table 1). For instance, in contrast to a 199 

power-law model, the morphological and the time-dependent model predict lower speeds of 200 

Tyrannosaurus compared to the much smaller Velociraptor. This is consistent with theories 201 

claiming that Tyrannosaurus was very likely a slow runner34. A simple power-law model only 202 

yields reasonable results for lower body masses (e.g. flightless birds) while predictions for large 203 

species such as giant quadrupedal dinosaurs are unrealistically high. In contrast, our time-204 

dependent model makes adequate predictions for small as well as large species (almost 80% of the 205 

morphological speed predictions are within the confidence intervals of our model predictions, 206 

Table 1).  207 

  208 
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Table 1 | Maximum speed predictions of extant and extinct flightless birds and bipedal and quadrupedal dinosaurs. 209 

Model predictions of a simple power law, morphological models and our time-dependent maximum speed model are 210 

compared (references in Supplementary Table 5). 95% confidence intervals (CI) are given for the power law and time-211 

dependent model. 212 

 213 
 214 

Our model also allows drawing inferences about evolutionary and ecological processes by 215 

analyzing the deviations of empirically measured speeds from the model predictions. Higher 216 

maximum speeds than predicted indicate evolutionary pressure on optimizing speed capacities that 217 

could for instance arise from co-evolution of pursuit predators and their prey. In ecological 218 

research, our maximum-speed model provides a mechanistic understanding of the upper limit to 219 

animal movement patterns during migration, dispersal or bridging habitat patches. The travelling 220 

speed characterizing these movements is the fraction of maximum speed that can be maintained 221 

over longer periods of time. The integration of our model as a species-specific scale (“what is 222 
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physiologically possible”) with research on how this fraction is modified by species traits and 223 

environmental parameter such as landscape structure, resource availability and temperature (“what 224 

is ecologically realized in nature”) can help provide a mechanistic understanding unifying 225 

physiological and ecological constraints on animal movement. In addition to generalizing our 226 

understanding across species traits and current landscape characteristics, this integrated approach 227 

will facilitate the prediction of how species-specific movement and subsequently home ranges and 228 

meta-communities may respond to the ongoing landscape fragmentation and environmental 229 

change. Our approach may act as a simple and powerful tool for predicting the natural boundaries 230 

of animal movement and help gain a more unified understanding of the currently assessed 231 

movement data across taxa and ecosystems1,2. 232 

  233 
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Methods 234 

Data. We searched for published literature providing data on the maximum speeds of running, 235 

flying and swimming animals by employing the search terms “maximum speed”, “escape speed” 236 

and “sprint speed”. From this list, we excluded publications on (1) vertical speeds (mainly 237 

published for birds) to avoid side-effects of gravitational acceleration that are not included in our 238 

model or (2) the maxima of normal speeds (including also dispersal and migration). This resulted 239 

in a data set containing 617 data points for 470 species (see Supplementary Table 1 for an 240 

overview). Our data include laboratory and field studies as well as meta-studies (which are mainly 241 

field studies but may also include a minor amount of laboratory studies). For some data points, the 242 

study type could not be ascertained and they were marked as “unclear”. For an overview of the 243 

study type of our data see Supplementary Table 2. 244 

 245 

Data availability: The full data set is available on the iDiv data portal.  246 

 247 

Model fitting. We fitted several models to these data: (1) the time-dependent maximum speed 248 

model (equation (5)), (2) three polynomial models (a. simple polynomial model without cofactor, 249 

b. polynomial model with taxon as cofactor but without interaction term and c. polynomial model 250 

with taxon as cofactor with interaction term) and (3) three power law models (a. simple power law 251 

without cofactor, b. power law with taxon as cofactor but without interaction term and c. power 252 

law with taxon as cofactor with interaction term). For swimming animals, we excluded reptiles 253 

and arthropods from the statistical analyses as they only contained one data point each (see 254 

Supplementary Table 1). The polynomial and power law models were fitted by the lm function 255 

and the time-dependent model by the nls function in R 3.2.335. The quality of the fits was compared 256 

according to the Bayesian information criterion (BIC) that combines the maximized value of the 257 
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likelihood function with a penalty term for the number of parameters in the model. The model with 258 

the lowest BIC is preferred, which demonstrates that the time-dependent maximum speed model 259 

developed in the main text was most adequate in all cases (see Supplementary Table 3). For flying 260 

animals, the simple polynomial model performed second best, whereas for running animals the 261 

polynomial model with taxon as cofactor with interaction term and for swimming animals the 262 

power-law model with taxon as cofactor with interaction term were second best (see 263 

Supplementary Table 3). Overall, the lower BIC values indicate that the time dependent maximum 264 

speed model provides a fit to the data that is substantially superior over power-law relationships, 265 

models with taxonomy as cofactor or (non-mechanistic but also hump-shaped) polynomials. The 266 

fitted parameter values of the time-dependent maximum speed model for flying, running and 267 

swimming animals are given in Supplementary Table 4. 268 

 269 

Residual variation analysis. We analyzed the residuals of the time-dependent maximum-speed 270 

model (Fig. 2 of the main text) with respect to taxonomy (arthropods, birds, fish, mammals, 271 

mollusks, and reptiles), primary diet type (carnivore, herbivore, omnivore), locomotion mode 272 

(flying, running, swimming) and thermoregulation (ectotherm, endotherm) using linear models. 273 

As taxonomy and thermoregulation are highly correlated, we made a first model without taxonomy 274 

and a second model without thermoregulation: 275 

 276 

Model 1: residuals ~ (thermoregulation + diet type) * locomotion mode 277 

Model 2: residuals ~ (taxonomy + diet type) * locomotion mode 278 

 279 
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We compared both models via BIC and carried out a further mixed effects model analysis on the 280 

superior model. This model included the study type as a random factor influencing the intercept, 281 

which ensures that differences among study types do not drive our statistical results. We 282 

acknowledge that the direct inclusion of multiple covariates in the model-fitting process would be 283 

preferable over residual analysis to avoid biased parameter estimates36. However, this was 284 

impeded by the complexity of fitting the non-linear model with four free parameters (equation (5)), 285 

and our main goal was less exact parameter estimation than documenting the main variables 286 

affecting the unexplained variation. 287 

 288 
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